

3GPP TS 26.445 V15.4.2 (2022-09)
451
Release 15

[bookmark: _Toc394387130]6	Functional description of the Decoder
[bookmark: _Toc392593125][bookmark: _Toc394387131]6.1	LP-based Decoding
[bookmark: _Toc392593126][bookmark: _Toc394387132]6.1.1	General LP-based decoding
The LSF parameters are decoded from the received bitstream and converted to LSP coefficients and subsequently to LP coefficients. The interpolation principle, described in subclause 5.1.9.6, is used to obtain interpolated LSP vectors for all subframes, i.e. 4 subframes in case of 12.8 kHz internal sampling rate and 5 subframes in case of 16 kHz sampling rate. Then, the excitation signal is reconstructed and post-processed before performing LP synthesis (filtering with the LP synthesis filter) to obtain the reconstructed signal. The reconstructed signal is then de-emphasized (an inverse of the pre-emphasis applied at the encoder). Finally, a post-processing is applied for enhancing the format and harmonic structure of signal as well as the periodicity in the low frequency region of the signal. The signal is then up-sampled to the output sample rate. Finally, the high-band signal is generated and added to the up-sampled synthesized signal to obtain a full-band reconstructed signal (output signal).
[bookmark: _Toc392593127][bookmark: _Toc394387133]6.1.1.1	LSF decoding
[bookmark: _Toc394387134]6.1.1.1.1	General LSF decoding

Depending on the predictor allocation per mode, like specified at encoder side in subclause 5.2.2.1.3 one first bit is read to select between safety net or predictive mode for the switched safety net/predictive cases. The bit value of one corresponds to safety net and value zero corresponds to predictive mode. The following bits are read in groups of a number equal to the stage sizes corresponding to each coding mode as specified in subclause 5.2.2.1.4 and the codevectors are retrieved from the corresponding codebooks. The last bits correspond to the lattice codevector, having the index . The LSF residual after the first non-structured, optimized VQ was quantized by splitting the vector into two subvectors. The index was obtained as a combined index of the two indexes corresponding to the first and the second subvector. The two indexes are retrieved as follows:

		(1409)

		(1410)

These indexes correspond each to a scale index, leader class index and leader vector permutation index. For each of the two indexes corresponding to the 8-dimensional subvectors the following operations are applied. The scale offset is determined by finding out the largest scale offset that is smallest than the index . The corresponding scale offset is removed from each of . Similarly the leader offset is calculated and removed for each of the two indexes. The index of the scale offset gives the index of the scale, , and the index of the leader offset gives the index of the leader class, . The remaining index values are . The sign index, and the leader index are obtained

		(1411)

		(1412)

where is the cardinality of unsigned permutations for the leader class , given in subclause 5.2.2.1.4. The indexes and are decoded using the position decoding based on counting the binomial coefficients and the sign decoding described in [26].

Decoding of the index corresponding to the unsigned permutation of the leader vector goes as follows. Knowing the leader class index, the number of distinct non zero values and the amount of each of these values which are tabulated (see subclause 5.2.2.1.4) can be determined. The used leader classes defined in subclause 5.2.2.1.4 have at most 4 distinct values. If there is a single value, , in the leader class corresponding to the decoded leader class index, all decoded vector components have the same value

		(1413)

where is the subvector dimension.

If there are two distinct values , in the decoded leader vector, each appearing and times respectively, the decoded vector is initialized with

	.	(1414)

The leader vector permutation index is interpreted using binomial coefficients decoding. The positions of the values are determined within a vector of length . The position of the first , is determined such that

	.	(1415)

If then . The position of the second value, , is determined similarly for an updated index

		(1416)

an updated number vector length, instead of , and an updated number of values, instead of .

The procedure follows until the positions of all v0 values are determined. Once these positions are known the values are inserted in the vector at the corresponding positions.

If there are 3 distinct values having number of occurrences respectively, the decoded vector is initialized with:

	.	(1417)

Out of , two subindexes are obtained:

	.	(1418)

	.	(1419)

The positions of the values are determined by binomial decoding of the index considering positions out of and the values are inserted in the vector . The decoding is performed according to equations (1208) and (1209). The positions for values v0 are obtained by binomial decoding of the index Li1, considering k0 positions out of S.
If there are 4 distinct values the vector is initialized with

	.	(1420)

The index is divided into:

	.	(1421)

	.	(1422)

	.	(1423)

	.	(1424)

The positions for values are obtained by binomial decoding the index for position out of . The positions for values are obtained by binomial decoding of the index for positions out of . The positions for values are obtained by binomial decoding of the index for positions out of .
The obtained subvectors are multiplied with the corresponding scales and component wise multiplied with the off-line computed standard deviations. The standard deviations are individually estimated for each coding mode and bandwidth. The result corresponds to the codevector from the last stage of the LSF quantizer. The codevectors from all stages are added together.
If the coding mode corresponds to a safety net only mode, or if it corresponds to a switched safety net/AR predictive mode and the safety net mode has been selected at the encoding stage, a vector representing the component wise mean for the current coding mode is added to the sum of codevectors and the result represents the decoded LSF vector. The decoded LSF vector is thus given by:

	, for =0,…, -1	(1425)

where is the LSF vector for current frame , lk(i), i=0, M-1 is the codevector obtained at stage out of the quantization stages and is the mean LSF vector for the current coding mode.
If AR predictive mode was selected at the encoding stage, the decoded LSF vector is given by:

	, for =0,…, -1.	(1426)
If MA predictive mode was selected at the encoding stage, based on the coding mode, the decoded LSF vector is given by:

	, for =0,…, -1.	(1427)

where is the quantization error at the previous frame .
[bookmark: _Toc394341614][bookmark: _Toc394387135]6.1.1.1.2	LSF decoding for voiced coding mode at 16 kHz internal sampling frequency
The VC mode at the 16 kHz internal sampling frequency has two decoding rates: 31 bits per frame and 40 bits per frame. The VC mode is decoded by a 16-state and 8-stage BC-TCVQ. figure 88 shows the decoder of the predictive BC-TCVQ with safety-net using an encoding rate of 31 bits. The 31bit LSF decoding performed by the predictive BC-TCVQ with safety-net proceeds as follows. First, one bit is decoded at the Scheme selection block. This bit defines whether the predictive scheme or the safety-net scheme is used.

For the safety-net scheme, is decoded by equation (1428),

[bookmark: BC_TCVQ_EQ_safety]	, for =2,…, /2	(1428)

where the prediction residual, , is decoded by the 1st BC-TCVQ.

If the predictive scheme is used, the prediction vector is obtained using (1429):

[bookmark: BC_TCVQ_EQ_prediction]	, for =0,…, -1	(1429)

where are the selected AR prediction coefficients for the VC mode at 16kHz isf, M is the LPC order, and .

The decoding of is performed as given by equation (1430),

[bookmark: BC_TCVQ_EQ_predicitve_dec]	, for =2,…, /2	(1430)

where the prediction residual, , is decoded by the 2nd BC-TCVQ.

The quantized LSF vector for the predictive scheme is calculated by equation (1431),

[bookmark: BC_TCVQ_EQ_predicitve_LSF]	, for =0,…, -1	(1431)

where is the mean vector for VC mode and

The quantized LSF vector for the safety-net scheme is calculated by equation (1432).

[bookmark: BC_TCVQ_EQ_safety_LSF]	, for =0,…, -1	(1432)

[bookmark: Block_decoder_BCTCVQ_31]Figure 88: Block diagram of the decoder for the predictive BC-TCVQ with safety-net for an encoding rate of 31 bits per frame

Figure 89 shows the decoder of the predictive BC-TCVQ with safety-net for an encoding rate of 40 bits per frame. The 40-bit LSF decoding using the predictive BC-TCVQ with safety-net is performed as follows. The scheme selection and the decoding method of BC-TCVQ for both the predictive and safety-net schemes are the same as those of the 31-bit LSF decoding. and are decoded by the 3rd and 4th SVQ decoding respectively. The quantized LSF vector for the predictive scheme is calculated according to equation (1433),

[bookmark: BC_TCVQ_EQ_predicitve_LSF40]	, for =0,…,-1	(1433)

where is the output of the 2nd BC-TCVQ and the 2nd intra-frame prediction.

The quantized LSF vector for the safety-net scheme is calculated by equation (1434),

[bookmark: BC_TCVQ_EQ_safety_LSF40]	, for =0,…, -1	(1434)

where is the output of the 1st BC-TCVQ and 1st intra-frame prediction.

[bookmark: Block_decoder_BCTCVQ_40]Figure 89: Block diagram of the decoder for the predictive BC-TCVQ/SVQ with safety-net for an encoding rate of 40 bits per frame
[bookmark: _Toc392593128][bookmark: _Toc394387136]6.1.1.2	Reconstruction of the excitation
[bookmark: _Toc392593129][bookmark: _Toc394387137]6.1.1.2.1	Reconstruction of the excitation in GC and VC modes and high rate IC/UC modes
[bookmark: _Toc392593130][bookmark: _Toc394387138]6.1.1.2.1.1	Decoding the adaptive codebook vector

The received adaptive codebook parameters (or pitch parameters) are the closed-loop pitch, , and the pitch gain, (adaptive codebook gain), transmitted for each subframe, serve to compute the adaptive codevector, .
[bookmark: _Toc394387139]6.1.1.2.1.2	Pulse index decoding of the 43-bit algebraic codebook
The joint indexing decoding procedure of three pulses on two tracks is described as follows:

In the decoder side, the de-indexing procedure is as below for pulses, positions on the track:
1

24 bits are extracted from the received bit-stream and then decoded as the temporary index . If is smaller than THR which is the same as the encoder side, the joint index equals to . If is bigger than or equal to THR, 1 more bit will be extracted from the bit-stream as Bit. Then the global index is adjusted as: . Then the joint index is computed by subtracting THR from :

		(1435)
2
Decompress the joint index into the two index for each track:

		(1436)

		(1437)
3

Decoding the index for each track(and) as below:
1)
determining the quantity of pulse positions according to the first index

As the offset index is saved in a table (available in encoder and decoder), and each offset index in the table indicates the unique number of pulse positions in the track. So can be decoded from the index easily. Then the number of pulse position , the sign index and are obtained.
2)

As we know the number of pulse position and index , the indexand can be decoded based on permutation method from the index , and each pulse position is also decoded from and .Separating and obtaining the second index and the third index in the following way:

		(1438)

		(1439)

wherein represents the second index, represents the third index, represents the quantity of the positions with pulse on it, refers to taking the remainder, and “Int” refers to taking the integer
3) determining the distribution of the positions with a pulse on the track according to the second index;

the is obtained, the following calculation process is applied at the decoder:

(1) , ..., and are subtracted from one by one.

		(1440)

until the remainder changes from a positive number to a negative number, where is the total quantity of positions on the track, is the quantity of positions with pulses, , and C refers to calculating the combination function. The , namely, the serial number of the first position with a pulse(s) on the position, is recorded, where .

(2) If , , ..., and are further subtracted from one by one until the remainder changes from a positive number to a negative number. The namely, the serial number of the second position with a pulse(s) on the position, is recorded, where .

(3) And so on, , ..., and are further subtracted from one by one until the remainder changes from a positive number to a negative number, where . The namely, the serial number of the n+1 position with a pulse(s) on the position, is recorded, where .

(4) The decoding of the is completed, and is obtained.
4) determining the quantity of pulses in each position with pulses according to the third index;

For each track, according to the third index , determine the number of pulses on each position that has a pulse. the is obtained, the following calculation process is applied at the decoder:

(1) is calculated from a smaller value to a greater value, where: , ,, and C refers to calculating the combination function. The last value that lets be greater than zero is recorded as the position of the first pulse on the track.

(2) If , is further calculated from a smaller value to a greater value, where ; and the last value that lets be greater than zero is recorded as the position of the second pulse on the track.

(3) By analogy, is calculated from a smaller value to a greater value, where: , and ; and the last value that lets be greater than zero is recorded as the position for the (h+1)th pulse(h+1 is an ordinal number) on the track.

(4) The decoding of the is completed, and is obtained.
5)

After obtain , mean on each position have a pulse, if , mean on the position have more pulses. The is the result after subtract value “1” from the number of pulses in each pulse position, so value “1” is need to be added back to position, and is rebuilt as following

6) By now all the pulse positions, the quantity of pulses in each pulse position and associated signs are decoded, so the pulses on each track is reconstructed.
6.1.1.2.1.3	Mulit-track joint decoding of pulse indexing
All the muti-track joint decoding step is described as following:
1)

extracting the , , , and from the stream;
2) Get the parameter from the table 35 according to the pulse number of each track, include the index bitst, Hi_Bit_bitst, Hi_Bit_ranget, re-back_bitst,
3)

Extract and from , extract and from , extract and from , extract and from .
4)

From ,, , and , , , and are decoded out.
(1)

The is combined with and obtain , is combined with and obtain , then can be get as following:

		(1441)

		(1442)
(2)

The is combined with and obtain , then can be get as following:

		(1443)

		(1444)
(3)

The is combined with and obtain , then , can be get as following:

		(1445)

		(1446)
5)

Combine , , , with , , , , and get the index of each track.

[bookmark: _Toc392593131][bookmark: _Toc394387141]6.1.1.2.1.4	Decoding the algebraic codebook vector

The received algebraic codebook index is used to extract the positions and amplitudes (signs) of the excitation pulses and to find the algebraic codevector . If the integer part of the pitch lag is less than the subframe size 64, the pitch sharpening procedure is applied, which translates into modifying by filtering it through the adaptive pre-filter which further consists of two parts: a periodicity enhancement part , where is the integer part of the pitch lag representing the fine spectral structure of the speech signal, and a tilt part, where is related to the voicing of the previous subframe and is bounded by [0.28, 0.56] at 16.4 and 24.4 kbps, and by [0.0; 0.5] otherwise.
The periodicity enhancement part of the filter colours the spectrum by damping inter-harmonic frequencies, which are annoying to the human ear in case of voiced signals.

Depending on bitrates and coding mode, and the estimated level of background noise, the adaptive pre-filter also includes a filter based on the spectral envelope, which colours the spectrum by damping frequencies between the formant regions. The final form of the adaptive pre filter is given by

[bookmark: f_of_z_adaptive_pre_filter]		(1447)

where and if Hz and and if Hz.
[bookmark: _Toc394387142]6.1.1.2.1.5	Decoding of the combined algebraic codebook

At 32 kbps and 64 kbps bit-rates, the pre-quantizer excitation contribution is obtained from the received pre-quantizer parameters as follows. The contribution from the pre-quantizer is obtained by first de-quantizing the decoded (quantized) spectral coefficients using an AVQ decoder and applying the iDCT to these de-quantized spectral coefficients. Further the pre-emphasis filter is applied after the iDCT to form the pre-quantizer contribution . The pre-quantizer contribution then scales using the quantized pre-quantizer gain to form the pre-quantizer excitation contribution.

The same above procedure applies for decoding GC, TC and IC mode at 32 kbps and 64 kbps with the exception of non-harmonic signals at 32kbps GC mode where the iDCT stage is omitted. It is noted that at the decoder, the order of codebooks and corresponding codebook stages during the decoding process is not important as a particular codebook contribution does not depend on or affect other codebook contributions. Thus the codebook arrangement in the IC mode is identical to the GC mode codebook arrangement. The pre-quantizer gain in GC and TC mode is obtained by

		(1448)

where is the decoded normalized pre-quantizer gain and predicted algebraic codevector energy.
In IC mode, the de-quantizer gain is obtained by

		(1449)

where is the quantized algebraic codebook gain.
[bookmark: _Toc394387143]6.1.1.2.1.6	AVQ decoding

The reading of the AVQ parameters from the bitstream is complementary to the insertion described in subclause 5.2.3.1.6.9.3. The codebook numbers are used to estimate the actual bit-budget needed to encode AVQ parameters at the decoder and the number of unused AVQ bits is computed as a difference between the allocated and actual bit budgets.
[bookmark: _Toc394387144]6.1.1.2.1.6.1	Decoding of AVQ parameters

The parameters decoding involves decoding the AVQ parameters describing each 8-dimensional quantized sub‑bands of the quantized spectrum . The comprise several sub-bands (8 in case of combined algebraic codebook), each of 8 samples. The decoded AVQ parameters for each sub‑band comprise:
·
the codebook number ,
·
the vector index ,
·
and, if the codevector (i.e. lattice point) is not in a base codebook, the Voronoi index .

The unary code for the codebook number , is first read from the bitstream and is determined. From the codebook number , the base codebook and the Voronoi extension order are then obtained. If , there is no Voronoi extension () and the base codebook is . If the base codebook is either Q3 (even) or Q4 (odd) and the Voronoi order (1 or 2) is also determined (if ; , otherwise).

Then, if , the vector index , coded on bits is read from the bitstream and the base codevector is decoded.

After the decoding of the base codevector, if the Voronoi order is greater than 0, the Voronoi extension index is decoded to obtain the Voronoi extension vector . The number of bits in each component of index vector is given by the Voronoi extension order , and the scaling factor of the Voronoi extension is given by .

Finally, from the scaling factor , the Voronoi extension vector and the base codebook vector , each 8-dimensional AVQ sub-band is computed as:

		(1450)

In case of decoding the pre-quantizer, resp. de-quantizer, contribution from subclause 6.1.1.2.1.3, the decoded sub-band blocks of corresponds to the decoded spectrum coefficients , resp. .
[bookmark: _Toc394387145]6.1.1.2.1.6.2	De-indexing of codevector in base codebook

The index decoding of the codevector is done in several steps. First, the absolute leader and its offset are identified by comparing the index with the offset in the look‑up table. The offset is subtracted from the index to produce a new index. From this index, the sign index and the absolute vector index are extracted. The sign index is decoded and the sign vector is obtained. The absolute vector index is decoded by using a multi-level permutation-based index decoding method and the absolute vector is obtained. Finally, the decoded vector is reconstructed by combining the sign vector with the absolute vector.
[bookmark: _Toc394387146]6.1.1.2.1.6.2.1	Sign decoding

The sign vector is obtained by extracting from left to right all the sign bits for non-zero elements in the absolute vector. The bit number of the sign code is read from the (). If the bit number of the sign index is not equal to the number of the non-zero elements in the decoded absolute vector, the sign of the last non-zero element is recovered.
[bookmark: _Toc394387147]6.1.1.2.1.6.2.2	Decoding of the absolute vector and of its position vector
The decoding method of the absolute vector index is described as follows:
1)

The absolute vector index is decomposed into several mid-indices for each level from lowest level to highest level. The absolute vector index is the starting value for the lowest level. The mid-index of each lower level is obtained by dividing the absolute vector index by the possible index value count, , the quotient is the absolute vector index for the next lower level. The remainder is the middle index, , for the current level.
2)
The of each lower level is decoded based on a permutation and combination function and the position vector of each lower level vector related to its upper level vector is obtained.

Finally, one-by-one from the lowest level to the highest level, each lower level absolute vector is used to partly replace the upper level absolute vector elements according to the position parameter. The highest level vector is the decoded output absolute vector. A example of the absolute vector partly replace the absolute vector elements is give as following:

[bookmark: avq_fig_Ka20]Figure 90: Replacing example between and for .
[bookmark: _Toc394387148]6.1.1.2.1.6.2.3	Position vector decoding
To obtain the position vector from the middle index in each lower level, the algorithm uses a permutation and combination procedure to estimate the position sequence. The procedure is as follows:

1)	Increment the value beginning from zero, until is not more than .

2)	Let be the first position, and subtract from the .

3)	Increase , beginning from , until is not more than , where is the position decoded at the previous step.

4)	Let be the position number , and subtract from the .
5)	Repeat steps 3 and 4 until all positions are decoded for the current level position sequence.
[bookmark: _Toc394387149]6.1.1.2.1.6.2.4	Absolute vector decoding
For the lowest level, the absolute vector only includes one type of element whose value can be obtained from the decomposition order column in the table of subclause 5.2.3.1.6.9.3.2. The lowest level absolute vector is passed to the next level and at the next step another type of element is added. This new element is obtained from the decomposition order column in the table of subclause 5.2.3.1.6.9.3.2. This procedure is repeated until the highest level is reached.
[bookmark: _Toc394387150]6.1.1.2.1.6.2.5	Construction of the output codevector in base codebook

Constructing the 8-dimensional output codevector in the base codebook is the final step of the decoding procedure. The codevector is obtained by combining the sign vector with the absolute vector. If the bit number of the sign index is not equal to the number of the non-zero elements in the decoded absolute vector, the sign of the last non-zero element is recovered. The recovery rule, based on the RE8 lattice property, is as follows: if the sum of all output vector elements is not an integer multiple of 4, the sign of the last element is set to negative.
[bookmark: _Toc392593132][bookmark: _Toc394387151]6.1.1.2.1.7	Decoding the gains
[bookmark: _Toc394387152]6.1.1.2.1.7.1	Decoding memory-less coded gains

Before calculating the adaptive and algebraic codebook gain in each subframe, the predicted algebraic codevector energy, , is decoded for the whole frame.

Now, let denote the algebraic codebook excitation energy in dB in a given subframe, which is given by

[bookmark: E_c_algebraic_excitation_energy]		(1451)

In the equation above, is the pre-filtered algebraic codevector.
A predicted algebraic codebook gain is then calculated as

		(1452)

An index is then retrieved from the bitstream representing a jointly-quantized adaptive codebook gain along with a correction factor. The quantized adaptive codebook gain, , is retrieved directly from the codebook and the quantized algebraic codebook gain is given by

[bookmark: gc_gamma_gc]		(1453)

whereis the decoded correction factor.
Note that no prediction based on parameters from past frames is used. This increases the robustness of the codec to frame erasures.
[bookmark: _Toc394387153]6.1.1.2.1.7.2	Decoding memory-less joint coded gains at lowest bit-rates
For the lowest bitrates of 7.2 and 8.0 kbps, slightly different memory-less joint gain coding scheme is used.
Similarly as in the encoder, the estimated (predicted) gain of the algebraic codebook in the first subframe is given by

		(1454)

where CT is the coding mode, selected for the current frame in the pre-processing part, and is the energy of the filtered algebraic codevector. The inner term inside the logarithm corresponds to the gain of innovation vector. The only parameter in the equation above is the coding mode CT which is constant for all subframes of the current frame. The superscript [0] denotes the first subframe of the current frame.
In all subframes following the first subframe the estimated value of the algebraic codebook gain is given by

		(1455)

where k=1,2,3. Note, that the terms in the first and in the second sum of the exponent, there are quantized gains of algebraic and adaptive excitation of previous subframes, respectively. Note that the term including the gain of innovation vector is not subtracted. The reason is in the use of the quantized values of past algebraic codebook gains which are already close enough to the optimal gain and thus it is not necessary to subtract this gain again.

The gain de-quantization in the decoder is done by retrieving the codevector [;] according to the index receing in the bitstream. The quantized value of the fixed codebook gain is then calculated as

		(1456)
[bookmark: _Toc394387154]6.1.1.2.1.7.3	Decoding scalar coded gains at highest bit-rates

[bookmark: _Toc392593133]As described in subclause 6.1.1.2.1.3.1, before calculating the adaptive and algebraic codebook gain in each subframe, the predicted algebraic codevector energy, , is decoded for the whole frame. Then two indexes are retrieved from the bitstream and used to decode the adaptive codebook gain and a correction factor. The decoded algebraic codebook gain is further obtained using equation (1453).
6.1.1.2.1.8	Reconstructed excitation
The total excitation in each subframe is constructed by

		(1457)

where is the pre-filtered algebraic codevector.
In case that combined algebraic codebook is used, the total excitation is each subframe is constructed by

		(1458)

The excitation signal, , is used to update the contents of the adaptive codebook for the next frame. The excitation signal, , is then post processed as described in subclause 7.1.2.4 to obtain the post-processed excitation signal , which is finally used as an input to the synthesis filter.
[bookmark: _Toc392593134][bookmark: _Toc394387155]6.1.1.2.2	Reconstruction of the excitation in TC mode

In TC mode, the TC frame configuration (subclause 6.8.4.2.2) is decoded first. Then, the adaptive excitation signal is either a zero vector, a glottal-shape codevector or an adaptive codebook vector. In a subframe where the glottal-shape codebook is used, the reconstruction of the glottal-shape codevector is done using the received TC parameters as described in subclause 6.8.4.2.1. In a subframe where the adaptive codebook is used, the adaptive codevector is found as described in subclause 7.1.2.1.1. In all subframes after the one where the glottal-shape codebook is used, a low-pass filtering is applied and the filtered adaptive excitation is found as .
If a subframe contains a zero adaptive excitation vector, only the algebraic codebook gain is decoded using a 2-bit or 3-bit scalar quantizer (described in subclause 6.8.4.2.4). Otherwise, the adaptive and algebraic codebook gains are decoded as in GC and VC modes (described in subclause 7.1.2.1.3).
Finally, the reconstructed excitation is computed as described in subclause 7.1.2.1.4.
[bookmark: _Toc392593135][bookmark: _Toc394387156]6.1.1.2.3	Reconstruction of the excitation in UC mode at low rates
[bookmark: _Toc392593136][bookmark: _Toc394387157]6.1.1.2.3.1	Decoding the innovative vector
In UC mode, the signs and indices of the two random vectors are decoded and the excitation is reconstructed as in subclause 5.2.3.3.1. The correction of the random codebook tilt is used as described in subclause 5.2.3.3.2.
[bookmark: _Toc392593137][bookmark: _Toc394387158]6.1.1.2.3.2	Decoding the random codebook gain

In UC mode, only the random codebook gain is transmitted. The received index gives the gain in dB, , using the relations and quantization step defined in subclause 5.2.3.3.4. The valuesandgiven in subclause 5.2.3.3.4. The quantized gain, , is then given according to subclause 5.2.3.3.4.
[bookmark: _Toc392593138][bookmark: _Toc394387159]6.1.1.2.3.3	Enhancement of background noise
The anti-swirling technique is applied in inactive periods, at 9.6 kb/s for NB signals, and 9.6 kb/s and below for WB and SWB signal. This technique is based on the decoded SAD and noisiness parameters. Basically, the anti-swirling effect is achieved by means of LP parameter smoothing in combination with reducing the power variations and spectral fluctuations of the excitation signal during detected periods of signal inactivity.
[bookmark: _Toc392593139][bookmark: _Toc394387160]6.1.1.2.3.3.1	LP parameter smoothing
The LP parameter smoothing is done in two steps. First, a low-pass filtered set of LSP parameters is calculated by first-order autoregressive filtering according to

		(1459)

Hererepresents the low-pass filtered frame-end LSP parameter vector obtained for the current frame, is the decoded frame-end LSP parameter vector for the current frame, and is a weighting factor controlling the degree of smoothing.

In a second step, a weighted combination between the low-pass filtered LSP parameter vector, , and the decoded LSP parameter vectors, , and, is calculated using a weighting factor . That is

[bookmark: lsp_param_vectors_for_smoothing]		(1460)
As mentioned in subclause 7.1.1, LSP interpolation is performed to obtain four LSP vectors, each for an individual subframe. This interpolation is based on: the decoded frame-end LSP parameter vector of the previous frame, the decoded mid-frame LSP parameter vector in the current frame and the decoded frame-end LSP parameter vector of the current frame. Subsequently, instead of using these parameters, their smoothed versions, given in equation (1460) are employed.

It is noteworthy that the degree of smoothing is controlled by means of the control factor, which is described in subclause 6.1.1.2.3.3.3.
[bookmark: _Toc392593140][bookmark: _Toc394387161]6.1.1.2.3.3.2	Modification of the excitation signal
One essential element of the anti-swirling technique is the reduction of power and spectrum fluctuations of the signal during periods of signal inactivity.
In the first step, tilt compensation of the excitation signal is performed with a first-order tilt compensation filter given as

		(1461)

The coefficientis calculated as

		(1462)

whereand are the zero-th and the first autocorrelation coefficients of the original excitation signal. The tilt compensation is carried out on a subframe basis.

In the second step, the spectral fluctuations of the excitation signal are further reduced by replacing a part of it with a white noise signal. To this end, first a properly scaled random sequence of unit variance is generated. This signal is then scaled by means of a gain factor, , in such a way that its power equals the smoothed power of the excitation signal. The gain factor, , is obtained by filtering the RMS value of the excitation signal, denoted as , on a frame-by-frame basis. That is

		(1463)

The noise is scaled by multiplying all its samples by the gain factor. Then, with some weighting factor, , the excitation signal, , is combined with the scaled noise signal, denoted as . This is done according to the following equation leading to the smoothed excitation signal:

		(1464)

It is noteworthy that the degree of excitation signal smoothing is controlled by means of the control factor, which is described in subclause 6.1.1.2.3.3.3.
[bookmark: _Toc392593141][bookmark: _Toc394387162]6.1.1.2.3.3.3	Controlling the background noise smoothing

The anti-swirling method described in the clauses above is controlled by means of the control parametersandin response to the received SAD and noisiness parameters.

First, the received and decoded noisiness parameter steers an intermediate smoothing control parameter, , such that it is ensured that the degree of smoothing is only increased gradually up to a maximum degree that is indicated by the received parameter. Given the received noisiness parameter, , an intermediate parameter, , is set according to the following relation:

		(1465)

whereis the stored intermediate control parameter from the previous frame and is the step-size with which the smoothing control parameters are steered towardsas long as they are greater than. In case the current frame is erased (), is set to the intermediate control parameter of the previous frame, .

The SAD parameter activates the smoothing operation only when the received SAD flag, , indicates inactivity. However, in order to decrease the risk that smoothing is enabled during active signal periods, erroneously declared as inactive, the background noise smoothing is only enabled after a hangover period of 5 frames. Further, whenever the SAD declares a frame as active, the smoothing operation is disabled. In order to avoid adding a new hangover period after spurious SAD activation, no hangover is added if the detected activity period is less or equal to 3 frames.

In addition to this SAD-driven activation, for quality reasons, it is important to avoid the anti-swirling operation being turned on too abruptly. To this end, after each hang-over period, a phase in period of frames is applied, during which the smoothing operation is gradually steered from inactivate to fully enabled. Accordingly, for the n-th frame of the phase-in period, the smoothing control parametersandare calculated as follows:

		(1466)

For all other frames (during which the smoothing is activated) and.
It is noteworthy that phase-in periods are only inserted after hangover periods, i.e., not after spurious SAD activations of less than 3 frames.
[bookmark: _Toc394387163]6.1.1.2.4	Reconstruction of the excitation in IC/UC mode at 9.6 kbps
[bookmark: _Toc394387164]6.1.1.2.4.1	Decoding of the innovative excitation
In IC and UC modes at 9.6 kbps the decoding the algebraic codebood ecitation is the same as described in n subclause 6.1.1.2.1.2.
At WB, an additional Gaussian noise excitation is generated as described in subclause 5.2.3.4.2.
[bookmark: _Toc394387165] 6.1.1.2.4.2	Gains decoding

In NB, only the algebraic codeword gain is calculated as

		(1467)

The algebraic codebook excitation energy in dB, , is computed as in equation (1451). The quantized gain in dB is given by

		(1468)

The quantization index (6 bits) is retrieved directly from the bitstream (subclause 5.2.3.4.3.2)..

For WB the quantized algebraic codeword gainand Gaussian noise excitation gain are decoded. They are calculated respectively as

		(1469)

		(1470)
The quantized gain in dB is given by

		(1471)

The quantization index (5 bits) and (2 bits) are retrieved from the bitstream. The predicted algebraic codevector energy, , is decoded for the whole frame prior to calculating the algebraic codebook gain in each subframe (subclause 5.2.3.4.3.2).
[bookmark: _Toc394387166]6.1.1.2.4.4	Total excitation
The total excitation in each subframe is constructed by

		(1472)

where and are the pre-filtered algebraic codevector and the pre-filtered Gaussian noise excitation respectively.

Only the algebraic codevector is used to update the contents of the adaptive codebook for the next frame.

The excitation signal, , is then post processed as described in subclause 6.1.1.3 to obtain the post-processed excitation signal , which is finally used as an input to the synthesis filter.
[bookmark: _Toc394387167]6.1.1.2.5	Reconstruction of the excitation in GSC

In GSC mode, the attack flag is first decoded (subclause 5.1.13.5.3). Then, the number of subframe is decoded. To do so, if the bit rate is 13.2 kbit/s and the coding mode is INACTIVE, the first step is to decode 1 bit to verify if the coded frame is a SWB unvoiced frame which would implies 4 subframes. Otherwise when the number of subframe is less than 4, the noise level as defined in subclause 5.2.3.5.4 is decoded. If the bitrate is 13.2 kbit/s, then a supplementary bit is decoded to determine if the number of subframe is 1 or 2, for lower bitrate the number of subframe is 1.
Then the cut off frequency (as defined in subclause 5.2.3.5.6) is decoded and if it is different from 0, the time domain contribution is decoded (subclause 5.2.3.5.2). When a time domain contribution exists, it is converted in frequency domain and low pass filtered using the decoded cut-off frequency as described in subclause 5.2.3.5.6, otherwise the time domain contribution is set to 0.

Then the frequency domain component is decoded starting the gain of sub bands as defined in subclause 5.2.3.5.7. The gain information is then used to determine the bit allocation, the number of bands and the order of the bands to be decoded by the PVQ as described in subclause 5.2.3.5.8. Then the PVQ is decoding the spectral difference and spectral dynamic control and noise filling is applied on the decoded vector as described in subclause 5.2.3.5.10. When the spectral difference vector is complete, the gain is applied and it is combined, in the frequency domain, with the temporal contribution as described in subclause 5.2.3.5.11. If the decoded frequency excitation meets the given condition, predict the un-decoded frequency excitation by the decoded frequency excitation as described in subclause 5.2.3.5.12. The complete excitation in the frequency domain is revert back to time domain using the inverse DCT as described in subclause 5.2.3.5.12 and then a pre-echo removal is applied as in subclause 5.2.3.5.13 to get the total excitation .
[bookmark: _Toc392593142][bookmark: _Toc394387168]6.1.1.3	Excitation post-processing

Before the synthesis, a post-processing of the excitation signal, , is performed to form the updated excitation signal, , as follows.
[bookmark: _Toc392593143][bookmark: _Toc394387169]6.1.1.3.1	Anti-sparseness processing

An adaptive anti-sparseness post-processing procedure is applied to the pre-filtered algebraic codevector, . This is to reduce the perceptual artefacts arising from the sparseness of algebraic codebook vectors having only a few non-zero samples per subframe. The anti-sparseness processing consists of circular convolution of the algebraic codevector with an impulse response by means of an FFT. Three pre-stored impulse responses are used and a selection number 0, 1or 2 and is set to select one of them. A value of 2 or greater corresponds to no modification; a value of 1 corresponds to medium modification and a value of 0 corresponds to strong modification. The selection of the impulse response is performed adaptively based on the decoded adaptive codebook gain, , coding mode and bit rate.

The following selection procedure is employed where is the algebraic codebook gain in the previous subframe, are current and 5 previous subframes' adaptive codebook gains and is the previous selection number.

	(1473)
[bookmark: _Toc392593144][bookmark: _Toc394387170]6.1.1.3.2	Gain smoothing for noise enhancement

A nonlinear gain smoothing technique is applied to the algebraic codebook gain, , in order to enhance the excitation in noise. Based on the stability and voicing of the signal segment, the gain of the algebraic codebook vector is smoothed in order to reduce fluctuation in the energy of the excitation in case of stationary signals. This improves the performance in case of stationary background noise. The voicing factor is given by

		(1474)

with giving a measure of signal periodicity

[bookmark: r_nu_periodicity_factor]		(1475)

whereand are the energies of the scaled pitch codevector and scaled algebraic codevector, respectively. Note that since the value of is between –1 and 1, the value of is between 0 and 1. Note that the factor is related to the amount of "unvoicing" with a value of 0 for purely voiced segments and a value of 1 for purely unvoiced segments.

A stability factor is computed based on a distance measure between the adjacent LP filters. Here, the factor is related to the LSF distance measure. The LSF distance is given by

		(1476)

where in the present frame, calculated in subclause 7.1.1, andare the LSFs in the previous frame. The stability factor is given by

		(1477)

The LSF distance measure is smaller in case of stable signals. As the value of is inversely related to the LSF distance measure, then larger values of correspond to more stable signals. The gain smoothing factor,, is given by

		(1478)

The value of approaches 1 for unvoiced and stable signals, which is the case of stationary background noise signals. For purely voiced signals, or for unstable signals, the value of approaches 0. An initial modified gain, , is computed by comparing the algebraic codebook gain, , to a threshold given by the initial modified gain from the previous subframe, . Ifis larger than or equal to , then is computed by decrementingby 1.5 dB, constrained by . Ifis smaller than , then is computed by incrementingby 1.5 dB, constrained by . Finally, the algebraic codebook gain is modified using the value of the smoothed gain as follows

[bookmark: g_hat_c_modifiied_algebraic_cb_gain]		(1479)
[bookmark: _Toc392593145][bookmark: _Toc394387171]6.1.1.3.3	Pitch enhancer

A pitch enhancer scheme modifies the total excitation of voiced signals by filtering the algebraic codebook excitation through an innovation filter. The filter frequency response emphasizes the higher frequencies and reduces the energy of the low-frequency portion of the innovative codevector. The filter coefficients are related to the periodicity of the signal. Therefore, the pitch enhancer is not applied to excitation in UC at low bit rates, i.e. birates < 9600 kb/s.
A filter of the form

		(1480)

is used where if Hz and if Hz, with being a periodicity factor given in equation (1475). The filtered algebraic codebook vector in the current subframe is given by

		(1481)

where the out-of-subframe samples and are set to zero. The updated post-processed excitation is given by

		(1482)
The above procedure can be done in one step by updating the excitation as follows

		(1483)

whereis the modified algebraic codebook gain from equation (1479).
[bookmark: _Toc394387172]6.1.1.3.4	Music post processing

In case of a sound signals coded with the GSC, a music enhancer scheme modifies the total excitation corresponding to the sound signal in such a way that the quantization noise inserted between spectral tones during the encoding/decoding process can be reduced. The music enhancer consists of converting the decoded excitation into frequency domain, computing a weighting mask for retrieving spectral information lost in the quantization noise, and modifying the frequency domain excitation by applying the weighting mask to increase the spectral dynamics, and converting the modified frequency domain excitation back to time domain.
The current frequency domain post processing achieves higher frequency resolution, without adding delay to the synthesis. A weighting mask is created based on the past spectrum energy and used to improve the efficiency of the inter-tone noise removal. To achieve this post processing without adding delay to the codec, a symmetric trapezoidal window is used. It is centred on the current frame where the window is flat, and extrapolation is used to create the future signal. The advantage of working on the excitation signal rather than on the synthesis signal is that any potential discontinuities introduced by the post processing are smoothed out by the subsequent application of the LP synthesis filter. The following text describes the implementation of the music post processing.
[bookmark: _Toc394387173]6.1.1.3.4.1	Excitation buffering and extrapolation

To increase the frequency resolution, a frequency transform longer than the frame length is used. To do so, a concatenated excitation vector is created by concatenating the last 192 samples of the previous frame excitation, the decoded excitation of the current frame , and an extrapolation of 192 excitation samples of the future frame . This is described below where is the length of the past excitation as well as the length of the extrapolated excitation, and is the frame length. These correspond to 192 and 256 samples respectively, giving the total length samples:

		(1484)

The extrapolation of the future excitation samples is computed by periodically extending the current frame excitation signal using the decoded factional pitch of the last subframe of the current frame. Given the fractional resolution of the pitch lag, an upsampling of the current frame excitation is performed using a 35 samples long Hamming windowed sinc function.
[bookmark: _Toc394387174]6.1.1.3.4.2	Windowing and frequency transform

Prior to the time-to-frequency transform a windowing is performed on the concatenated excitation. The selected window has a flat top corresponding to the current frame, and it decreases with the Hanning function to 0 at each end. The following equation represents the window used:

		(1485)

When applied to the concatenated excitation, an input to the frequency transform having a total length samples () is obtained in the prototype. The windowed concatenated excitation is centered on the current frame and is represented with the following equation:

		(1486)
During the frequency-domain post processing phase, the concatenated excitation is represented in a transform-domain using a type II DCT giving a resolution of 10Hz. The frequency representation of the concatenated and windowed time-domain CELP excitation fu is given below:

		(1487)

where , is the concatenated and windowed time-domain excitation and is the length of the frequency transform. The frame length is 256 samples, but the length of the frequency transform is 640 samples for a corresponding inner sampling frequency of 12.8 kHz.
[bookmark: _Toc394387175]6.1.1.3.4.3	Energy per band and per bin analysis
After the DCT, the resulting spectrum is divided into critical frequency bands. The critical frequency bands used in the prototype are as close as possible to what is specified in [17], and their upper limits are defined as follows:

		(1488)

The 640-point DCT results in a frequency resolution of 10 Hz (6400Hz/640pts). The number of frequency bins per critical frequency band is

		(1489)

The average spectral energy per critical frequency band is computed as follows:

		(1490)

where represents the hth frequency bin of a critical band and is the index of the first bin in the ith critical band given by

		(1491)

The spectral analysis also computes the energy of the spectrum per frequency bin, using the following relation:

		(1492)

Finally, the spectral analysis computes a total spectral energy of the concatenated excitation as the sum of the spectral energies of the first 17 critical frequency bands using the following relation:

		(1493)
[bookmark: _Toc394387176]6.1.1.3.4.4	Excitation type classification
The method for enhancing decoded generic sound signal includes an additional analysis of the excitation signal designed to maximize the efficiency of the inter-harmonic noise reducer by identifying which frame is well suited for the inter-tone noise reduction.
This classifier not only separates the decoded concatenated excitation into sound signal categories, but it also gives instructions to the inter-harmonic noise reducer regarding the maximum level of attenuation and the minimum frequency where the reduction can starts.

The first operation consists in performing an energy stability analysis based on the total spectral energy of the concatenated excitation:

		(1494)

where represents the average difference of the energies of the concatenated excitation vectors of two adjacent frames, represents the energy of the concatenated excitation of the current frame , and represents the energy of the concatenated excitation of the previous frame . The average is computed over the last 40 frames.

Then, a statistical deviation of the energy variation over the last fifteen (15) frames is calculated using the following relation:

		(1495)

where, in the prototype, the scaling factor is found experimentally and set to about 0.77. The resulting deviation is compared to four (4) floating thresholds to determine to what extend the noise between harmonics can be reduced. The output of this second stage classifier is split into five (5) sound signal categories , named sound signal categories 0 to 4. Each sound signal category has its own inter-tone noise reduction tuning.
The five (5) sound signal categories 0-4 can be determined as indicated in the following table.
Table 156: Output characteristic of the excitation classifier
	Category (eCAT)
	Enhanced band (Hz)
	Allowed reduction (dB)

	0
	NA
	0

	1
	[510, 6400]
	6

	2
	[510, 6400]
	9

	3
	[400, 6400]
	12

	4
	[300, 6400]
	12

The sound signal category 0 is a non-tonal, non-stable sound signal category which is not modified by the inter-tone noise reduction technique. This category of the decoded sound signal has the largest statistical deviation of the spectral energy variation and in general comprises speech signal.

Sound signal category 1 (largest statistical deviation of the spectral energy variation after category 0) is detected when the statistical deviation of spectral energy variation history is lower than Threshold 1 and the last detected sound signal category is ≥ 0. Then the maximum reduction of quantization noise of the decoded tonal excitation within the frequency band 510 to Hz is limited to a maximum noise reduction of 6 dB.

Sound signal category 2 is detected when the statistical deviation of spectral energy variation is lower than Threshold 2 and the last detected sound signal category is ≥ 1. Then the maximum reduction of quantization noise of the decoded tonal excitation within the frequency band 510 to Hz is limited to a maximum of 9 dB.

Sound signal category 3 is detected when the statistical deviation of spectral energy variation is lower than Threshold 3 and the last detected sound signal category is ≥ 2. Then the maximum reduction of quantization noise of the decoded tonal excitation within the frequency band 4000 to Hz is limited to a maximum of 12 dB.

Sound signal category 4 is detected when the statistical deviation of spectral energy variation is lower than Threshold 4 and when the last detected signal type category is ≥ 3. Then the maximum reduction of quantization noise of the decoded tonal excitation within the frequency band 300 to Hz is limited to a maximum of 12 dB.
The floating thresholds 1-4 help preventing wrong signal type classification. Typically, decoded tonal sound signal representing music gets much lower statistical deviation of its spectral energy variation than speech. However, even music signal can contain higher statistical deviation segment, and similarly speech signal can contain segments with lower statistical deviation. It is nevertheless unlikely that speech and music contents change regularly from one to another on a frame basis. The floating thresholds add decision hysteresis and act as reinforcement of previous state to substantially prevent any misclassification that could result in a suboptimal performance of the inter-harmonic noise reducer.
Counters of consecutive frames of sound signal category 0, and counters of consecutive frames of sound signal category 3 or 4, are used to respectively decrease or increase the thresholds.
For example, if a counter counts a series of more than 30 frames of sound signal category 3 or 4, all the floating thresholds (1 to 4) are increased by a predefined value for the purpose of allowing more frames to be considered as sound signal category 4.
The inverse is also true with sound signal category 0. For example, if a series of more than 30 frames of sound signal category 0 is counted, all the floating thresholds (1 to 4) are decreased for the purpose of allowing more frames to be considered as sound signal category 0. All the floating thresholds 1-4 are limited to absolute maximum and minimum values to ensure that the signal classifier is not locked to a fixed category.
In the case of frame erasure, all the thresholds 1-4 are reset to their minimum values and the output of the signal classifier is considered as non-tonal (sound signal category 0) for three (3) consecutive frames (including the lost frame).

If information from a Voice Activity Detector (VAD) is available and it is indicating no voice activity (presence of silence), or if the last frame didn’t contain generic audio the decision of the signal type classifier is forced to sound signal category 0 ().
[bookmark: _Toc394387177]6.1.1.3.4.5	Inter-tone noise reduction in the excitation domain

Inter-tone noise reduction is performed on the frequency representation of the concatenated excitation as a first operation of the enhancement. The reduction of the inter-tone quantization noise is performed by scaling the spectrum in each critical band with a scaling gain limited between a minimum and a maximum gain and . The scaling gain is derived from an estimated signal-to-noise ratio (SNR) in that critical band. The processing is performed on frequency bin basis and not on critical band basis. Thus, the scaling gain is applied on all frequency bins, and it is derived from the SNR computed using the bin energy divided by an estimation of the noise energy of the critical band including that bin. This feature allows for preserving the energy at frequencies near harmonics or tones, thus substantially preventing distortion, while strongly reducing the noise between the harmonics. The inter-tone noise reduction is performed in a per bin manner over all 640 bins.

The minimum scaling gain is derived from the maximum allowed inter-tone noise reduction in dB, . As described above, the second stage of classification makes the maximum allowed reduction varying between 6 and 12 dB. Thus minimum scaling gain is given by

		(1496)
The scaling gain is computed related to the SNR per bin. Then per bin noise reduction is performed on the entire spectrum to the maximum frequency of 6400 Hz. The noise reduction can start at the 2th critical band (i.e. no reduction is performed below 300Hz). The excitation type classifier module can push the starting critical band up to the 4th band (510 Hz), to reduce any potential degradation. This means that the first critical band on which the noise reduction is performed is between 300Hz and 920 Hz, and it can vary on a frame basis. In a more conservative implementation, the minimum band where the noise reduction starts can be set higher.

The scaling for a certain frequency bin is computed as a function of , given by

	, bounded by 	(1497)

Usually is equal to 1 (i.e. no amplification is allowed), then the values of and are determined such as for dB, and for dB. That is, for SNRs of 1 dB and lower, the scaling is limited to and for SNRs of 45 dB and higher, no noise reduction is performed (). Thus, given these two end points, the values of and in equation are given by

	 and 	(1498)

If is set to a value higher than 1, then it allows the process to slightly amplify the tones having the highest energy. This can be used to compensate for the fact that the CELP codec, used in the prototype, doesn’t match perfectly the energy in the frequency domain. This is generally the case for signals different from voiced speech.

The SNR per bin in a certain critical band is computed as

		(1499)

where and denote the energy per frequency bin for the past and the current frame spectral analysis, respectively, as computed in subclause 5.1.5.2, denotes the noise energy estimate of the critical band , is the index of the first bin in the ith critical band, and is the number of bins in the critical band as defined above.

The smoothing factor is adaptive and it is made inversely related to the gain itself. The smoothing factor is given by . That is, the smoothing is stronger for smaller gains . This approach substantially prevents distortion in high SNR segments preceded by low SNR frames, as it is the case for voiced onsets. The smoothing procedure is able to quickly adapt and to use lower scaling gains on onsets.

In case of per bin processing in a critical band with index , after determining the scaling gain and using the actual scaling is performed using a smoothed scaling gain , updated in every frequency analysis as follows

		(1500)

Temporal smoothing of the gains substantially prevents audible energy oscillations while controlling the smoothing using substantially prevents distortion in high SNR segments preceded by low SNR frames, as it is the case for voiced onsets or attacks.

The scaling in the critical band is performed as

		(1501)

where is the index of the first bin in the critical band and is the number of bins in that critical band.

The smoothed scaling gains are initially set to 1. Each time a non-tonal sound frame is processed , the smoothed gain values are reset to 1 to reduce any possible reduction in the next frame.

Note that in every spectral analysis, the smoothed scaling gains are updated for all frequency bins in the entire spectrum. Note that in case of low-energy signal, inter-tone noise reduction is limited to -1.25 dB. This happens when the maximum noise energy in all critical bands, is less or equal to 10.
[bookmark: _Toc394387178]6.1.1.3.4.6	Inter-tone quantization noise estimation

The inter-tone quantization noise energy per critical frequency band is estimated as being the average energy of that critical frequency band excluding the maximum bin energy of the same band. The following formula summarizes the estimation of the quantization noise energy for a specific band :

		(1502)

where is the index of the first bin in the critical band , is the number of bins in that critical band, is the average energy of a band , is the energy of a particular bin and NB(i) is the resulting estimated noise energy of a particular band . The variable represents a noise scaling factor per band that is found experimentally and is set such that more noise can be removed in low frequencies and less noise in high frequencies as it is shown below:

		(1503)
[bookmark: _Toc394387179]6.1.1.3.4.7	Increasing spectral dynamic of the excitation
The second operation of the frequency post processing provides an ability to retrieve frequency information that is lost within the coding noise. The CELP codecs, especially when used at low bitrates, are not very efficient to properly code frequency content above 3.5-4 kHz. The following steps take advantage of the fact that music spectrum does not often changed substantially from frame to frame. Therefore a long term averaging can be done and some of the coding noise can be eliminated. The following operations are performed to define a frequency-dependent gain function. This function is then used to further enhance the excitation before converting it back to the time domain.
[bookmark: _Toc394387180]6.1.1.3.4.8	Per bin normalization of the spectrum energy

The first operation consists in creating a weighting mask based on the normalized energy of the spectrum of the concatenated excitation. The normalization is done such that the tones have a value above 1.0 and the valleys a value under 1.0. To do so, the energy spectrum is normalized between 0.925 and 1.925 to get the normalized energy spectrum using the following equation:

		(1504)

where represents the bin energy as calculated in subclause 5.1.5.2. Since the normalization is performed in the energy domain, many bins have very low values. The offset 0.925 has been chosen such that only a small part of the normalized energy bins would have a value below 1.0. Once the normalization is done, the resulting normalized energy spectrum is passed through a power function of 8 to obtain a scaled energy spectrum as shown in the following formula:

		(1505)

where is the normalized energy spectrum and is the scaled energy spectrum. A maximum limit of the scaled energy spectrum is fixed to 5, creating a ratio of approximately 10 between the maximum and minimum normalized energy values. The following equation shows how the function is applied:

		(1506)

Where represents limited scaled energy spectrum and is the scaled energy spectrum.
[bookmark: _Toc394387181]6.1.1.3.4.9	Smoothing of the scaled energy spectrum along the frequency axis and the time axis
With the last two operations, the position of the most energetic pulses begins to take shape. Applying power of 8 on the bins of the normalized energy spectrum is a first operation to create the mask that increases the spectral dynamics. The next 2 operations enhance this spectrum mask. First the scaled energy spectrum is smoothed along the frequency axis from low frequency to the high frequency with an averaging filter. Then, the resulting mask is processed along the time domain axis to smooth the bin values from frame to frame.
The smoothing of the scaled energy spectrum along the frequency axis can be described with following function:

		(1507)

Finally, the smoothing along time axis results in a time-averaged amplification/attenuation weighting mask to be applied to the spectrum . The weighting mask, also called gain mask, is described with the following equation:

		(1508)

where is the scaled energy spectrum smoothed along the frequency axis, is the frame index, and is the time-averaged weighting mask.

A slower adaptation rate has been chosen for the lower frequencies to substantially prevent gain oscillation. A faster adaptation rate is allowed for higher frequencies since the positions of the tones are more likely to change rapidly in the higher part of the spectrum. With the averaging performed on the frequency axis and the long term smoothing performed along the time axis, the final vector is used as a weighting mask to be applied directly on the enhanced spectrum of the concatenated excitation.
[bookmark: _Toc394387182]6.1.1.3.4.10	Application of the weighting mask to the enhanced concatenated excitation spectrum

The weighting mask defined above is applied differently depending on the output of the excitation type classifier (value of). The weighting mask is not applied if the excitation is classified as category 0 (; i.e. high probability of speech content).

 For the first 1 kHz, the mask is applied if the excitation is not classified as category 0 (). Attenuation is possible but no amplification is performed in this frequency range (maximum value of the mask is limited to 1).

If more than 25 consecutive frames are classified as category 4 (; i.e. high probability of music content), but not more than 40 frames, then the weighting mask is applied without amplification for all the remaining bins (the maximum gain is limited to 1, and there is no limitation on the minimum gain).

When more than 40 frames are classified as category 4, for the frequencies between 1 and 2 kHz the maximum gain is set to 1.5 for bitrates below 12650 bits per second (b/s). Otherwise the maximum gain is set to 1. In this frequency band, the prototype fixes the minimum gain to 0.75 only if the bitrate is higher than 15850 b/s, otherwise there is no limitation on the minimum gain.

For the band 2 to 4 kHz, the maximum gain is limited to 2 for bitrates below 12650 b/s, and it is limited to 1.25 for the bitrates equal to or higher than 12650 b/s and lower than 15850 b/s. Otherwise, then maximum gain is limited to 1. Still in this frequency band, the minimum gain is 0.5 only if the bitrate is higher than 15850 b/s, otherwise there is no limitation on the minimum gain.

For the band 4 to 6.4 kHz, the maximum gain is limited to 2 for bitrates below 15850 b/s and to 1.25 otherwise. In this frequency band, the prototype fixes the minimum gain to 0.5 only if the bitrate is higher than 15850 b/s, otherwise there is no limitation on the minimum gain.
[bookmark: _Toc394387183]6.1.1.3.4.11	Inverse frequency transform and overwriting of the current excitation

After the frequency domain enhancement is completed, an inverse frequency-to-time transform is performed in order to get the enhanced temporal excitation back. The frequency-to-time conversion is achieved with the same type II DCT as used for the time-to-frequency conversion. The modified time-domain excitation is obtained as

		(1509)

where is the frequency representation of the modified excitation, is the enhanced concatenated excitation, and is the length of the concatenated excitation vector.

To avoid adding delay to the synthesis, it has been decided to avoid overlap-and-add algorithm in the LP domain path. Thus, the exact length of the final excitation is used to generate the synthesis directly from the enhanced concatenated excitation, without overlap as shown in the equation below:

		(1510)

Here represents the length of the section of the window that was applied on the past segment of the excitation, prior to the frequency transformation.
[bookmark: _Toc392593146][bookmark: _Toc394245991]6.1.2	Source Controlled VBR decoding
[bookmark: _Toc392593147][bookmark: _Toc394245992]6.1.3	Synthesis

[bookmark: _Toc392593149][bookmark: _Toc394245993]The LP synthesis is performed by filtering the post-processed excitation signal through the LP synthesis filter.. The decoded and interpolated LP coefficients,, are used to construct the synthesis filter, .
The reconstructed speech for the subframe of size 64 is given by

		(1511)

	The synthesized signal is then de-emphasized by filtering through the filter (inverse of the pre-emphasis filter applied at the encoder input).
The de-emphasis synthesis speech is then passed through an adaptive post-processing which is described in the following section.
6.1.4	Post-processing
The decoded signal is conveyed to several post-processing blocks. First an adaptive post-filtering is applied for enhancing the formant and harmonic structure of the signal. In a second step, a bass-post-filter treats the low frequencies.
[bookmark: _Toc392593148]6.1.4.1 Adaptive post-filtering

[bookmark: _Toc496531681][bookmark: _Toc508716371][bookmark: _Toc530458073][bookmark: _Toc11469973][bookmark: _Toc11555963][bookmark: _Toc11639988][bookmark: _Toc19692257][bookmark: _Toc23309824][bookmark: _Toc23666029][bookmark: _Toc23666203][bookmark: _Toc23668788][bookmark: _Toc98732816][bookmark: _Toc194315275][bookmark: _Ref194305764]The post-filtering is similar to ITU-T G.729 post-processing with the main difference that it is performed at 12.8 or 16 kHz. The adaptive post-filter is a cascade of three filters: a long-term post-filter, , a short-term post-filter, , and a tilt compensation filter, , followed by an adaptive gain control procedure. The post-filter coefficients are updated in every subframe. The post-filtering process is organized as follows. First, the reconstructed signal, , is inverse-filtered through to produce the residual signal, . This signal is used to compute the delay, , and gain, , of the long-term post-filter . The signal, , is then filtered through the long-term post-filter, , and the synthesis filter, . Finally, the output signal of the synthesis filter, is passed through the tilt compensation filter, , to generate the post-filtered reconstructed signal, . Adaptive gain control is then applied to to match its energy to the energy of . The post-filter parameters and are described in detail in subclauses 6.1.4.1.3. and 6.1.4.1.4.

[bookmark: _Toc157936301][bookmark: _Toc194290492][bookmark: _Toc194401125][bookmark: _Toc195526918][bookmark: _Toc196572804][bookmark: _Toc198369035][bookmark: _Toc394245994]The long-term post-filter is only applied for NB modes and is bypassed for WB and SWB. In WB and SWB cases, the post-filtering consists of a cascade of only two filters: a short-term post-filter, (see subclause 6.1.4.3), and a tilt compensation filter, (see subclause 6.1.4.4), followed by an adaptive gain control procedure (see subclause 6.1.4.5).

At 9.6 kbit/s NB decoding, the long-term post-filter, is active only for clean speech when the level of background noise is less than 20 dB. It is also desactivacted for UC mode.
6.1.4.1.1	Long-term post-filter
The long-term post-filter is given by:

		(1512)

where is the pitch delay, and gl is the gain coefficient. Note that is bounded by 1, and is set to zero if the long-term prediction gain is less than 3 dB. The factor controls the amount of long‑term post-filtering and has the value of . The long-term delay and the gain are computed from the residual signal, , obtained by filtering through , which is the numerator of the short-term post-filter (see subclause 6.1.4.2). That is

		(1513)

The long-term delay is computed using a two-pass procedure. The first pass selects the best integer pitch delay, , in the range , where is the integer part of the (transmitted) fractional pitch lag in the first subframe. The best integer, , is the one that maximizes the correlation

		(1514)

The second pass chooses the best fractional pitch delay, , with resolution 1/8 around . This is done by finding the delay with the highest pseudo-normalized correlation

		(1515)

where is the residual signal at a fractional delay, . The fractional delayed signal, , is first computed using an interpolation filter of length 33. Once the optimal fractional delay, , is found, is recomputed with a longer interpolation filter of length 129. The new signal replaces the previous one only if the longer filter increases the value of. Then, the corresponding correlation, , is normalized with the square-root of the energy of . The squared value of this normalized correlation is then used to determine if the long-term post-filter should be disabled. That is, if

		(1516)

the long-term post-filter is disabled by setting . Otherwise, the value of is computed as

	, constrained by 	(1517)
[bookmark: _Toc157936302][bookmark: _Toc194290493][bookmark: _Ref194304223][bookmark: _Toc194401126][bookmark: _Toc195526919][bookmark: _Toc196572805][bookmark: _Ref197336275][bookmark: _Toc198369036][bookmark: _Toc394245995]6.1.4.1.2	Short-term post-filter
The short-term post-filter is given by

		(1518)

where is the quantized LP analysis filter (LP analysis is not done at the decoder) and the factors and control the amount of short-term post-filtering. The gain, , is calculated on the truncated impulse response, , of the filter and is given by

		(1519)

Note that the gain, , will be modified according to the noise level as explained in the next clause.
[bookmark: _Ref197330676][bookmark: _Toc198369037][bookmark: _Toc394245996]6.1.4.1.3	Post-filter NB parameters

In the ITU-T G.729 codec, the post-filter parameters , and have fixed values. If a variable, called the long-term normalized noise gain, , is less than 25.0 and an active signal is detected, has a value limited in the range [0.55, 0.70] and has a value limited in the range [0.65, 0.75] as expressed by

		(1520)

		(1521)

Otherwise (not an active signal or 25.0), = 0.1 and = 0.15.

In the case of the GSC mode the post-filter parameters , and are set to 1.

The long‑term normalized noise gain, , is updated only when in UC mode and when no signal activity is detected (). The update is performed as

		(1522)

where is the normalized gain of random excitation in the UC mode, calculated as

[bookmark: g_norm]		(1523)

In the equation above, is the quantized gain of the random excitation, , used in TC mode, which has been quantized with 7 bits in the logarithmic energy domain. The modified value of in equation (1523) is not filtered. The modified value of is computed as

		(1524)

where the factor is derived from as follows

	, constrained by 	(1525)

Thus, the short-term post-filter, described in subclause 6.1.4.1.2, is used with the modified value of gain, , and not . These modifications help to diminish the effect of post-filtering in noisy conditions.
[bookmark: _Toc394245997]6.1.4.1.4	Post-filter WB and SWB parameters

The post-filter parameters , for WB and SWB have fixed values, which depend on decoding mode. The filter may operate at both internal sampling frequencies 12.8 kHz and 16 kHz. In case of 12.8 kHz internal frequency the parameters take the default value = 0.7, = 0.75
Table 157 Post filter WB and SWB parameters for 12.8 kHz
	Mode
	Inactive & AMRWB IO clean speech
	< 13.2 kbit/s clean speech
	< 24.4 kbit/s clean speech
	≤ 32 kbit/s clean speech
	< 15.85 kbit/s noisy speech
	≤ 32 kbit/s noisy speech

	

	0.7
	0.80
	0.75
	0.72
	0.75
	0.7

In case of 16 kHz internal frequency, noisy speech (the level of background noise is less than 20) and for any mode not depicted in the table below the parameters take the default value = 0.76, = 0.76.
Table 158 Post filter WB and SWB parameters for 16 kHz
	Mode
	13.2 kbit/s
	16.4 kbit/s
	24.4 kbit/s
	32 kbit/s

	

	0.82
	0.80
	0.78
	0.78

[bookmark: _Toc157936303][bookmark: _Toc194290494][bookmark: _Toc194401127][bookmark: _Toc195526920][bookmark: _Toc196572806][bookmark: _Toc198369038][bookmark: _Toc394245998]6.1.4.1.5	Tilt compensation

[bookmark: _Toc157936304][bookmark: _Toc194290495][bookmark: _Toc194401128][bookmark: _Toc195526921][bookmark: _Toc196572807][bookmark: _Toc198369039]The filter compensates for the tilt in the short-term post-filter and is given by

		(1526)

where is a tilt factor with being the first reflection coefficient, calculated fromas

		(1527)
where

		(1528)

The gain term compensates for the decreasing effect ofin. Furthermore, it has been shown that the product has generally no gain. Two values are used for depending on the sign of . If is negative, = 0.9, and if is positive, = 0.2.
[bookmark: _Toc394245999]6.1.4.1.6	Adaptive gain control

[bookmark: _Ref197150554]Adaptive gain control is used to compensate for gain differences between the synthesized signal, , and the post-filtered signal, . A gain factor, , for the current subframe is computed by

		(1529)

Then, the post-filtered signal, , is scaled as

	, for n = 0,…,63	(1530)

where is a continuous gain, updated on a sample-by-sample basis for NB input as
for NB input

	, for n = 0,…,63	(1531)
for SWB TBE input

	, for n = 0,…,63	(1532)

The initial value of is used. Then, for each new subframe, is set equal to of the previous subframe.

For NB signals, the post-filtered synthesized signal, , is used instead of for signal de‑emphasis, as described in subclause 6.3.
[bookmark: _Toc394246000]6.1.4.2	Bass post-filter
This clause describes the functionality of the bass post-filter, a low-frequency pitch enhancement procedure, which is closely related to the corresponding procedures in [11].
The main difference compared to the previous standards is that the last step of post filtering is performed in the frequency domain. The reason for this is a different method of resampling from the internal sampling frequency to the output sampling frequency. Instead of time domain resampling (see clause 7.6 in [25]) complex low delay filter bank synthesis is used (see subclause 6.9).
The filter is applied to all LP-based modes up to 32 kbit/s except for NB noisy speech (the level of background noise > 20).
The bass post-filter uses two-band decomposition and adaptive filtering is applied only to the lower band. This results in a total post-processing that is mostly targeted at frequencies near the first harmonics of the synthesized signal.

[bookmark: figure_bass_post_filter]Figure 91: Block diagram of bass post-filter

Figure 91 shows the block diagram of the low-band pitch enhancer. Note that this is a simplified block diagram, which is equivalent to adding the low-pass filtered enhanced signal to the high-pass filtered signal (see subclause 6.1.3 in [11]). The decoded signal, , is first processed through an adaptive pitch enhancer module leading to an enhanced (full-band) signal, . By subtracting the decoded signal, an enhancement signal, , is obtained. Then CLDFB analysis (see subclause 5.1.2) is applied to transform signal into frequency domain . This signal is subsequently filtered in the frequency domain through a low-pass filter to obtain the signal which is the low-band part of this response. The enhanced signal after post-processing, , is then obtained by adding the low-band enhancement signal to the transformed into frequency domain decoded signal. Resampling to the output sampling frequency and converting into time domain signal, , which is performed by CLDFB synthesis, is not a part of the bass post-filter and is applied for all modes (see subclause 6.9).
The object of the pitch enhancer module is to reduce the inter-harmonic noise in the decoded signal, which is achieved here by a time-varying linear filter described by the following equation:

[bookmark: s_f_pitch_enhancer_signal]		(1533)

where is the output signal of the pitch enhancer, is a coefficient that controls the inter-harmonic attenuation. The signal is the two-sided long-term prediction signal that is computed in each subframe as

[bookmark: s_p_two_sided_signal]		(1534)

where is the pitch period of the decoded signal . Parameters and vary in time. With a value of , the gain of the filter described by equation (1533) is exactly 0 at frequencies ,, , etc.; i.e., at the mid-point between the harmonic frequencies , , , , , etc. When approaches 0, the attenuation between the harmonics produced by the filter of equation (1533) decreases.

The pitch lag parameter is the received closed-loop pitch lag of the respective subframe. However, this parameter is only accurate for the part of the two-sided long-term prediction of Equation (1534) predicting from the past pitch cycle. The prediction from the future pitch cycle may be less accurate, especially if the pitch lag value is not constant.
Thus, in order to improve the prediction accuracy, in case of voiced onset frames it is preferable to make use of the pitch lag value of the subframe containing the future pitch cycle, i.e., of that subframe whose closed-loop pitch lag points into the present subframe. This requires the availability of pitch lag parameters of a frame following the current frame.

The pitch lag parameter, , is further enhanced by means of a pitch tracker which makes the pitch contour smoother and avoids pitch doublings.

The factor is computed as follows. First, the correlation between the signal and the predicted signal is given by

		(1535)
and the energy of the predicted signal is given by

		(1536)

The factor is given by

	, constrained by ,	(1537)

where is the mean prediction error energy in dB in the present subframe and k1 takes values of 0.5 or 1 depending on the operating point. The mean prediction error energy, is updated as follows. The long-term prediction error is first computed by

		(1538)
where k2 equals Cp/Ep or 1 depending on the operating point, and then emphasized in the low frequencies using the relation

		(1539)
The energy of the emphasized error signal is then computed in dB as

		(1540)
and the mean error energy is then updated in every subframe by

		(1541)

with initial value .

The factor is further adapted to a measure of signal stationarity, which limits the level of inter‑harmonic attenuation when the signal is not in a steady-state mode. The adaptation is based on the stability factor of the current frame, and a recursively smoothed version of stability factor defined as

		(1542)

The factor , defined in equation (1537), is finally scaled as

		(1543)
Since larger portions of noise are aurally masked when the signal rapidly changes, the above adaptation gives a better balance between attenuation of quantization noise and signal degradation.

At 16.4 and 24.4 kbps, the factor is adjusted by decoding the gain adjustment , which is quantized at the encoder (see subclause 5.2.4) and transmitted in the bitstream on 2 bits.

		(1544)
[bookmark: _Toc394386616]6.1.5	Decoding of upper band for LP-based Coding Modes
[bookmark: _Toc394386617]6.1.5.1	Decoding Time-domain Bandwidth Extension
[bookmark: _Toc393727343][bookmark: _Toc393876757]The time domain bandwidth extension decoder synthesizes the high band excitation signal from the excitation signal generated by the low band ACELP decoder and a set of high band model parameters received from the time domain bandwidth extension encoder. The synthesized high band signal is then combined with the output from the lowband ACELP decoder to generate a superwideband output. The high level schematic of the time domain bandwidth extension decoder is shown in figure 92.
[bookmark: _Ref386726201]
[bookmark: fig_tdbwe_decoder]Figure 92: Time domain bandwidth extension decoder
[bookmark: _Toc393984329][bookmark: _Toc394386618]6.1.5.1.1	Generation of the upsampled version of the lowband excitation

An upsampled version of the low band excitation signal is derived from the ACELP core as show in figure 92. For each ACELP core coding subframe, i, a random noise scaled by a factor voice factor, is first added to the fixed codebook excitation that is generated by the ACELP core encoder. The voice factor is determined using the subframe maximum normalized correlation parameter, that is derived during the ACELP encoding. First the factors are combined to generate.

		(1545)

 calculated above is limited to a maximum of 1 and a minimum of 0. When the ACELP coder type is voiced the Vf is modified based on the integer pitch value T0 is modified as in the pseudo-code below:
if((coder_type == VOICED))
 if(T0 <= 57.75f)

 = -0.0126f*T0 + 1.23f;
 else if(T0 > 57.75f && T0 < 115.5f)

 = 0.0087f*T0;
 end
end

Regardless of the ACELP coder type, if the open loop pitch lag T0 exceeded 115, Vf is set to 1;

 if the ACELP core encodes a maximum of 6.4 KHz or if the ACELP core encodes a maximum bandwidth of 8 KHz.

The ACELP fixed code book excitation signal mixed with noise is then resampled by a factor . The resampling factor is set to 5/2 when the ACELP core encodes a maximum bandwidth of 6.4 KHz and it is set to 2 when the ACELP core encodes a maximum bandwidth of 8 KHz.
The resampled output is scaled by the ACELP fixed codebook gain and added to a delayed version of itself.

		(1546)
where gc is the subframe ACELP fixed codebook gain, gp is the subframe ACELP adaptive codebook gain and P is the open loop pitch lag.
[bookmark: _Toc393984330][bookmark: _Toc394386619]6.1.5.1.2	Non-Linear Excitation Generation

The excitation signal is processed through a non-linear function in order to extend the pitch harmonics in the low band signal into the high band. The non-linear processing is applied to a frame of in two stages; the first stage works on the first half subframe (160 samples) of and the second stage works on the second half subframe. The non-linear processing steps for the two stages are described below. In the first stage , and in the second stage, .

First, the maximum amplitude sample and its location relative to the first sample in the stage are determined.

		(1547)

Based on the value of , the scale factor is determined.

		(1548)

The scale factor and the previous scale factor parameter from the memory are then used to determine the parameter scale step.

		(1549)

If , then

The output of the non-linear processing is derived as per

		(1550)

The previous scale factor parameter is updated recursively for all according to
for(j=n1; j< n2; j++)
	if(j<imax)

	=
	end
end
[bookmark: _Toc393984331][bookmark: _Toc394386620]6.1.5.1.3	De-quantization of high band parameters
The high band LSF, gain shape and gain frame parameters are de-quantized by looking up the quantization tables for these parameters based on the indices. The LSF de-quantization is done as follows:
[bookmark: _Toc393984332][bookmark: _Toc394386621]6.1.5.1.3.1	LSF de-quantizing

The first five LSFs are reconstructed directly from the received CB indices. The mirroring frequency and optimal grid are reconstructed from the received indics. The upper-half ot the coefficients are reconstructed by flipping the lower-half of the coefficients over the reconstructed mirroring frequency, rescaling and then smoothing with the reconstructed optimal grid, as described in subclause 5.2.4.1.3.1.

		(1551)

Using the received VQ index parameter for the gain shape, the de-quantized gain shape vector that contains the gain shape parameter in the log domain is retrieved. The quantized gain shape parameters are then obtained from the log domain values by inverse logarithm operation.

The de-quantized frame gain parameter is obtained by obtaining the log domain frame gain value from the table and by converting this back into linear domain by inverse logarithm operation.

For the bit rates of 24.4 kb/s and 32 kb/s, the de-quantized high band subframe residual energy , the de-quantized high band target energy, and the mixing factor, ,are obtained by table lookup using the respective received indices.
[bookmark: _Toc393984333][bookmark: _Toc394386622]6.1.5.1.4	LSP interpolation
Refer to subclauses 5.2.6.1.4 and 5.2.6.1.4.2 for 24.4 kbps and 32kbps LSP interpolation.
[bookmark: _Toc393984334][bookmark: _Toc394386623]6.1.5.1.4.1	LSP interpolation at 13.2 kbps and 16.4 kbps
Refer to subclause 5.2.6.1.4.1
[bookmark: _Toc393984335][bookmark: _Toc394386624]6.1.5.1.5	Spectral flip in time domain

The non-linear excitation is spectrally flipped so that the high band portion of the excitation is modulated down to the low frequency region. This spectral flip is accomplished in time domain

[bookmark: _Toc393984336]		(1552)
[bookmark: _Toc394386625]6.1.5.1.6	Down-sample using all-pass filters

 is then decimated using a pair of all pass filters to obtain an 8 KHz bandwidth (16 KHz sampled) excitation singal . This is done by filtering the even samples of by an all pass filter whose transfer function is given by

		(1553)

And the odd samples of by an all pass filter whose transfer function is given by

		(1554)

The 16 KHz sampled excitation signal are obtained by averaging the outputs of the above filter.
These filter coefficients are described in subclause 5.2.6.1.9.
[bookmark: _Toc393984337][bookmark: _Toc394386626]6.1.5.1.7	Adaptive spectral whitening

Due to the nonlinear processing applied to obtain the excitation signal , the spectrum of this excitation is no longer flat. In order to flatten the spectrum of the excitation signal , 4th order linear prediction coefficients are estimated from The spectrum of is then flattened by inverse filtering using the linear prediction filter.
The first step in the adaptive whitening process is to estimate the autocorrelation of the excitation signal

		(1555)
A bandwidth expansion is applied to the autocorrelation coefficients by multiplying the coefficients by the expansion function:

		(1556)

The bandwidth expanded autocorrelation coefficients are used to obtain LP filter coefficients, by solving the following set of equations using the Levinson-Durbin algorithm as described in section.

		(1557)

It must be noted that .

The whitened excitation signal is obtained from by inverse filtering

		(1558)

4 samples of from the previous frame are used as memory for the above filtering operation.

For bit rates 24.4 kb/s and 32 kb/s, the whitened excitation is further modulated by the normalized residual energy parameter . In other words, for bitrates 24.4 kb/s and 32 kb/s,

[bookmark: _Toc393984338]		(1559)
[bookmark: _Toc394386627]6.1.5.1.8	Envelope modulated noise mixing
To the whitened excitation, a random noise vector whose amplitude has been modulated by the envelope of the whitened excitation is mixed using a mixing ratio that is dependent on the extent of voicing in the low band.

First, is calculated and then the envelope of the envelope of the whitened excitation signal is calculated by smoothing

		(1560)

In SWB, the factors and are calculated using the voicing factors, for subframes , determined from the low band ACELP encoder. The average of the 4 voicing factors, , is calculated and modified as . This is then confined to values between 0.6 and 0.999. Then and are estimated as

		(1561)

		(1562)

However, for bit rates 16.4 kb/s and 24.4 kb/s and if TBE was not used in the previous frame, and are set to

		(1563)

		(1564)

and for , is substituted by an approximated value as

		(1565)

In WB mode, the factors and are initialized to and. However, if the bitrate is 9.6kb/s, they might get reset to andif the if the low band coder type is voiced or, or to and if the low band coder type is unvoiced or.

A vector of random numbers, of length 160 is then modulated by to generate as

		(1566)

The whitened excitation is then de-emphasized with which is the pre-emphasised effect since the used spectrum is flipped.

		(1567)

If the lowband coder type is unvoiced, the excitation is first rescaled to match the energy level of the whitened excitation

		(1568)

where and then pre-emphasised with =0.68 to generate the final excitation which is the de-emphasised effect since the used spectrum is flipped.

		(1569)
If the lowband coder type was not un-voiced, the final excitation is calculated as

		(1570)

for each sample index within subframe .

For bit rates less than 24.4 kb/s, the mixing parameters and are estimated as

		(1571)

		(1572)

For bit rates 24.4 kb/s and 32 kb/s, the mixing parameters , are estimated as follows:

		(1573)

		(1573a)

where the parameter is defined in in subclause 5.2.6.1.13.

 is then de-emphasised to generate the final excitation.
[bookmark: _Toc393984339][bookmark: _Toc394386628]6.1.5.1.9	Spectral shaping of the noise added excitation

The excitation signal is then put through the high band LPC synthesis filter that is derived from the quantized LPC coefficients (see subclause 5.2.4.1.3).

For bitrates below 24.4 kb/s, a single LPC synthesis filter is used and the shaped excitation signal is generated as

		(1574)

For bitrates above 24.4 kb/s the LPC synthesis filter is applied to the excitation signal in four subframes based on

[bookmark: _Toc393984340]		(1575)
[bookmark: _Toc394386629]6.1.5.1.10	Post processing of the shaped excitation
[bookmark: _Toc393984341][bookmark: _Toc394386630]Refer to subclause 5.2.6.1.13.
6.1.5.1.11	Gain shape update
The gain shapes are updated according to the coding type of both the current frame and the previous frame. The pitch gain of the current frame is also taken into account.

The pitch gain of the current frame is calculated by:

		(1576)

If the coding type of the current frame and the previous frame are the same, or the coding type of the current frame is GENERIC and the coding type of the previous frame is VOICED, or the coding type of the current frame is VOICED and the coding type of the previous frame is GENERIC, and the pitch gain of the current frame is greater than 70, then the gain shape parameters are smoothed as follows:

[bookmark: OLE_LINK30]		(1577)

		(1578)

where are the subframe energies in the shaped excitation signal of the current frame, are the subframe energies in the shaped excitation signal of the previous frameand are the quantized gain shape parameters of the previous frame.
[bookmark: _Toc393984342][bookmark: _Toc394386631]6.1.5.1.12	SHB synthesis
In order to smooth the evolution of the post-processed spectrally shaped highband excitation signal at the frame boundary, the energy ratio between the current frame’s overlap samples and the previous frame’s overlap samples are calculated as below:

		(1579)

where is 20 samples. The tenth-order LPC synthesis performed as described according to subclause 6.1.5.1.9 uses a memory of ten samples, thus there is atleast a ten sample energy propagation from the previous frame into the current frame. When calculating the energy scaling to be applied to the current frame, it should be noted that the first 10 samples of the present frame are considered as a part of previous frame energy. If the voicing factor is greater than 0.75, the numerator in the above equation is attenuated by 0.25. The spectrally shaped high band excitation signal is then modified by the above scaling factor as follows:

		(1580)
For bit rates 24.4 kb/s or higher, gain shape values are then up sampled from 4 values to 16 values as described in below. First subframe energies from the spectrally shaped highband excitation signal are calculated.

	 for 	(1581)
The interpolated gain shape parameters are obtained as follows

 for

Based on either or (depending on the bit rate), the shaped highband excitation signal is scaled. The scaling is performed using overlapping windows as described below:

where the definition of swin1 is described in section 5.2.6.1.15. The scaled excitation is then finally multiplied by the quantized frame gain to obtain the highband synthesized signal.

 for n=0,…359

The overlap portion from the previous frame are then added to the first 20 samples of the current frame of .

The highband synthesized signal is then used to generate a 32 KHz sampled highband component of the final output decoded speech signal. First the highband synthesized signal is upsampled by 2 using an interpolator. The signal is filtered through all-pass filters as per below.

	
and

Table 159: All-pass filter coefficients for interpolation by a factor of 2
	
	All pass coefficients

	b0,1
	0.06056541924291

	b1,1
	0.42943401549235

	b2,1
	0.80873048306552

	b0,2
	0.22063024829630

	b1,2
	0.63593943961708

	b2,2
	0.94151583095682

And the output samples from both these filters are interlaced to generate the upsampled highband signal. At bitrate of 13.2 and 16.4 kb/s where the 12.8 KHz sampled core is used, the upsampled higband signal is downmixed using a Hilbert operator.

[bookmark: _Toc393984343][bookmark: _Toc394386632]6.1.5.1.13	Core-switching and high-band memory updates
[bookmark: _Toc393984344][bookmark: _Toc394386633]6.1.5.1.13.1	TBE/IGF switching

When switching from ACELP to TCX core and thus from TBE to IGF, or vice versa, the transition of the high-band signals is performed implicitly by the cross-fade transition mechanism of the core signals. Due to differing delay compensations, the high-band IGF and TBE signals overlap, when switching from IGF to TBE. On the other hand, when switching from TBE to IGF the differing delay compensations cause a gap in between the high-band signals. To fill this gap and additionally provide overlapping signals for the cross-fade, a transition signal is generated as follows.

To obtain a continuous high-band signal to the previous frame, the overlap portion of the high-band synthesized signal is used, as described in the SHB synthesis subclause 6.1.5.1.12. This overlap portion is up-sampled using the same filters and. The output samples of the filters are interlaced, if the underlying core is sampled at 16 kHz or processed using a Hilbert operator to generate the up-sampled high-band signal.

The needed length of is 148 samples, so the 40 samples of are extrapolated using the temporally mirrored end of the high-band synthesized signal of the previous frame, where

		(1582)

The signals and are merged to generate by overlap and add using the window as described in table 160, as

		(1583)

[bookmark: win_transition_table]Table 160 Window for generation of transition signal
	n
	

	n
	

	n
	

	n
	

	1
	0.04618346
	11
	0.4866045
	21
	0.8249975
	31
	0.9904104

	2
	0.09216993
	12
	0.5258704
	22
	0.8493099
	32
	0.9946717

	3
	0.1381564
	13
	0.5651364
	23
	0.8736224
	33
	0.9989330

	4
	0.1835534
	14
	0.6019916
	24
	0.8942082
	34
	0.9994665

	5
	0.2289505
	15
	0.6388468
	25
	0.9147939
	35
	1

	6
	0.2733710
	16
	0.6729768
	26
	0.9314773
	36
	1

	7
	0.3177914
	17
	0.7071068
	27
	0.9481606
	37
	1

	8
	0.3608562
	18
	0.7382205
	28
	0.9607993
	38
	1

	9
	0.4039210
	19
	0.7693340
	29
	0.9734381
	39
	1

	10
	0.4452628
	20
	0.7971658
	30
	0.9819242
	40
	1

[bookmark: _Toc393984346][bookmark: _Toc394386634]6.1.5.1.14	TEC/TFA post processing

The TEC and the TFA are complementally activated according to the transmitted information. The TEC is performed when an onset is detected in the high frequency band at the encoder (i.e.). On the other hand, the TFA is performed when the temporal envelope of the high band signal is detected to be flat at the encoder (i.e.).
Decoding the transmitted codeword, the TEC and TFA parameters are set as:
Table 161: Decoding the transmitted codeword to the TEC and TFA parameters.
	Codeword
	tec_flag
	tfa_flag

	00
	0
	0

	01
	0
	1

	10
	1
	0

	11
	2
	0

When , the temporal envelope of the high frequency band is calculated from the temporal envelope of the low frequency band and the TEC parameter and then the high frequency band signal is shaped with the calculated temporal envelope of the high frequency band. Firstly, the temporal envelope of the low frequency band of the decoded signal is calculated as:

		(1584)
where

		(1585)

and where is the low frequency band signal in the QMF domain described in subclause 6.1.4.2.
Then, the temporal envelope of the high frequency band is calculated from the temporal envelope of the low frequency band and the TEC parameter as:

		(1586)

where .
The gain values to be applied to the high frequency band signal is calculated as

		(1587)

The gain values are limited by the lower limit:

		(1588)

The lower limit is defined as:

		(1589)
where

		(1590)
and where

		(1591)
Then, the gain values are modified for maintaining the energy of the high frequency band signal of the frame

		(1592)
Finally, the gain values are applied to the high frequency band signal

		(1593)

where is the subframe length of TEC and TFA which is 1.25 ms at the output sampling rate ().

When the , the temporal envelope of the high frequency band signal is determined as “flat” and then it is flattened as follows. The gain values for the TFA are calculated by:

		(1594)
By applying the gain values, the temporal envelope of the high frequency band signal is flattened:

		(1595)
 6.1.5.1.15	Full-band synthesis

Four bits are decoded from the bitstream to obtain the energy ratio, and then calculate the described as follows:

		(1596)

Interpolate the signal (see subclause 5.2.6.1.17) from 16 kHz to 48 kHz with zeros

		(1597)

The interpolated signal passes through the bandpass filter and gets the signal. The calculation of the energy is described as follows:

		(1598)

The energy of is calculated as follows,

		(1599)
The synthesized full-band signal is calculated as follows,

[bookmark: OLE_LINK47]		(1600)
[bookmark: _Toc394386635]6.1.5.2	Multi-mode FD Bandwidth Extension decoding
The super higher band (SHB) signal for SWB signal or the higher band (HB) signal for WB signal is adaptively decoded with multi-mode BWE algorithm according to the result of the classification decision process of the SHB or HB signal decoded from the received bitstream and a determined excitation signal. In case of FB mode, the energy ratio of the current frame is decoded, the full-band (FB) signal is synthesized based upon the energy ratio or the envelope ratio calculated from low band envelope and the generated SHB frequency excitations. Combining with the low band signal decoded based on the received bitstream, the output signal is obtained.
[bookmark: _Toc393727344][bookmark: _Toc393876758][bookmark: _Toc394386636]6.1.5.2.1	SWB multi-mode FD BWE decoding
First of all, the SHB signal class of current frame is decoded. Then the spectral envelopes or spectral/time envelopes are adaptively decoded depending upon the decoded SHB signal class. Four spectral envelopes and four time envelopes are decoded from the received bitstream for TRANSIENT frames. For all of the other cases, i.e. NON-TRANSIENT frames, fourteen spectral envelopes are decoded from the received bitstream and no time envelope is decoded. Frequency excitations are then generated according to the SHB signal class and finally, the super higher band signal is synthesised based upon the signal class, the decoded envelopes and generated frequency excitations.
[bookmark: _Toc393727345][bookmark: _Toc393876759][bookmark: _Toc394386637]6.1.5.2.1.1	Decoding the multi-mode FD BWE signal class
Two bits are decoded from the bitstream to obtain the SHB signal class according to subclause 5.2.6.2.1.3.
[bookmark: _Toc393727346][bookmark: _Toc393876760][bookmark: _Toc394386638]6.1.5.2.1.2	Decoding the spectral envelope

[bookmark: _Toc393727347]In TRANSIENT frames, the envelope VQ indices are used to regenerate the synthesised signal envelope,

		(1601)

In Non-TRANSIENT frames, the envelope VQ indices are used to generate the synthesised signal envelope,

[bookmark: _Toc393876761]	(1602)
The final de-quantized envelope is then calculated:

		(1603)
where ,

		(1604)
[bookmark: _Toc394386639]6.1.5.2.1.3	Decoding the time envelope

[bookmark: _Toc393727348][bookmark: _Toc393876762]If the current frame is a TRANSIENT frame, then four bits are decoded to obtain the index of each time envelope, . This envelope is converted into the linear domain as follows:

		(1605)

The linear domain time envelope of the previous sub-frame is preserved as. is set to zero for the first frame. Time envelope de-normalization is performed after the frequency domain processing in subclause 6.1.5.2.1.6.
[bookmark: _Toc394388043]6.1.5.2.1.4	Windowing and time-to-frequency transformation
640-point length MDCT is used for SWB FD BWE. Refer to subclause 5.3.2.
[bookmark: _Toc393727349][bookmark: _Toc393876763][bookmark: frequency_excitation_generation][bookmark: _Toc394388044]6.1.5.2.1.5	Frequency excitation generation

[bookmark: _Toc393727350]The base frequency excitation signal is generated from the wideband MDCT coefficients of synthesized wideband signal or from random noise depending on the decoded SHB signal class.

To Non-TRANSIENT frames, four parameters, ,, , and spectral tilt of WB signal are calculated. When and , if one of the condition: , , is satisfied, the fricative flag is set to 1. It is noted that parameter initialized to 0. It is calculated for every frame and preserved as.
–	The base frequency excitation coefficients are obtained from the wideband MDCT coefficients:

		(1606)

where is the cut-off spectrum bin of WB signal, and at 13.2kbps and at 32kbps .

–	If the current frame is a NOISE frame or is equal to 1, the base frequency excitation signal is generated from linear congruential uniform random noise generator as follows

		(1607)
where

		(1608)

Parameter is initialized as 21211 and updated for each MDCT coefficient. It should be noted that is calculated for every frame.
–	Otherwise, the base frequency excitation signal is copied as defined in subclause 5.2.6.2.1.5 (Frequency mapping to generate base excitation spectrum in FD BWE).	
[bookmark: _Toc393876764][bookmark: _Toc394388045]6.1.5.2.1.6	Frequency excitation normalization and spectral envelope de-normalization
Firstly, the base frequency excitation signal or the spectral envelope is adjusted depending upon the SHB signal class. Then the base frequency excitation signal is adaptively normalized to remove the original low frequency envelope information. Finally, the spectral envelopes are applied to the normalized excitation signal.

If the current frame is NORMAL and the fricative flag (as defined in subclause 6.1.5.2.1.5) is equal to 0, the spectral envelope and the base frequency excitation signal are firstly adjusted. The spectral envelope is adjusted as follows:

		(1609)

where .
And the base frequency excitation signal is adjusted.

–	while weighting factor is smaller than 1, the base frequency excitation is adjusted by multiplying by , is then increased by 0.1 and the index is then incremented by 1.

 where, weighting factor is initialized as follows:

		(1610)

where is defined in subclause 5.2.6.2.1.5.

–	while weighting factor is larger than 1, the base frequency excitation is adjusted by multiplying by , is then decreased by 0.5 and the index is then decremented by 1.

 where, weighting factor is initialized as follows:

		(1611)

–	while weighting factor is larger than 1, the base frequency excitation is adjusted by multiplying by , is then increased by 0.1 and the index is then incremented by 1.

 where, weighting factor is initialized as follows:

		(1612)

and is defined in subclause 5.2.6.2.1.5.

–	while weighting factor is larger than 1, the base frequency excitation is adjusted by multiplying by , and then is multiplied by 0.95 and the index is decremented by 1.

 where, weighting factor is initialized as follows:

		(1613)
Otherwise, there is no need to adjust the base frequency signal.

		(1614)

In order to normalize the base frequency excitation, the parameter of adaptive normalization length is calculated depending on the decoded SHB signal class and the wideband MDCT coefficients:

–	The 256 wideband MDCT coefficients in the 0-6400 Hz frequency range, are split into 16 sharpness bands (16 coefficients per band). In sharpness band j, if and , the counter is incremented by one.

where , and the maximum magnitude of the spectral coefficients in a sharpness band, denoted , is:

		(1615)

Parameter is initialized to 0 and calculated for every frame.

–	Then the normalization length is obtained:

		(1616)

 where the current normalization length is calculated depending on the SHB signal class:

		(1617)

 and the current normalization length is preserved as .

When the current frame is not NOISE and the fricative flag is equal to 0, the noise content of the base frequency excitation signal should be generated, and the base frequency excitation signal should be normalized to remove the core envelope information. The above algorithm is according to the adaptive normalization length .
The normalization envelopes are firstly calculated:

		(1618)
Then the signs and the amplitudes of the base frequency excitation signal are calculated by:

		(1619)

		(1620)
The adjusted coefficients are obtained by the amplitudes, the normalization envelopes and adaptive normalization length:

		(1621)

If , the adjusted coefficients are further modified by the modification factor , and then the base frequency excitation signal with the noise content is obtained by the signs and the adjusted coefficients:

		(1622)

 is the modification factor and can be determined as

		(1623)

where, for HARMONIC frame, otherwise, , and is preserved for the next frame.
The normalized frequency excitation is obtained by removing the core envelope information:

		(1624)

where .
Finally, the spectral envelope is applied to the normalized excitation signal to obtain the SHB coefficients.
–	For TRANSIENT frames, it is achieved as follows:

		(1625)

where and .

–	For non-TRANSIENT frames, if AND , and , the frequency signal is multiplied by 0.2:

		(1626)
 Otherwise, there is no adjustment.

		(1627)
Then the MDCT coefficients of the reconstructed SHB signal are further adaptively adjusted with different modes:

		(1628)

 where for NOISE or NORMAL frame and for HARMONIC frame, and the index is incremented by if is smaller than 14.

 The weighted envelopes are obtained from the spectral envelopes of the current frame and the previous frame:

		(1629)
where,

		(1630)

and is calculated for every frame and preserved as the previous energyfor the next frame.

The index k is initialized to 0, and four weighting factors, , , , , are calculated. The smoothing factor is defined in table 162.

[bookmark: fd1_bwe_smoothing_factor_table]Table 162: Smoothing factor
	j
	Smoothing factor

	0
	0.05

	1
	0.05

	2
	0.05

	3
	0.05

	4
	0.05

	5
	0.05

	6
	0.05

	7
	0.0417

	8
	0.0417

	9
	0.0417

	10
	0.0417

	11
	0.03125

	12
	0.03125

[bookmark: _Toc393353450][bookmark: _Toc393727351]While the index k is smaller than 8, the frequency excitation is adjusted by multiplying , and then the index k is incremented by 1, and is increased by adding .

In the sub-band , while the index k is smaller than , the frequency excitation is adjusted by multiplying by , and then, the index k is incremented by 1, and is increased by adding .

In the 13th sub-band, while the k is smaller than , the frequency excitation is adjusted by multiplying by, and then, the index k is incremented by 1.

The frequency excitation is adjusted by the weighted spectral envelopes to obtain the final SHB frequency signal ,.

It should be noted that, for Non-TRANSIENT frames, the spectral envelopes of current frame are preserved as . For TRANSIENT frame, the spectral envelope is calculated and preserved:

		(1631)
Further adjustment is performed by:

		(1632)
[bookmark: _Toc393876765][bookmark: _Toc394388046]6.1.5.2.1.7	Windowing and frequency-to-time transformation
640-point length inverse MDCT is used for SWB FD BWE. Refer to subclause 6.2.4.
[bookmark: _Toc393353451][bookmark: _Toc393727352][bookmark: _Toc393876766][bookmark: _Toc394388047]6.1.5.2.1.8	Time domain post-processing
[bookmark: _Toc393727353][bookmark: _Toc393876767]The SHB synthesis signal is adjusted depending upon the SHB class.
–	If the current frame is TRANSIENT, the SHB synthesis signal in time domain is adjusted by the time envelopes to match the transient characteristics of the original signal.

The 640 SHB synthesized samples are divided into 4 sub-frames, and the energy of each sub-frame is calculated:

		(1633)
next, the time envelope is adjusted:

		(1634)
and finally, the SHB synthesis signal is adjusted as follows:

		(1635)

where, and .

In this case, the value of is preserved for the next frame.

		(1636)

–	Else if fricative flag defined in subclause 6.1.5.2.1.5 is equal to 1 and the previous fricative flagis equal to 0, pre-echo reduction is performed and the preserved time-domain energy is updated.

 Firstly, the 640 ACELP core synthesized samples, are divided into 4 sub-frames, and the energy of each sub-frame is calculated:

		(1637)

 In jth sub-frame, if and , the position is introduced to separate 4 sub-frames into two parts and it is initialized as 0:		(1638)

 Next, if , the SHB synthesis signal is adjusted.

		(1639)

 where, and are the energies of the SHB synthesized samples and the energy of SHB synthesized samples . is the energy value from the previous frame, and if, the value of is updated to .
–	Otherwise the energy is calculated and preserved for next frame:

		(1640)
[bookmark: _Toc394388048]6.1.5.2.2	WB multi-mode FD BWE decoding
The HB signal class and the spectral envelopes are decoded (at 13.2kbps) or predicted (at 7.2/8kbps), and the frequency excitations are generated from the decoded low-band synthesized signal or from random noise, and then the frequency excitations are adjusted along with the signal class and decoded or predicted spectral envelopes to obtain the higher band signal.
[bookmark: _Toc393805408][bookmark: _Toc393896145][bookmark: _Toc394388049]6.1.5.2.2.1	Decoding the multi-mode FD BWE signal class
At 13.2kbps, one bit is decoded from bitstream to get the HB signal class according to subclause 5.2.6.2.2.2. And at 7.2kbps or 8kbps, the HB signal class is set to NORMAL.
[bookmark: _Toc393805409][bookmark: _Toc393896146][bookmark: _Toc394388050]6.1.5.2.2.2	Windowing and time-to-frequency transformation
320-point MDCT is used for WB FD BWE. Refer to subclause 5.3.2.
[bookmark: _Toc393805410][bookmark: _Toc393896147][bookmark: _Toc394388051]6.1.5.2.2.3	Decoding the spectral envelope

[bookmark: _Toc393805413][bookmark: _Toc393896150]At 13.2kbps, five bits are decoded to obtain the index of spectral envelope, . This envelope is converted into the linear domain as follows:

		(1641)

where is defined in subclause 5.2.6.2.2.3.
The average BWE signal envelope of the current frame at 13.2kbps is preserved for the envelope estimation for 7.2kbps and 8kbps when bit-rate switching from 13.2kbps to 7.2 or 8kbps, as described as follows:

		(1642)

At 7.2kbps or 8kbps, the spectral envelope is predicted in the decoder. If the extended layer of the previous frame is different from the one of current frame, that is, , the preserved spectral envelope are set to 0. In order to get the predicted spectral envelope, two bands andare firstly selected. Then three average energies are needed based on the frequency coefficients in the above two bands. Finally, the spectral envelopes used for the following frequency adjustment are obtained. In order to decrease the complexity, the energies are calculated with the MDCT coefficients :

		(1643)

		(1644)

		(1645)

Two factors, , are calculated. When and , the energy variation flag is set to 1. It should be noted that is initialized to 0 and calculated for every frame.

Then the weighting factor is initialized to 1, and updated according to the spectral envelope and code type:

		(1646)
and the spectral envelope is accordingly adjusted by:

		(1647)

		(1648)
Next, the first envelope is further adjusted.

–	The first envelope is firstly adjusted with by:

		(1649)

–	If the conditions: ,, and , are all satisfied, the first envelope is adjusted by:

		(1650)
 Otherwise, there is no adjustment.

		(1651)

–	If the conditions: , , , , , , are all satisfied, the first envelope is adjusted as follows:

		(1652)
and

		(1653)

where, the adjustment flagis initialized to 0. If the coder type of current frame is equal to that of the previous frame and the first spectral envelope is larger than the envelope of the previous frame, that is, , the adjustment flag is set to 1. The values are the spectral envelopes of the previous frame.
 Otherwise, there is no adjustment.

		(1654)

–	If the conditions: , , , are all satisfied, the envelope variation flag initialized to 0 is set to 1, and the first envelope is adjusted as follows:

		(1655)
 and

		(1656)
 Otherwise, there is no adjustment.

		(1657)
–	If the coder types of current frame or previous frame is UNVOICED, the first envelope is adjusted as follows:

		(1658)

–	If the coder types of current frame is not AUDIO, that is, , the first envelope is adjusted as follows:

		(1659)

–	If the last core bit-rate is larger than 8000, and the first spectral envelope is larger than the average BWE signal envelope of the previous frame, that is, , the adjustment is by:

		(1660)
 Otherwise, there is no adjustment:

		(1661)
–	If the extended layer of the previous frame is different from the one of current frame, the adjustment is as follows:

		(1662)
 Otherwise, there is no adjustment:

		(1663)
Finally, the spectral envelopes are adjusted as follows:

		(1664)
and

		(1665)

		(1666)

The spectral envelopesare used for the following frequency adjustment.
[bookmark: _Toc393805411][bookmark: _Toc393896148][bookmark: _Toc394388052]6.1.5.2.2.4	Frequency excitation generation

The base frequency excitation signalis generated from the MDCT coefficients of the core decoded signal or from random noise depending upon the bit-rate and coder type . The core type flagis introduced. It is initialized to 1, and is set to 0 if the coder type is not AUDIO and the total bit-rate is not larger than 8000.
–	The LF MDCT coefficients are obtained from the MDCT coefficients of core decoded signal:

		(1667)
–	If the coder type of current frame is UNVOICED, the base frequency excitation signal is generated from linear congruential uniform random noise generator as follows:

		(1668)
where

		(1669)

Parameter is initialized as 21211 and updated for each MDCT coefficient. It is noted that is calculated for every frame.
–	Otherwise, the base frequency excitation signal is copied as defined in subclause 5.2.6.2.1.5.
[bookmark: _Toc393805412][bookmark: _Toc393896149][bookmark: _Toc394388053]6.1.5.2.2.5	Frequency excitation normalization and spectral envelope de-normalization

In order to normalize the base frequency excitation to remove the original low frequency envelope information, the parameter of adaptive normalization length is calculated depending on the HB signal class and the MDCT coefficients of core decoded signal:

–	The 256 MDCT coefficients in the 0-6400 Hz frequency range, are split into 16 sharpness bands (16 coefficients per band). In sharpness band j, if and, the counter is incremented by one.

where , and the maximum magnitude of the spectral coefficients in a sharpness band, denoted , is:

		(1670)

Parameter is initialized to 0 and calculated for every frame.

–	Then the normalization length is obtained:

		(1671)

 where the current normalization length is calculated depending on the HB signal class:

		(1672)

 and the current normalization length is preserved as.
Then, according to the adaptive normalization length, the noise content of the base frequency excitation signal is generated, and the base frequency excitation signal is normalized to remove the core envelope information.
· The normalized envelope is calculated:

		(1673)
–	If the bitrate is 7200 or 8000 and the coder type of current frame is not UNVOICED, the signs and amplitudes of HB coefficients are calculated by:

		(1674)

		(1675)
The adjusted coefficients are obtained by the amplitudes, the normalization envelopes and adaptive normalization length:

		(1676)

If , the adjusted coefficients are modified further by the modification factor , and then the base frequency excitation signal with the noise content is obtained by the signs and the adjusted coefficients:

		(1677)

where, the modification factor for HARMONIC frame, otherwise, .
–	Otherwise, there is no adjustment, that is,

		(1678)
–	Next, the adjusted frequency excitation signal is normalized to remove the core envelope information:

		(1679)
–	If the coder type of current frame is not UNVOICED, the frequency signal is adaptively adjusted further as follows:

		(1680)

	where, and , are defined in table 163.
Otherwise, there is no adjustment.

		(1681)
[bookmark: fd1_bwe_sub_band_boundaries_tab_nontrans][bookmark: fd1_bwe_sub_band_boundaries_tab_normal]Table 163: Sub-band boundaries and number of coefficients per sub-band in NORMAL frames
	j
	

	

	0
	240
	16

	1
	256
	24

	2
	280
	16

	3
	304
	24

	4
	320
	-

Finally, the spectral envelope is applied to the normalized excitation signal to obtain the HB coefficients.

Three parameters: the energy, two control factors,, are calculated according to the core type flag, coder type and bit-rate as follows:

		(1682)

		(1683)

		(1684)

When, if and , or the coder type is GENERIC, the envelope adjustment flag is set to 1 and the spectral envelope is adjusted:

		(1685)

where, is the energy of previous frame, and is the previous envelope adjustment flag. It is noted that the envelope adjustment flag is initialized to 0 and preserved for the next frame.
Otherwise, there is no adjustment:

		(1686)

The spectral envelopes are smoothed by the one between the current frame and the previous frame according to the following conditions, and when the current and previous frames apply different extended layer or the current frame is lost frame, the previous spectral envelopes are set to the current spectral envelopes.

When the current frame is NORMAL, or the current frame is HARMONIC and , the adjustment is as follows.

–	If and, and at least one of the coder types of current and previous frames is AUDIO, that is, or , the smoothing process is performed by:

		(1687)

Else if the conditions: , , , ,,and , are all satisfied, the smoothing process is performed by:

		(1688)

	where, is the energy of previous frame, and the is preserved for the next frame at the end of spectral envelope adjustment.

Else if the conditions: , , and , are all satisfied, the smoothing process is performed by:

		(1689)
Otherwise, there is no adjustment.

		(1690)
–	The spectral envelope is further adjusted by:

	(1691)

where, is the attenuation factor. It is initialized to 1 and set to if and are satisfied. are defined in table 164.
[bookmark: the_envelope_attenuation_factor]Table 164: The envelope attenuation factor
	j
	

	0
	0.8000

	1
	0.7746

	2
	0.7483

–	Then the adjusted spectral envelopes are applied to the excitation signal by:

		(1692)

When the conditions: the current frame is NORMAL frame, or the current frame is HARMONIC frame and , are not satisfied, the adjustment is as follows.
–	The first spectral envelope is firstly processed as follows.

		(1693)

–	If the conditions: , , are satisfied, the adjustment is performed by:

		(1694)
Otherwise, there is no adjustment:

		(1695)
–	Then the adjusted spectral envelopes are applied to the excitation signal by:

		(1696)

where, is the attenuation factor. It is initialized to 1 and set to if and .are defined in table 164.
The MDCT coefficients of HB signal are refined by:

		(1697)

And the spectral envelopes of current frame are preserved as for the next frame.
[bookmark: _Toc394388054]6.1.5.2.2.6	Windowing and frequency-to-time transformation
A 320-point inverse MDCT is used for WB FD BWE. Refer to subclause 6.2.4.
[bookmark: _Toc394388055]6.1.5.3	Decoding of upper band at 64 kb/s
The upper band at 64 kbps bit-rate decoding starts with dequantizing the received spectrum coefficients by means of the AVQ as described in subclause 6.1.1.2.1.6.
The spectrum between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB, is reconstructed using decoded part of the upper band spectrum.
Further the spectral envelope is decoded and the quantized spectral envelope (four bands in normal mode or two bands in transient mode) is used to denormalize per envelope the decoded spectrum. Each spectral coefficient in an overlap region (7.6 kHz – 8 kHz) is multiplied by a factor lower than 1.0. The overlap region corresponds to the part of the spectrum where the ACELP lower band synthesis is suppressed due to the attenuation of the resampling filters. Consequently spectral coefficients in an overlap region equalize the spectral gap that would be present if the upper band coding would start at 8 kHz only.
Finally the spectrum is de-normalized by the decoded global gain and transformed to the time domain using iDCT and OLA function.
[bookmark: _Toc394227561]6.1.5.3.1	Decoding in normal mode

The global gain and the spectral envelope corresponding to 4 sub-bands are decoded. The global gain is de-quantized using a 5-bit log gain de-quantizer at the range of [3.0; 500.0]. The spectral envelopes are de-quantized using two-dimensional VQs by means of 6bits and 5bits respectively as defined in subclause 5.2.6.3.1.

Then the band index with the minimum envelope is calculated by, and the envelope of the spectrum between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB is predicted as follows:
1)

If, .
2)

If , the index of attenuation factor is decoded. Then, the is adjusted depending upon the index:

		(1698)

The number of the sub-bandsis obtained according to the number of the total bits and the saturated threshold as follows:

		(1699)

The first stage sub-vectors are decoded by means of AVQ and the spectrum of the upper band is obtained by the first stage sub-vectors ,

		(1700)

and the is saved to , i.e. .

If the number of the remaining bits after the first stage decoding is larger than 14 and the first stage quantized spectrum is non-zero, then the second stage decoding is performed. The second stage global gain, is decoded and updated by:

		(1701)

The number of the sub-bandsis obtained according to the remaining bitsand the saturated thresholdas follows:

		(1702)

The second stage sub-vectors are also decoded by means of AVQ.
Then, the spectrum of the upper band is reconstructed by the contribution of the second stage decoding as follows:

–	The counter is initialized to 0.

–	In the sub-band , , if the first stage AVQ codebook index , the spectrum of the upper band is adjusted by , and the second stage AVQ codebook index is added to the first stage AVQ codebook index . Then, the counter are incremented by 1.

–	The sub-band indexis initialized to 0, while, if , the spectrum is adjusted by , and . Then, the counter is incremented by 1.

The spectrum is then reordered according to the number of the total bits.

–	If , the reordered spectrum is obtained by:

		(1703)

where is the start frequency bin of spectrum reconstruction, and for normal frames.
–	Otherwise, the reordered spectrum is obtained by:

		(1704)

where the and are set as follows:

		(1705)

		(1706)
 And then the spectrum of the band with the minimum envelope is reconstructed as follows:

		(1707)

 Meanwhile, the AVQ codebook index is adjusted as follows:

 If ,

		(1708)
 Otherwise,

		(1709)
 And then,

		(1710)

Then the noise filling is applied to the spectrum. If the remaining bits after the above decoding, the 272 MDCT coefficients of the upper band are divided into 34 sub-bands (8 coefficients per band). Two indices, are introduced to select a base frequency band which is used to reconstruct the un-decoded coefficients in the sub-bands.

–	The sub-band index is initialized to 0.

–	If, in the index range from 0 to 34, the index of the first sub-band which AVQ codebook indexis searched , and then in the index range from the index to 34, the index of the first sub-band which AVQ codebook indexis searched, and the sub-band index is set by,and. If , the is adjusted by , and then the MDCT coefficients in the sub-bands are reconstructed by:

		(1711)

where, and are the weighted factors, and , is obtained by:

		(1712)

		(1713)

the index of sub-band is from to 0, and is initialized to and updated by:

		(1714)

1. If , the index is incremented by 1; Otherwise, a base frequency band is selected to reconstruct the un-decoded coefficients as follows:

2. Initialize the indicesand , and then in the sub-band ,, search the index of the first sub-band which AVQ codebook index, and set. If , the index and the position are further adjusted: , .
3. Then the MDCT coefficients of the upper band are adjusted by:

		(1715)

where is from to , and the is initialized to and it is adjusted by:

		(1716)
 and,

		(1717)

Parameter is initialized as 12345 and updated for each MDCT coefficient. It should be noted that is calculated for every frame.

 4. Finally, judge whether or not. If , return to step 1.

If the spectral tilt of the decoded core signal is larger than 5, the MDCT coefficients of the upper band are further adjusted. In sub-band , if, the adjustment is performed as follows:

		(1718)

where is obtained by the algorithm described in equation (629) and (630), andis obtained as follows:

		(1719)

and if , is refined by:

		(1720)

When , the coefficients of the upper band in the index range [504, 511] are smoothed by:

		(1721)

where is defined as follows:

		(1722)
The spectrum between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB is reconstructed by:

		(1723)

where is the number of the coefficients between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB:

		(1724)

Then or the coefficients in the index range [576, 583] are smoothed by,

		(1725)

where is defined as follows:

		(1726)
and the spectrum is de-normalized using the spectral envelope by:

		(1727)
Otherwise the spectrum is obtained as:

		(1727a)

where for 32 kHz sampled output or for 48 kHz smapled output. Next the overlap coefficients , which depend on the output sampling rate (32 kHz or 48 kHz), defined in table165 are used for adjustment as follows:

		(1728)

Table 165: Overlap coefficients
	k
	0
	1
	2
	3
	4
	5
	6
	7

	
, 32 kHz
	0.27
	0.306
	0.324
	0.351
	0.378
	0.396
	0.414
	0.4275

	
, 48 kHz
	0.30
	0.34
	0.36
	0.39
	0.42
	0.44
	0.46
	0.475

	k
	8
	9
	10
	11
	12
	13
	14
	15

	
, 32 kHz
	0.441
	0.459
	0.486
	0.513
	0.558
	0.648
	0.747
	0.855

	
, 48 kHz
	0.49
	0.51
	0.54
	0.57
	0.62
	0.72
	0.83
	0.95

Finally the decoded global gain is applied to adjust the spectrum of the upper band.

		(1729)
The MDCT coefficients are preserved for the next frame as follows:

		(1730)

Two parameters of and are updated by:

		(1731)

		(1732)
6.1.5.3.2	Decoding in transient mode

There are 4 sub-fames for transient mode. In sub-frame,, the global gain and spectral envelopes , are decoded. The global gain of each sub-frame is de-quantized using a 5-bit log gain de-quantizer at the range of [3.0; 500.0]. The first sub-frame spectral envelopes are de-quantized firstly using two-dimensional VQs by means of 4 bits codebook defined in subclause 5.2.6.3.2. The indices of the first sub-frame spectral envelopes is noted as .

 If , which means the first sub-frame spectral envelopes are de-quantized in the first part of the 4 bits codebook, the spectral envelope of the following three sub-frame are de-quantized using two-dimensional VQs by means of 3 bits codebook , i.e. , as described in subclause 5.2.6.3.2.

 If , the spectral envelope of the following three sub-frame are de-quantized using two-dimensional VQs by means of 3 bits codebook, i.e. , as described in subclause 5.2.6.3.2.
And then the spectrum of the upper band is reconstructed.

The number of the coefficients between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB, , is set by:

		(1733)

And the envelope of the MDCT coefficients between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB is calculated by:
1)
If

		(1734)
2)

If , the index of attention factor is decoded, and then the is adjusted depending upon the index.

		(1735)

The normalized spectrum of the upper band is decoded by the sub-vectors which are obtained by means of the AVQ:

		(1736)

where is the start frequency bin of spectrum reconstruction, and for transient frames. is the frame length. for SWB signal and for FB signal.

Then the noise filling is applied to the spectrum. The first 64 MDCT coefficients of the upper band are divided into 8 sub-bands (8 coefficients per band). In the sub-band , , if the AVQ codebook index is equal to 0, that is,, the signal is generated from linear congruential uniform random noise generator as follows:

		(1737)
where

		(1738)

Parameter is initialized as 12345 and updated for each MDCT coefficient. It should be noted that is calculated for every frame.

If the spectral tilt of the decoded core signal is larger than 5, the MDCT coefficients of the upper band are further adjusted. If, the adjustment is by:

		(1739)

where is obtained by the algorithm described in equations (629) and (630), andis obtained as follows:

		(1740)

and if , is refined by:

		(1741)
The spectrum between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB is reconstructed by replicating the nearby coefficients:

		(1742)
Then the spectrum of the upper band is de-normalized using the spectral envelope by:

		(1743)

and the modification factors defined in table 165 are used to adjust the overlapped coefficients as follows:

		(1744)

where, .

Finally, the decoded global gain is applied to adjust the spectrum of the upper band.

		(1745)
6.1.5.3.3	Windowing and frequency-to-time transformation
A 640-point (SWB) or 960-point (FB) inverse MDCT is used for the upper band frequency signal. Refer to subclause 6.2.4.
6.1.5.3.4	Post-processing in temporal domain

If the current frame is a good one, further adjustment of the upper band synthesized temporal signal is needed. The synthesized temporal signal of the upper band is divided into 4 sub-frames, and the energy of each sub-frame , is computed by:

		(1746)

For each sub-frame, the long term energy is initialized to 0, and updated according to the following equation:

		(1747)

In the above equation, the weighted factor is set to 0.25, and the convention is that for the first sub-frame,

 from the previous frame. For each sub-frame , a comparison between the short term energy and the long term energy is performed. A transient is detected whenever the energy ratio is above a certain threshold and the sub-frame indexis recorded as. Formally, a transient is detected whenever:

		(1748)

where is the energy ratio threshold and is set to .

When the current frame is transient and the conditions:, ,, are all satisfied, the adjustment is processed.

 is obtained depending upon whether the current and previous frames apply the same extend layer:

		(1749)

where the energyis calculated by:

		(1750)

		(1751)
then,

		(1752)

The signal class of the current frame is preserved as for the next frame.

When or , if , the post-processing is performed in case of switching of different extend layers or different cores. The gain factor is first calculated by:

		(1753)

where is the index of the time sample with the maximum magnitude, and

		(1754)

The gain factor is refined by:

		(1755)

where and are obtained by:

		(1756)

		(1757)
Then the synthesized signal of the upper band is adjusted by:

		(1758)

where is calculated as follows:

		(1759)

		(1760)

And the preserved synthesized signal of the upper band for OLA function, , is adjusted by:

		(1761)

3GPP
oleObject1.bin

oleObject46.bin

image438.wmf
L

L

L

w

c

+

=

2

oleObject555.bin

image439.wmf
(

)

n

u

wc

oleObject556.bin

image440.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

î

ï

í

ì

-

+

=

-

=

-

-

=

=

1

,...,

1

,...,

0

1

,...

w

x

w

wc

L

L

L

n

n

w

n

u

L

n

n

w

n

u

L

n

n

w

n

u

n

u

oleObject557.bin

image441.wmf
(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

-

£

£

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

×

×

=

×

=

å

å

-

=

-

=

1

1

,

2

1

cos

2

0

,

1

1

0

1

0

c

c

L

n

wc

c

L

n

wc

c

u

L

k

k

n

L

n

u

L

k

n

u

L

k

f

c

c

p

oleObject558.bin

image442.wmf
(

)

n

u

wc

oleObject559.bin

image47.wmf
2

,

1

,

1

1

2

1

1

2

2

=

÷

÷

ø

ö

ç

ç

è

æ

+

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

i

k

k

k

k

k

k

I

I

L

li

li

i

image443.wmf
c

L

oleObject560.bin

image444.wmf
L

oleObject561.bin

image445.wmf
c

L

oleObject562.bin

image446.wmf
Hz

6400}

5300,

4400,

3700,

3150,

2700,

2320,

2000,

1720,

1480,

1270,

1080,

920,

770,

630,

510,

400,

300,

200,

{100,

=

K

B

C

oleObject563.bin

oleObject564.bin

image447.wmf
110}

90,

70,

55,

45,

38,

32,

28,

24,

21,

19,

16,

15,

14,

12,

11,

10,

10,

10,

{10,

=

B

M

oleObject47.bin

oleObject565.bin

image448.wmf
)

(

i

E

B

oleObject566.bin

image449.wmf
(

)

(

)

(

)

(

)

(

)

å

-

=

=

+

=

1

0

2

20

,...,

0

,

1

i

M

h

i

u

CB

c

B

B

i

j

h

f

i

M

L

i

E

oleObject567.bin

image450.wmf
(

)

h

f

e

oleObject568.bin

image451.wmf
i

j

oleObject569.bin

image452.wmf
530}

440,

370,

315,

270,

232,

200,

172,

148,

127,

108,

92,

77,

63,

51,

40,

30,

20,

10,

0,

{

=

i

j

image48.wmf
1

v

oleObject570.bin

image453.wmf
)

(

k

E

BIN

oleObject571.bin

image454.wmf
(

)

(

)

639

,...,

0

,

1

2

=

=

k

k

f

L

k

E

u

c

BIN

oleObject572.bin

image455.wmf
C

E

oleObject573.bin

image456.wmf
(

)

0103

.

3

log

10

16

0

10

-

÷

ø

ö

ç

è

æ

=

å

=

i

B

C

i

E

E

oleObject574.bin

image457.wmf
C

E

oleObject48.bin

oleObject575.bin

image458.wmf
(

)

1

1

40

,

40

-

-

=

-

=

-

=

D

÷

÷

ø

ö

ç

ç

è

æ

D

=

å

t

C

t

C

t

E

t

t

t

E

E

E

where

E

C

C

d

oleObject576.bin

image459.wmf
d

E

oleObject577.bin

image460.wmf
t

C

E

oleObject578.bin

image461.wmf
t

oleObject579.bin

image462.wmf
(

)

1

-

t

C

E

image49.wmf
2

i

L

oleObject580.bin

image463.wmf
1

-

t

oleObject581.bin

image464.wmf
C

s

oleObject582.bin

image465.wmf
(

)

å

-

=

-

=

-

D

×

=

1

15

2

15

t

t

t

E

C

d

C

E

p

s

oleObject583.bin

image466.wmf
p

oleObject584.bin

image467.wmf
C

s

oleObject49.bin

oleObject585.bin

image468.wmf
CAT

e

oleObject586.bin

image469.wmf
2

S

F

oleObject587.bin

image470.wmf
max

R

oleObject588.bin

oleObject589.bin

oleObject590.bin

image471.wmf
2

S

F

image50.wmf
1

k

oleObject591.bin

image472.wmf
0

=

CAT

e

oleObject592.bin

image473.wmf
s

g

oleObject593.bin

image474.wmf
min

g

oleObject594.bin

image475.wmf
max

g

oleObject595.bin

image476.wmf
min

g

oleObject50.bin

oleObject596.bin

oleObject597.bin

image477.wmf
20

/

min

max

10

R

g

-

=

oleObject598.bin

image478.wmf
k

oleObject599.bin

image479.wmf
SNR

oleObject600.bin

image480.wmf
(

)

s

s

s

c

k

k

k

g

+

=

SNR

)

(

oleObject601.bin

image51.wmf
2

1

k

k

+

image481.wmf
max

min

g

g

g

s

£

£

oleObject602.bin

oleObject603.bin

image482.wmf
s

k

oleObject604.bin

image483.wmf
s

c

oleObject605.bin

image484.wmf
min

g

g

s

=

oleObject606.bin

image485.wmf
1

=

SNR

image2.wmf
I

oleObject51.bin

oleObject607.bin

image486.wmf
1

=

s

g

oleObject608.bin

image487.wmf
45

=

SNR

oleObject609.bin

image488.wmf
min

g

oleObject610.bin

image489.wmf
1

=

s

g

oleObject611.bin

image490.wmf
s

k

image52.wmf
1

v

oleObject612.bin

image491.wmf
s

c

oleObject613.bin

image492.wmf
44

/

)

1

(

2

min

g

k

s

-

=

oleObject614.bin

image493.wmf
44

/

)

1

45

(

2

min

-

=

g

c

s

oleObject615.bin

oleObject616.bin

image494.wmf
i

oleObject617.bin

oleObject52.bin

image495.wmf
1

)

(

,...,

,

)

(

)

(

7

.

0

)

(

3

.

0

)

(

NRF

)

2

(

)

1

(

-

+

=

+

=

i

M

j

j

h

i

N

h

E

h

E

h

B

i

i

B

BIN

BIN

BIN

oleObject618.bin

image496.wmf
)

(

)

1

(

h

E

BIN

oleObject619.bin

image497.wmf
)

(

)

2

(

h

E

BIN

oleObject620.bin

image498.wmf
)

(

i

N

B

oleObject621.bin

image499.wmf
i

oleObject622.bin

image53.wmf
x

image500.wmf
i

j

oleObject623.bin

image501.wmf
)

(

i

M

B

oleObject624.bin

oleObject625.bin

image502.wmf
s

gs

g

-

=

1

a

oleObject626.bin

image503.wmf
s

g

oleObject627.bin

oleObject628.bin

oleObject53.bin

oleObject629.bin

image504.wmf
LP

BIN

g

,

oleObject630.bin

image505.wmf
s

gs

LP

BIN

gs

LP

BIN

g

k

g

k

g

)

1

(

)

(

)

(

,

,

a

a

-

+

=

oleObject631.bin

image506.wmf
gs

a

oleObject632.bin

oleObject633.bin

image507.wmf
1

)

(

,...,

0

),

(

)

(

)

(

,

'

-

=

+

+

=

+

i

M

h

j

h

f

j

h

g

j

h

f

B

i

u

i

LP

BIN

i

u

oleObject634.bin

image54.wmf
1

,...,

0

,

)

(

3

3

-

=

=

k

j

v

j

x

image508.wmf
i

j

oleObject635.bin

oleObject636.bin

image509.wmf
)

(

i

M

B

oleObject637.bin

image510.wmf
)

(

,

k

g

LP

BIN

oleObject638.bin

image511.wmf
0

=

CAT

e

oleObject639.bin

image512.wmf
)

(

,

k

g

LP

BIN

oleObject54.bin

oleObject640.bin

image513.wmf
,

20

,...,

0

)),

(

max(

=

i

i

N

B

oleObject641.bin

oleObject642.bin

image514.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

)

(

,...,

0

,

1

max

1

-

=

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

-

÷

ø

ö

ç

è

æ

+

-

=

i

M

h

i

M

j

h

E

i

M

i

E

i

q

i

N

B

B

i

BIN

h

B

B

B

oleObject643.bin

image515.wmf
i

j

oleObject644.bin

oleObject645.bin

image516.wmf
)

(

i

M

B

image55.wmf
2

,

1

,

=

i

I

li

oleObject646.bin

image517.wmf
)

(

i

E

B

oleObject647.bin

oleObject648.bin

image518.wmf
(

)

i

BIN

j

h

E

+

oleObject649.bin

image519.wmf
)

(

i

N

B

oleObject650.bin

oleObject651.bin

image520.wmf
)

(

i

q

oleObject55.bin

oleObject652.bin

image521.wmf
,15,15,15}

1,11,15,15

11,11,11,1

,11,11,11,

0,10,10,11

10,10,10,1

{

=

q

oleObject653.bin

image522.wmf
)

(

k

E

BIN

oleObject654.bin

image523.wmf
)

(

k

E

n

oleObject655.bin

image524.wmf
(

)

(

)

(

)

639

,...,

0

,

925

.

0

max

=

+

=

k

E

k

E

k

E

BIN

BIN

n

oleObject656.bin

image525.wmf
)

(

k

E

BIN

image56.wmf
2

,

1

,

2

3

2

1

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

=

i

k

k

k

I

L

li

i

oleObject657.bin

image526.wmf
(

)

(

)

639

,...,

0

8

=

=

k

k

E

k

E

n

p

oleObject658.bin

image527.wmf
(

)

k

E

n

oleObject659.bin

image528.wmf
(

)

k

E

p

oleObject660.bin

image529.wmf
(

)

(

)

(

)

639

,...,

0

,

5

min

=

=

k

k

E

k

E

p

pl

oleObject661.bin

image530.wmf
(

)

k

E

pl

oleObject2.bin

oleObject56.bin

oleObject662.bin

image531.wmf
(

)

k

E

p

oleObject663.bin

image532.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

=

+

-

=

+

+

+

-

=

+

+

=

639

,

2

1

638

,...,

1

,

3

1

1

0

,

2

1

k

k

E

k

E

k

k

E

k

E

k

E

k

k

E

k

E

k

E

pl

pl

pl

pl

pl

pl

pl

pl

oleObject664.bin

image533.wmf
m

G

oleObject665.bin

image534.wmf
'

u

f

oleObject666.bin

image535.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

î

ï

í

ì

=

+

×

=

+

×

=

-

-

639

,...,

320

,

15

.

0

85

.

0

319

,...,

0

,

05

.

0

95

.

0

1

1

k

k

E

k

G

k

k

E

k

G

k

G

pl

t

m

pl

t

m

t

m

image57.wmf
2

,

1

,

2

3

2

2

3

2

2

=

÷

÷

ø

ö

ç

ç

è

æ

+

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

i

k

k

k

k

k

k

I

I

L

li

li

i

oleObject667.bin

image536.wmf
pl

E

oleObject668.bin

image537.wmf
t

oleObject669.bin

image538.wmf
m

G

oleObject670.bin

image539.wmf
(

)

k

G

t

m

oleObject671.bin

image540.wmf
'

u

f

oleObject57.bin

oleObject672.bin

image541.wmf
CAT

e

oleObject673.bin

image542.wmf
0

=

CAT

e

oleObject674.bin

image543.wmf
0

¹

CAT

e

oleObject675.bin

oleObject676.bin

image544.wmf
0

max

G

oleObject677.bin

image58.wmf
2

,

1

,

1

1

2

3

1

3

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

i

k

k

k

k

L

L

i

i

image545.wmf
1

max

G

oleObject678.bin

image546.wmf
1

max

G

oleObject679.bin

image547.wmf
1

min

G

oleObject680.bin

image548.wmf
2

max

G

oleObject681.bin

image549.wmf
2

max

G

oleObject682.bin

oleObject58.bin

image550.wmf
2

min

G

oleObject683.bin

image551.wmf
3

max

G

oleObject684.bin

image552.wmf
3

min

G

oleObject685.bin

image553.wmf
(

)

n

u

td

'

oleObject686.bin

image554.wmf
(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

-

£

£

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

×

×

=

×

=

å

å

-

=

-

=

1

1

,

2

1

cos

2

0

,

1

1

0

"

1

0

"

'

c

c

L

k

u

c

L

k

u

c

td

L

n

n

k

L

k

f

L

n

k

f

L

n

u

c

c

p

oleObject687.bin

image59.wmf
2

,

1

,

1

1

2

3

1

1

2

3

1

1

4

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

+

-

=

i

k

k

k

k

k

k

k

k

L

L

L

i

i

i

image555.wmf
u

f

"

oleObject688.bin

image556.wmf
(

)

n

u

td

'

oleObject689.bin

image557.wmf
c

L

oleObject690.bin

image558.wmf
f

u

oleObject691.bin

image559.wmf
(

)

(

)

255

,...,

0

,

'

=

+

=

n

L

n

u

n

u

w

td

f

oleObject692.bin

oleObject59.bin

image560.wmf
w

L

oleObject693.bin

image561.wmf
)

(

n

u

oleObject694.bin

image562.wmf
i

a

ˆ

oleObject695.bin

oleObject696.bin

image563.wmf
(

)

å

=

-

-

=

16

1

)

(

ˆ

ˆ

)

(

ˆ

i

i

i

n

s

a

n

u

n

s

oleObject697.bin

image564.wmf
)

68

.

0

1

(

1

1

-

-

z

image60.wmf
2

v

oleObject698.bin

image565.wmf
$

(

)

s

n

image566.wmf
(

)

z

H

p

oleObject699.bin

image567.wmf
(

)

z

H

f

oleObject700.bin

image568.wmf
(

)

z

H

t

oleObject701.bin

image569.wmf
)

(

ˆ

n

s

pre

oleObject702.bin

oleObject60.bin

image570.wmf
(

)

n

z

A

g

/

ˆ

oleObject703.bin

image571.wmf
(

)

n

r

ˆ

oleObject704.bin

image572.wmf
T

oleObject705.bin

image573.wmf
l

g

oleObject706.bin

image574.wmf
(

)

z

H

p

oleObject707.bin

image61.wmf
2

i

L

image575.wmf
(

)

n

r

ˆ

oleObject708.bin

image576.wmf
(

)

z

H

p

oleObject709.bin

image577.wmf
(

)

]

/

ˆ

/[

1

d

f

z

A

g

g

oleObject710.bin

image578.wmf
(

)

]

/

ˆ

/[

1

d

f

z

A

g

g

oleObject711.bin

image579.wmf
(

)

z

H

p

oleObject712.bin

image3.wmf
[

]

2

1

/

N

I

I

=

oleObject61.bin

image580.wmf
)

(

ˆ

n

s

f

oleObject713.bin

image581.wmf
)

(

ˆ

n

s

f

oleObject714.bin

image582.wmf
)

(

ˆ

n

s

pre

oleObject715.bin

image583.wmf
n

g

oleObject716.bin

image584.wmf
d

g

oleObject717.bin

image62.wmf
2

k

image585.wmf
(

)

z

H

f

oleObject718.bin

image586.wmf
(

)

z

H

t

oleObject719.bin

image587.wmf
(

)

z

H

p

oleObject720.bin

image588.wmf
(

)

(

)

T

l

p

l

p

p

z

g

g

z

H

-

+

+

=

g

g

1

1

1

oleObject721.bin

oleObject722.bin

oleObject723.bin

oleObject62.bin

image589.wmf
p

g

oleObject724.bin

image590.wmf
5

.

0

=

p

g

oleObject725.bin

image591.wmf
(

)

n

r

ˆ

oleObject726.bin

image592.wmf
)

(

ˆ

n

s

oleObject727.bin

image593.wmf
(

)

n

z

A

g

/

ˆ

oleObject728.bin

image63.wmf
3

2

k

k

+

image594.wmf
(

)

(

)

(

)

å

=

-

+

=

16

1

ˆ

ˆ

ˆ

ˆ

i

i

i

n

i

n

s

a

n

s

n

r

g

oleObject729.bin

image595.wmf
0

T

oleObject730.bin

image596.wmf
ë

û

ë

û

[

]

;

1

;

1

]

0

[

]

0

[

+

-

fr

fr

d

d

oleObject731.bin

image597.wmf
ë

û

]

0

[

fr

d

oleObject732.bin

image598.wmf
0

T

oleObject733.bin

oleObject63.bin

image599.wmf
(

)

(

)

(

)

å

=

-

=

63

0

ˆ

ˆ

n

k

n

r

n

r

k

R

oleObject734.bin

image600.wmf
T

oleObject735.bin

image601.wmf
0

T

oleObject736.bin

image602.wmf
(

)

(

)

(

)

(

)

(

)

n

r

n

r

n

r

n

r

k

R

n

k

k

n

k

å

å

=

=

=

¢

63

0

63

0

ˆ

ˆ

ˆ

ˆ

oleObject737.bin

image603.wmf
(

)

n

r

k

ˆ

oleObject738.bin

oleObject64.bin

image604.wmf
k

oleObject739.bin

image605.wmf
(

)

n

r

k

ˆ

oleObject740.bin

image606.wmf
T

oleObject741.bin

oleObject742.bin

image607.wmf
(

)

T

R

¢

oleObject743.bin

image608.wmf
(

)

T

R

¢

image64.wmf
3

i

L

oleObject744.bin

image609.wmf
(

)

n

r

ˆ

oleObject745.bin

image610.wmf
(

)

(

)

(

)

5

.

0

ˆ

ˆ

63

0

2

<

¢

å

=

n

n

r

n

r

T

R

oleObject746.bin

image611.wmf
0

=

l

g

oleObject747.bin

image612.wmf
l

g

oleObject748.bin

image613.wmf
(

)

(

)

(

)

(

)

å

å

=

=

=

63

0

63

0

ˆ

ˆ

ˆ

ˆ

n

k

k

n

k

l

n

r

n

r

n

r

n

r

g

oleObject65.bin

oleObject749.bin

image614.wmf
01.0

l

g

££

oleObject750.bin

image615.wmf
(

)

(

)

(

)

å

å

=

-

=

-

+

+

=

=

16

1

16

1

ˆ

1

ˆ

1

1

/

ˆ

/

ˆ

1

i

i

i

i

d

i

i

i

i

n

f

d

n

f

f

z

a

z

a

g

z

A

z

A

g

z

H

g

g

g

g

oleObject751.bin

image616.wmf
(

)

z

A

ˆ

oleObject752.bin

oleObject753.bin

image617.wmf
d

g

oleObject754.bin

image65.wmf
1

k

image618.wmf
f

g

oleObject755.bin

image619.wmf
)

(

n

h

f

oleObject756.bin

image620.wmf
(

)

(

)

d

n

z

A

z

A

g

g

/

ˆ

/

/

ˆ

oleObject757.bin

image621.wmf
(

)

å

=

=

19

0

n

f

f

n

h

g

oleObject758.bin

image622.wmf
f

g

oleObject759.bin

oleObject66.bin

oleObject760.bin

image623.wmf
d

g

oleObject761.bin

oleObject762.bin

image624.wmf
norm

g

oleObject763.bin

oleObject764.bin

image625.wmf
d

g

oleObject765.bin

image626.wmf
45

.

1

05

.

0

+

-

=

norm

n

g

g

oleObject3.bin

image66.wmf
3

2

1

k

k

k

+

+

oleObject766.bin

image627.wmf
9

.

0

01

.

0

+

-

=

norm

d

g

g

oleObject767.bin

image628.wmf
norm

g

oleObject768.bin

oleObject769.bin

image629.wmf
d

g

oleObject770.bin

oleObject771.bin

oleObject772.bin

oleObject67.bin

oleObject773.bin

image630.wmf
norm

g

oleObject774.bin

image631.wmf
0

=

SAD

f

oleObject775.bin

image632.wmf
norm

norm

norm

g

g

g

05

.

0

95

.

0

+

=

oleObject776.bin

image633.wmf
norm

g

oleObject777.bin

image634.wmf
å

=

=

63

0

2

05

.

0

)

(

64

1

10

n

E

norm

n

c

g

g

image67.wmf
0

v

oleObject778.bin

image635.wmf
g

E

oleObject779.bin

image636.wmf
)

(

n

c

oleObject780.bin

oleObject781.bin

oleObject782.bin

image637.wmf
(

)

f

f

f

g

g

g

-

+

=

¢

0

.

1

m

oleObject783.bin

image638.wmf
m

oleObject68.bin

oleObject784.bin

image639.wmf
norm

g

oleObject785.bin

image640.wmf
(

)

4

1

.

0

0

.

15

-

=

norm

g

m

oleObject786.bin

image641.wmf
25

.

0

0

£

£

m

oleObject787.bin

image642.wmf
f

g

¢

oleObject788.bin

oleObject789.bin

image68.wmf
4

i

L

oleObject790.bin

oleObject791.bin

image643.wmf
n

g

oleObject792.bin

oleObject793.bin

image644.wmf
n

g

oleObject794.bin

oleObject795.bin

image645.wmf
n

g

oleObject796.bin

oleObject69.bin

oleObject797.bin

image646.wmf
(

)

z

H

t

oleObject798.bin

image647.wmf
(

)

z

H

f

oleObject799.bin

image648.wmf
(

)

(

)

1

1

1

1

-

+

=

z

k

g

z

H

t

t

t

g

oleObject800.bin

image649.wmf
1

k

t

g

oleObject801.bin

image650.wmf
t

k

image69.wmf
0

k

oleObject802.bin

image651.wmf
)

(

n

h

f

oleObject803.bin

image652.wmf
(

)

(

)

0

1

1

h

h

r

r

k

-

=

oleObject804.bin

image653.wmf
(

)

(

)

(

)

å

-

=

+

=

i

j

f

f

h

i

j

h

j

h

i

r

19

0

oleObject805.bin

image654.wmf
1

1

k

g

t

t

g

-

=

oleObject806.bin

oleObject807.bin

oleObject70.bin

image655.wmf
(

)

z

H

f

oleObject808.bin

image656.wmf
(

)

z

H

f

oleObject809.bin

image657.wmf
(

)

z

H

t

oleObject810.bin

image658.wmf
t

g

oleObject811.bin

image659.wmf
1

k

oleObject812.bin

image70.wmf
S

image660.wmf
1

k

oleObject813.bin

image661.wmf
t

g

oleObject814.bin

image662.wmf
1

k

oleObject815.bin

image663.wmf
t

g

oleObject816.bin

image664.wmf
)

(

ˆ

n

s

pre

oleObject817.bin

oleObject71.bin

image665.wmf
)

(

ˆ

n

s

f

oleObject818.bin

image666.wmf
g

f

oleObject819.bin

image667.wmf
(

)

(

)

å

å

=

=

=

63

0

63

0

ˆ

ˆ

n

f

n

pre

g

n

s

n

s

f

oleObject820.bin

image668.wmf
)

(

ˆ

n

s

f

oleObject821.bin

image669.wmf
)

(

ˆ

)

(

)

(

ˆ

n

s

n

g

n

s

f

cont

f

=

oleObject822.bin

image4.wmf
[

]

2

2

/

N

I

I

I

-

=

image71.wmf
)

(

)

(

)

(

ˆ

0

i

m

i

l

i

f

N

k

k

t

+

=

å

=

image670.wmf
)

(

n

g

cont

oleObject823.bin

image671.wmf
g

cont

cont

f

n

g

n

g

0125

.

0

)

1

(

9875

.

0

)

(

+

-

=

oleObject824.bin

image672.wmf
g

cont

cont

f

n

g

n

g

15

.

0

)

1

(

85

.

0

)

(

+

-

=

oleObject825.bin

image673.wmf
0

.

1

)

1

(

=

-

cont

g

oleObject826.bin

image674.wmf
)

1

(

-

cont

g

oleObject827.bin

oleObject72.bin

image675.wmf
)

63

(

cont

g

oleObject828.bin

image676.wmf
)

(

ˆ

n

s

f

oleObject829.bin

image677.wmf
)

(

ˆ

n

s

pre

oleObject830.bin

image678.emf

Microsoft_Word_Document.docx
[image:]

image1.png

CLDFB

Pitch
Period T

+

Analysis

CLDFB
Synthesis

—

Pitch
Tracking

()

z

1(n)!

CLDFB
Analysis

Sour (M)

image679.wmf
)

(

ˆ

n

s

oleObject831.bin

image72.wmf
i

image680.wmf
)

(

ˆ

n

s

f

oleObject832.bin

image681.wmf
)

(

n

r

oleObject833.bin

image682.wmf
)

(

k

R

C

oleObject834.bin

image683.wmf
)

(

ˆ

k

R

C

oleObject835.bin

image684.wmf
)

(

k

W

C

oleObject836.bin

oleObject73.bin

image685.wmf
)

(

ˆ

k

S

outC

oleObject837.bin

image686.wmf
)

(

ˆ

k

S

C

oleObject838.bin

image687.wmf
)

(

ˆ

n

s

out

oleObject839.bin

image688.wmf
)

(

)

(

ˆ

)

1

(

)

(

ˆ

n

s

n

s

n

s

p

f

a

a

+

-

=

oleObject840.bin

image689.wmf
)

(

ˆ

n

s

f

oleObject841.bin

image73.wmf
M

image690.wmf
a

oleObject842.bin

image691.wmf
)

(

n

s

p

oleObject843.bin

image692.wmf
)

(

ˆ

5

.

0

)

(

ˆ

5

.

0

)

(

T

n

s

T

n

s

n

s

p

+

+

-

=

oleObject844.bin

image693.wmf
T

oleObject845.bin

image694.wmf
)

(

ˆ

n

s

oleObject846.bin

oleObject74.bin

oleObject847.bin

oleObject848.bin

image695.wmf
5

.

0

=

a

oleObject849.bin

image696.wmf
)

2

/(

1

T

oleObject850.bin

image697.wmf
)

2

/(

3

T

oleObject851.bin

image698.wmf
)

2

/(

5

T

oleObject852.bin

image74.wmf
1

,

0

),

(

ˆ

-

=

M

i

i

f

t

image699.wmf
T

/

1

oleObject853.bin

image700.wmf
T

/

2

oleObject854.bin

image701.wmf
T

/

3

oleObject855.bin

image702.wmf
T

/

4

oleObject856.bin

image703.wmf
T

/

5

oleObject857.bin

oleObject75.bin

oleObject858.bin

oleObject859.bin

oleObject860.bin

image704.wmf
a

oleObject861.bin

image705.wmf
å

-

=

=

1

0

)

(

)

(

ˆ

N

n

p

p

n

s

n

s

C

oleObject862.bin

image706.wmf
å

-

=

=

1

0

)

(

)

(

N

n

p

p

p

n

s

n

s

E

oleObject863.bin

oleObject864.bin

image75.wmf
t

image707.wmf
)

10

(

.

1

.

0

1

pp

E

p

p

E

C

k

+

=

a

oleObject865.bin

image708.wmf
5

.

0

0

£

£

a

oleObject866.bin

image709.wmf
pp

E

oleObject867.bin

image710.wmf
pp

E

oleObject868.bin

image711.wmf
)

(

)

(

ˆ

)

(

2

n

s

E

C

n

s

k

n

e

p

p

p

p

-

=

oleObject869.bin

oleObject76.bin

image712.wmf
)

1

(

9

.

0

)

(

)

(

-

+

=

n

e

n

e

n

e

pp

p

pp

oleObject870.bin

image713.wmf
ú

ú

û

ù

ê

ê

ë

é

=

å

-

=

1

0

)

(

)

(

log

10

N

n

pp

pp

pp

n

e

n

e

E

oleObject871.bin

image714.wmf
pp

pp

pp

E

E

E

01

.

0

99

.

0

+

=

oleObject872.bin

image715.wmf
0

=

pp

E

oleObject873.bin

image716.wmf
a

oleObject874.bin

oleObject4.bin

image76.wmf
1

,...,

0

),

(

-

=

M

i

i

l

k

image717.wmf
[

]

0

q

oleObject875.bin

image718.wmf
]

0

[

q

oleObject876.bin

image719.wmf
[

]

[

]

[

]

1

0

0

2

.

0

8

.

0

-

×

+

×

=

q

q

q

oleObject877.bin

image720.wmf
a

oleObject878.bin

image721.wmf
[

]

[

]

[

]

a

q

q

q

a

×

-

-

+

=

)

0

.

2

15

.

0

1

(

0

0

0

oleObject879.bin

oleObject77.bin

oleObject880.bin

image722.wmf
g

a

ˆ

oleObject881.bin

image723.wmf
a

a

a

g

×

=

ˆ

oleObject882.bin

image724.wmf
Generate

upsampled

version of

core

excitation

Non

l

inear

function

Spectral

flip in time

domain

Adaptive

whitening

Scaling

Random

noise

Noise

envelope

Scaling

?

1/A(z)

Temporal

e

nvelope

adjustment

Synthesis

filterbank

ACELP core decoder

+

+

Parameters from

ACELP core decoder

Decoded

speech output

image725.wmf
i

Vf

oleObject883.bin

image726.wmf
,

i

b

oleObject884.bin

image77.wmf
k

image727.wmf
i

b

oleObject885.bin

image728.wmf
i

Vf

oleObject886.bin

image729.wmf
(

)

2

34

.

0

5

.

0

5

.

0

34

.

0

i

i

i

Vf

b

b

´

-

+

´

+

=

oleObject887.bin

image730.wmf
i

Vf

oleObject888.bin

image731.wmf
i

Vf

oleObject889.bin

oleObject78.bin

image732.wmf
i

Vf

oleObject890.bin

image733.wmf
(

)

(

)

(

)

256

0

1

£

£

´

+

=

n

for

n

random

Vf

n

code

n

i

e

oleObject891.bin

image734.wmf
320

0

£

£

n

oleObject892.bin

image735.wmf
b

oleObject893.bin

image736.wmf

b

oleObject894.bin

image78.wmf
N

image737.wmf
(

)

(

)

(

)

P

n

g

n

g

n

p

c

b

e

e

e

-

´

+

´

=

2

2

oleObject895.bin

image738.wmf
(

)

n

e

oleObject896.bin

image739.wmf
(

)

n

e

oleObject897.bin

image740.wmf
(

)

n

e

oleObject898.bin

image741.wmf
160

,

0

2

1

=

=

n

n

oleObject899.bin

oleObject79.bin

image742.wmf
320

,

160

2

1

=

=

n

n

oleObject900.bin

image743.wmf
max

e

oleObject901.bin

image744.wmf
max

i

oleObject902.bin

image745.wmf
(

)

(

)

(

)

(

)

2

1

1

max

n

n

n

for

n

n

argmax

i

and

n

max

max

<

£

-

=

=

e

e

e

oleObject903.bin

image746.wmf
max

e

oleObject904.bin

image79.wmf
1

,...,

0

),

(

-

=

M

i

i

m

image747.wmf
sf

oleObject905.bin

image748.wmf
ï

î

ï

í

ì

£

>

=

1

67

.

0

1

67

.

0

max

max

max

if

if

sf

e

e

e

oleObject906.bin

image749.wmf
sf

oleObject907.bin

image750.wmf
prev

sf

oleObject908.bin

image751.wmf
ss

oleObject909.bin

oleObject80.bin

image752.wmf
ï

î

ï

í

ì

£

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

otherwise

e

sf

if

ss

prev

max

sf

sf

i

prev

0

1

log

*

1

oleObject910.bin

image753.wmf
0

£

prev

sf

oleObject911.bin

image754.wmf
ss

sf

prev

=

oleObject912.bin

image755.wmf
(

)

n

NL

e

oleObject913.bin

image756.wmf
(

)

(

)

(

)

(

)

(

)

ï

î

ï

í

ì

<

£

<

´

-

£

´

=

2

1

2

2

0

0

n

n

n

for

n

if

sf

n

n

if

sf

n

n

prev

prev

NL

e

e

e

e

e

oleObject914.bin

image80.wmf
)

(

)

(

)

(

ˆ

)

(

ˆ

0

1

i

m

i

l

i

f

i

f

N

k

k

t

t

+

+

=

å

=

-

image757.wmf
max

i

j

<

oleObject915.bin

image758.wmf
prev

sf

oleObject916.bin

image759.wmf

prev

sfss

´

oleObject917.bin

image760.wmf
5

,

,

1

,

ˆ

K

=

k

SHB

k

r

oleObject918.bin

image761.wmf
10

,

,

6

,

ˆ

K

=

k

SHB

k

r

oleObject919.bin

oleObject81.bin

image762.wmf
(

)

5

,

,

1

~

~

1

ˆ

,

5

K

=

+

-

=

+

k

g

k

i

k

SHB

k

k

SHB

k

opt

l

r

l

r

oleObject920.bin

image763.wmf
(

)

4

,

1

for

¼

=

j

j

gs

q

oleObject921.bin

image764.wmf
q

GF

oleObject922.bin

image765.wmf
(

)

j

q

res

J

ˆ

oleObject923.bin

image766.wmf
q

J

oleObject924.bin

image5.wmf
2

,

1

,

=

i

I

i

oleObject82.bin

image767.wmf
q

fac

oleObject925.bin

image768.wmf
(

)

n

NL

e

oleObject926.bin

image769.wmf
(

)

(

)

(

)

319

,

0

,

1

¼

=

-

=

n

for

n

n

NL

n

flipped

e

e

oleObject927.bin

image770.wmf
(

)

flipped

n

e

oleObject928.bin

image771.wmf
(

)

16

k

n

e

oleObject929.bin

oleObject83.bin

image772.wmf
(

)

flipped

n

e

oleObject930.bin

image773.wmf
÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

-

-

-

-

-

-

1

1

,

1

1

1

,

2

1

1

,

1

1

1

,

1

1

1

,

0

1

1

,

0

1

,

1

1

1

z

a

z

a

z

a

z

a

z

a

z

a

H

d

oleObject931.bin

image774.wmf
(

)

flipped

n

e

oleObject932.bin

image775.wmf
÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

-

-

-

-

-

-

1

2

,

1

1

2

,

2

1

2

,

1

1

2

,

1

1

2

,

0

1

2

,

0

2

,

1

1

1

z

a

z

a

z

a

z

a

z

a

z

a

H

d

oleObject933.bin

image776.wmf
(

)

159

,

0

16

¼

=

n

for

n

k

e

oleObject934.bin

image81.wmf
)

(

)

(

)

(

ˆ

)

(

ˆ

0

1

i

m

i

l

i

e

i

f

N

k

k

t

t

+

+

=

å

=

-

image777.wmf
(

)

n

k

16

e

oleObject935.bin

image778.wmf
(

)

n

k

16

e

oleObject936.bin

image779.wmf
(

)

.

16

n

k

e

oleObject937.bin

image780.wmf
(

)

n

k

16

e

oleObject938.bin

image781.wmf
(

)

n

k

16

e

oleObject939.bin

oleObject84.bin

image782.wmf
(

)

(

)

(

)

159

,

0

4

,

,

0

,

16

16

1

¼

=

¼

=

-

´

=

å

-

=

n

and

k

k

n

n

k

r

k

k

L

k

n

SHB

exc

e

e

oleObject940.bin

image783.wmf
(

)

(

)

(

)

4

,

,

0

,

ˆ

¼

=

´

=

k

k

wac

k

r

k

r

SHB

exc

SHB

exc

oleObject941.bin

image784.wmf
,

5

,

,

1

,

¼

=

k

a

WHT

k

oleObject942.bin

image785.wmf
(

)

(

)

4

,

1

,

ˆ

ˆ

4

1

¼

=

-

=

-

´

å

=

i

i

r

k

i

r

a

SHB

exc

SHB

exc

WHT

k

k

oleObject943.bin

image786.wmf
1

1

=

WHT

a

oleObject944.bin

oleObject85.bin

image787.wmf
(

)

WHT

n

e

oleObject945.bin

image788.wmf
(

)

16

k

n

e

oleObject946.bin

image789.wmf
(

)

(

)

(

)

k

n

a

n

n

k

WHT

k

k

k

WHT

-

-

=

å

=

16

4

1

16

e

e

e

oleObject947.bin

image790.wmf
(

)

n

k

16

e

oleObject948.bin

image791.wmf
(

)

j

res

J

ˆ

oleObject949.bin

oleObject86.bin

image792.wmf
(

)

(

)

(

)

(

)

(

)

(

)

4

,

1

80

80

1

ˆ

80

1

80

1

¼

=

´

<

£

´

-

´

+

´

-

=

+

´

-

j

and

j

n

j

for

j

n

j

n

j

res

WHT

WHT

J

e

e

oleObject950.bin

image793.wmf
(

)

(

)

n

n

eabs

WHT

e

=

oleObject951.bin

image794.wmf
(

)

n

WHT

e

oleObject952.bin

image795.wmf
(

)

n

eabs

oleObject953.bin

image796.wmf
(

)

(

)

(

)

1

2

1

-

´

+

´

=

n

envNE

n

eabs

n

envNE

a

a

oleObject954.bin

image82.wmf
1

ˆ

-

t

e

image797.wmf
1

a

oleObject955.bin

image798.wmf
2

a

oleObject956.bin

image799.wmf

i

Vf

oleObject957.bin

image800.wmf
1,4

i

=¼

oleObject958.bin

image801.wmf
å

=

´

=

4

,..

1

25

.

0

i

i

Vf

Vf

oleObject959.bin

oleObject87.bin

image802.wmf
Vf

Vf

´

-

=

49875

.

0

09875

.

1

oleObject960.bin

image803.wmf
1

a

oleObject961.bin

image804.wmf
2

a

oleObject962.bin

image805.wmf
Vf

-

=

1

1

a

oleObject963.bin

image806.wmf
Vf

-

=

2

a

oleObject964.bin

image83.wmf
1

-

t

image807.wmf
1

a

oleObject965.bin

image808.wmf
2

a

oleObject966.bin

image809.wmf
2

.

0

1

=

a

oleObject967.bin

image810.wmf
8

.

0

2

-

=

a

oleObject968.bin

image811.wmf
0

=

n

oleObject969.bin

oleObject88.bin

image812.wmf
)

1

(

-

n

envNE

oleObject970.bin

image813.wmf
approx

prev

envNE

,

oleObject971.bin

image814.wmf
å

=

=

19

0

,

)

(

20

1

n

approx

prev

n

eabs

envNE

oleObject972.bin

image815.wmf
1

a

oleObject973.bin

image816.wmf
2

a

oleObject974.bin

oleObject5.bin

image84.wmf
)

(

ˆ

i

z

k

image817.wmf
05

.

0

1

=

a

oleObject975.bin

image818.wmf
96

.

0

2

-

=

a

oleObject976.bin

image819.wmf
2

.

0

1

=

a

oleObject977.bin

image820.wmf
8

.

0

2

-

=

a

oleObject978.bin

image821.wmf
35

.

0

>

Vf

oleObject979.bin

oleObject89.bin

image822.wmf
01

.

0

1

=

a

oleObject980.bin

image823.wmf
99

.

0

2

-

=

a

oleObject981.bin

image824.wmf
2

.

0

<

Vf

oleObject982.bin

image825.wmf
(

)

n

rnd

oleObject983.bin

image826.wmf
(

)

n

envNE

oleObject984.bin

image85.wmf
)

2

(

ˆ

)

1

(

ˆ

)

1

(

ˆ

1

-

+

-

=

-

-

i

z

i

t

i

z

k

i

k

k

A

image827.wmf
(

)

n

rn

wht

oleObject985.bin

image828.wmf
(

)

(

)

(

)

n

envNE

n

rnd

n

rn

wht

´

=

oleObject986.bin

image829.wmf
68

.

0

=

m

oleObject987.bin

image830.wmf
(

)

(

)

(

)

1

-

´

+

=

n

rn

n

rn

n

rn

wht

wht

wht

m

oleObject988.bin

image831.wmf
(

)

n

rn

wht

oleObject989.bin

oleObject90.bin

image832.wmf
(

)

n

WHT

e

oleObject990.bin

image833.wmf
(

)

(

)

n

rn

scale

n

rn

wht

wht

´

=

oleObject991.bin

image834.wmf
(

)

(

)

å

å

=

=

=

319

0

2

319

0

2

)

(

)

(

n

wht

n

wht

n

rn

n

scale

e

oleObject992.bin

image835.wmf
m

oleObject993.bin

image836.wmf
(

)

(

)

(

)

1

1

-

´

-

=

n

rn

n

rn

n

wht

wht

m

e

oleObject994.bin

oleObject91.bin

image837.wmf
(

)

(

)

(

)

(

)

(

)

n

rn

i

n

i

n

wht

wht

´

+

´

=

2

1

1

a

e

a

e

oleObject995.bin

image838.wmf
n

oleObject996.bin

image839.wmf
i

oleObject997.bin

image840.wmf
1

a

oleObject998.bin

image841.wmf
2

a

oleObject999.bin

oleObject92.bin

image842.wmf
(

)

(

)

4

/

1

1

i

Vf

i

=

a

oleObject1000.bin

image843.wmf
(

)

(

)

(

)

(

)

(

)

(

)

å

å

=

=

-

´

÷

ø

ö

ç

è

æ

=

319

0

2

319

0

2

2

1

n

wht

i

n

wht

n

rn

Vf

n

i

e

a

oleObject1001.bin

image844.wmf
1

a

image845.wmf
2

a

oleObject1002.bin

image846.wmf
(

)

(

)

(

)

formant

i

fac

Vf

i

´

-

´

=

15

.

0

0

.

1

1

a

oleObject1003.bin

image847.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

å

å

=

=

´

-

´

-

´

÷

ø

ö

ç

è

æ

=

319

0

2

319

0

2

2

15

.

0

0

.

1

0

.

1

)

(

n

wht

formant

i

n

wht

n

rn

fac

Vf

n

i

e

a

image86.wmf
)

(

i

t

k

oleObject1004.bin

image848.wmf
formant

fac

oleObject1005.bin

image849.wmf
)

(

1

n

e

oleObject1006.bin

image850.wmf
(

)

n

1

e

oleObject1007.bin

image851.wmf
11

,

1

,

~

¼

=

k

a

SHB

k

oleObject1008.bin

image852.wmf
(

)

n

s

e

oleObject93.bin

oleObject1009.bin

image853.wmf
(

)

(

)

(

)

k

n

s

a

n

n

s

SHB

k

k

-

´

-

=

å

=

e

e

e

~

11

1

1

oleObject1010.bin

image854.wmf
(

)

n

1

e

oleObject1011.bin

image855.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

4

,

,

1

80

1

~

80

1

80

1

11

1

1

K

=

-

´

-

+

´

-

´

-

+

=

´

-

+

å

=

j

for

k

j

n

s

j

a

j

n

j

n

s

SHB

k

k

e

e

e

oleObject1012.bin

image856.wmf
gs

pitch

oleObject1013.bin

image857.wmf
5

4

,

,...,

1

),

(

_

or

N

N

j

j

buf

pitch

=

=

image87.wmf
)

(

i

p

k

oleObject1014.bin

image858.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

=

=

=

å

å

=

=

5

,

)

(

_

*

2

.

0

4

,

)

(

_

*

25

.

0

5

1

4

1

N

j

buf

pitch

N

j

buf

pitch

pitch

j

j

gs

oleObject1015.bin

oleObject1016.bin

image859.wmf
4

,

3

,

2

,

1

),

(

*

5

.

0

)

(

*

)

(

/

)

(

*

5

.

0

)

(

_

=

+

=

j

j

gs

j

gs

j

Ener

j

Ener

j

gs

q

prev

q

prev

q

oleObject1017.bin

image860.wmf
4

,

3

,

2

,

1

,

)

0125

.

0

*

)

80

*

(

(

)

(

2

79

0

=

+

=

å

=

j

n

j

s

j

Ener

n

e

oleObject1018.bin

image861.wmf
4

,

3

,

2

,

1

),

(

=

j

j

Ener

oleObject1019.bin

oleObject94.bin

image862.wmf
4

,

3

,

2

,

1

),

(

=

j

j

Ener

prev

oleObject1020.bin

image863.wmf
4

,

3

,

2

,

1

),

(

_

=

j

j

gs

prev

q

oleObject1021.bin

image864.wmf
(

)

(

)

å

å

-

+

=

-

+

+

=

=

1

10

0

2

1

)

10

(

2

10

2

)

(

)

(

AD

L_SHB_LAHE

n

AD

L_SHB_LAHE

*

AD

L_SHB_LAHE

n

n

b

s

n

b

s

SclF

e

e

oleObject1022.bin

image865.wmf
AD

L_SHB_LAHE

oleObject1023.bin

image866.wmf
0

Vf

oleObject1024.bin

image6.wmf
2

,

1

,

=

i

I

i

image88.wmf
)

(

ˆ

)

(

)

(

'

1

i

z

i

ρ

i

p

k

k

-

=

image867.wmf
ï

î

ï

í

ì

+

<

£

´

-

+

-

´

<

£

´

=

10

_

_

_

_

),

(

)

10

19

10

29

(

_

_

0

),

(

)

(

LAHEAD

SHB

L

n

LAHEAD

SHB

L

n

b

s

i

i

SclF

LAHEAD

SHB

L

n

n

b

s

SclF

n

b

s

e

e

e

oleObject1025.bin

image868.wmf
å

-

´

+

´

=

´

=

1

80

)

1

(

80

2

)

(

0125

.

0

)

(

j

j

i

i

b

s

j

Et

e

oleObject1026.bin

image869.wmf
3

,

2

,

1

,

0

=

j

oleObject1027.bin

image870.wmf
))

4

/

(

(

)

(

k

floor

gs

k

gs

q

temp

=

oleObject1028.bin

image871.wmf
15

,...,

1

,

0

=

k

oleObject1029.bin

oleObject95.bin

image872.wmf
[

]

otherwise

)

(

)

1

(

)

1

(

)

(

)

(

if

)

(

)

(

/

)

1

(

)

1

(

5

.

0

)

(

int

k

gs

k

gs

k

Et

k

gs

k

Et

k

gs

k

Et

k

gs

k

Et

k

gs

temp

temp

temp

temp

temp

-

´

-

>

´

+

-

´

-

´

=

oleObject1030.bin

image873.wmf
)

(

int

k

gs

oleObject1031.bin

image874.wmf
)

(

k

gs

q

oleObject1032.bin

image875.wmf
(

)

(

)

(

)

(

)

(

)

359

,

0

for

20

80

1

20

1

4

1

¼

=

-

´

´

-

-

´

=

-

å

=

n

n

s

j

n

swin

j

gs

n

s

q

j

scaled

e

e

oleObject1033.bin

image876.wmf
(

)

(

)

20

20

-

´

=

-

n

s

gf

n

syn

scaled

scaled

e

oleObject1034.bin

oleObject96.bin

image877.wmf
scaled

syn

oleObject1035.bin

image878.wmf
scaled

syn

oleObject1036.bin

image879.wmf
÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

-

-

-

-

-

-

1

1

,

1

1

1

,

2

1

1

,

1

1

1

,

1

1

1

,

0

1

1

,

0

1

,

1

1

1

z

b

z

b

z

b

z

b

z

b

z

b

H

I

oleObject1037.bin

image880.wmf
÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

-

-

-

-

-

-

1

2

,

1

1

2

,

2

1

2

,

1

1

2

,

1

1

2

,

0

1

2

,

0

2

,

1

1

1

z

b

z

b

z

b

z

b

z

b

z

b

H

I

oleObject1038.bin

image881.wmf
transition

syn

oleObject1039.bin

oleObject97.bin

image882.wmf
scaled

syn

oleObject1040.bin

image883.wmf
overlap

syn

oleObject1041.bin

image884.wmf
1

,

I

H

oleObject1042.bin

image885.wmf
2

,

I

H

oleObject1043.bin

image886.wmf
k

overlap

syn

32

,

oleObject1044.bin

image89.wmf
)

(

i

ρ

image887.wmf
transition

syn

oleObject1045.bin

image888.wmf
k

overlap

syn

32

,

oleObject1046.bin

image889.wmf
mirror

prev

syn

,

oleObject1047.bin

image890.wmf
prev

syn

oleObject1048.bin

image891.wmf
148

,

,

1

)

641

(

)

(

,

K

=

-

=

n

for

n

syn

n

syn

prev

mirror

prev

oleObject1049.bin

oleObject98.bin

image892.wmf
k

overlap

syn

32

,

oleObject1050.bin

image893.wmf
mirror

prev

syn

,

oleObject1051.bin

image894.wmf
transition

syn

oleObject1052.bin

image895.wmf
transition

win

oleObject1053.bin

image896.wmf
ï

î

ï

í

ì

=

=

+

-

=

148

,...,

41

,

40

,...,

1

,

*

)

(

)

(

*

)

41

(

)

(

,

)

(

,

32

,

n

syn

n

syn

n

win

n

syn

n

win

n

syn

mirror

prev

n

mirror

prev

transition

k

overlap

transition

transition

oleObject1054.bin

image90.wmf
)]

1

2

/

(

ˆ

),...,

1

(

ˆ

),

0

(

ˆ

[

)

(

ˆ

1

1

1

'

1

-

=

-

-

-

-

M

z

z

z

i

z

t

k

t

k

t

k

k

image897.wmf
)

(

n

win

transition

oleObject1055.bin

image898.wmf
)

(

n

win

transition

oleObject1056.bin

image899.wmf
)

(

n

win

transition

oleObject1057.bin

image900.wmf
)

(

n

win

transition

oleObject1058.bin

image901.wmf
0

_

>

flag

tec

oleObject1059.bin

oleObject99.bin

image902.wmf
1

_

=

flag

tfa

oleObject1060.bin

image903.wmf
0

_

>

flag

tec

oleObject1061.bin

image904.wmf
)

(

,

i

env

dec

l

oleObject1062.bin

image905.wmf
15

,...,

0

for

)

(

3

1

)

(

2

0

,

,

=

=

å

=

i

i

env

i

env

m

m

dec

ls

dec

l

oleObject1063.bin

image906.wmf
(

)

15

,...,

0

for

)

,

(

ˆ

1

1

log

10

)

(

,

,

2

,

,

10

,

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

-

=

å

=

i

i

k

S

k

k

i

env

m

u

m

l

k

k

k

outC

m

l

m

u

m

dec

ls

oleObject1064.bin

image91.wmf
)

(

ˆ

i

r

k

image907.wmf
)

,

(

ˆ

i

k

S

outC

oleObject1065.bin

image908.wmf
15

,...,

0

for

2

_

10

1

_

10

)

(

)

(

1

.

0

)

(

1

.

0

,

,

,

,

=

ï

î

ï

í

ì

=

=

=

i

flag

tec

flag

tec

i

env

i

env

i

env

dec

h

dec

sm

l

dec

l

oleObject1066.bin

image909.wmf
15

,...,

0

for

)

(

)

(

19205

.

1

)

(

5

0

,

,

,

=

-

×

´

=

å

=

i

j

i

env

j

sc

i

env

j

dec

l

dec

sm

l

oleObject1067.bin

image910.wmf
15

,...,

0

for

)

(

16

1

)

(

)

(

15

0

,

,

=

=

å

=

i

j

env

i

env

i

g

j

dec

h

dec

h

tec

oleObject1068.bin

image911.wmf
lower

tec

g

,

oleObject1069.bin

oleObject100.bin

image912.wmf
15

,...,

0

for

)

(

)

(

)

(

,

,

,

=

î

í

ì

<

=

i

otherwise

i

g

g

i

g

g

i

g

tec

lower

tec

tec

lower

tec

lim

tec

oleObject1070.bin

image913.wmf
lower

tec

g

,

oleObject1071.bin

image914.wmf
÷

÷

ø

ö

ç

ç

è

æ

×

=

max

enr

inv

g

lower

tec

_

_

1

,

1

.

0

min

5

.

0

,

oleObject1072.bin

image915.wmf
(

)

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

×

=

å

=

=

-

15

0

15

0

6

)

(

)

(

16

1

max

,

10

max

_

_

i

shb

shb

i

i

enr

i

enr

max

enr

inv

L

oleObject1073.bin

image916.wmf
15

,...,

0

for

)

(

)

(

1

_

)

1

(

_

2

=

=

å

-

×

+

×

=

i

t

shb

i

enr

tec

tec

subfr

l

i

subfr

l

i

t

shb

oleObject1074.bin

oleObject6.bin

image92.wmf
)

2

(

ˆ

)

1

(

ˆ

)

1

(

ˆ

1

-

+

-

=

-

-

i

r

i

t

i

r

k

i

k

k

A

image917.wmf
15

,...,

0

for

)

(

)

(

)

(

,

,

=

=

i

i

enr

i

g

i

g

shb

tec

norm

tec

lim

oleObject1075.bin

image918.wmf
(

)

15

,...,

0

and

1

_

)

1

(

,

,

_

for

)

(

)

(

,

0

.

3

min

)

(

,

=

-

×

+

×

=

×

=

¢

i

subfr

l

i

subfr

l

i

t

t

syn

i

g

t

syn

tec

tec

scaled

norm

tec

scaled

L

oleObject1076.bin

image919.wmf
tec

subfr

l

_

oleObject1077.bin

image920.wmf
R

25

.

1

oleObject1078.bin

image921.wmf
1

_

=

flag

tfa

oleObject1079.bin

oleObject101.bin

image922.wmf
)

(

i

g

tfa

oleObject1080.bin

image923.wmf
15

,...,

0

for

)

(

16

)

(

)

(

15

0

=

×

=

å

=

i

i

enr

i

enr

i

g

shb

i

shb

tfa

oleObject1081.bin

image924.wmf
15

,...,

0

and

1

_

)

1

(

,

,

_

for

)

(

)

(

)

(

=

-

×

+

×

=

×

=

¢

i

subfr

l

i

subfr

l

i

t

t

syn

i

g

t

syn

tec

tec

scaled

tfa

scaled

L

oleObject1082.bin

image925.wmf
q

ratio

_

ˆ

j

oleObject1083.bin

image926.wmf
ratio

j

oleObject1084.bin

oleObject102.bin

image927.wmf
q

ratio

ratio

_

ˆ

2

j

j

=

oleObject1085.bin

image928.wmf
(

)

319

,...

0

,

ˆ

=

n

n

s

FB

e

oleObject1086.bin

image929.wmf
959

,...,

0

,

,

0

0

)

3

,

mod(

),

(

ˆ

*

0

.

3

)

(

48

_

=

î

í

ì

=

=

n

for

oterwise

n

if

n

s

n

s

FB

FB

e

e

oleObject1087.bin

image930.wmf
(

)

959

,...

0

,

48

_

=

n

n

s

FB

e

oleObject1088.bin

image931.wmf
(

)

959

,...

0

,

48

_

=

¢

n

n

s

FB

e

oleObject1089.bin

oleObject103.bin

image932.wmf
48

_

FB

j

oleObject1090.bin

image933.wmf
å

=

=

¢

¢

=

959

0

48

_

48

_

48

_

959

,...,

0

,

)

(

*

)

(

n

FB

FB

FB

n

n

s

n

s

e

e

j

oleObject1091.bin

image934.wmf
syn

j

oleObject1092.bin

image935.wmf
(

)

319

,...

0

,

ˆ

=

n

n

s

FB

e

oleObject1093.bin

image936.wmf
å

=

=

319

0

)

(

ˆ

*

)

(

ˆ

n

FB

FB

syn

n

s

n

s

e

e

j

oleObject1094.bin

image93.wmf
)

(

i

t

k

image937.wmf
959

,...,

0

,

*

*

)

(

)

(

48

_

48

_

=

¢

=

n

n

s

n

s

FB

syn

ratio

FB

FB

j

j

j

e

e

oleObject1095.bin

image938.wmf
{

}

2

1

,

Ierr

env

idx

idx

oleObject1096.bin

image939.wmf
ë

û

(

)

(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

=

+

=

+

+

=

=

3

1

ˆ

1

ˆ

1

2

1

ˆ

0

ˆ

)

0

(

ˆ

2

,

0

)

2

/

(

ˆ

)

(

ˆ

1

2

1

1

2

1

_

j

for

nv

e

err

I

j

for

nv

e

nv

e

err

I

j

for

j

nv

e

j

f

SHB

rms

oleObject1097.bin

image940.wmf
{

}

32

31

22

21

1

,

,

,

,

Ierr

Ierr

err

err

env

idx

idx

idx

idx

idx

oleObject1098.bin

image941.wmf
ë

û

ë

û

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

í

ì

=

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

-

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

-

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

-

=

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

+

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

+

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

-

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

-

+

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

-

=

+

=

13

2

2

1

ˆ

2

1

ˆ

2

1

ˆ

11

,

9

,

7

,

5

,

3

,

1

2

2

1

ˆ

2

1

ˆ

2

1

ˆ

2

1

ˆ

2

1

ˆ

12

,

10

,

8

,

6

,

4

,

2

,

0

)

2

/

(

ˆ

)

2

/

(

ˆ

)

(

ˆ

2

1

3

2

1

2

1

3

2

1

_

j

for

j

rr

e

j

nv

e

j

err

I

j

for

j

rr

e

j

nv

e

j

rr

e

j

nv

e

j

err

I

j

for

j

rr

e

j

nv

e

j

f

SHB

rms

oleObject1099.bin

oleObject104.bin

image942.wmf
(

)

)

(TRANSIENT

,

,

,

 OR j

TRANSIENT

Non

j

for

e

fac

f

f

j

f

mean

rms

SHB

rms

env

3

2

1

0

)

_

(

13

,...,

0

_

*

(j)

+

(j)

ˆ

10

)

(

ˆ

_

_

=

=

=

oleObject1100.bin

image943.wmf
î

í

ì

-

=

TRANSIENT

Non

for

TRANSIENT

for

e

fac

05

.

0

025

.

0

_

oleObject1101.bin

image944.wmf
(

)

j

t

rms

¢

oleObject1102.bin

image945.wmf
(

)

(

)

3

,

,

0

2

ˆ

K

=

=

¢

¢

j

j

t

j

t

rms

rms

oleObject1103.bin

image946.wmf
[

]

1

ˆ

-

¢

rms

t

oleObject1104.bin

image94.wmf
)

(

ˆ

i

f

k

image947.wmf
[

]

1

ˆ

-

¢

rms

t

oleObject1105.bin

image948.wmf
)

(

ˆ

_

_

k

X

base

exc

M

oleObject1106.bin

image949.wmf
)

(

ˆ

_

_

k

X

WB

exc

M

oleObject1107.bin

image950.wmf
(

)

FENV

SWB

j

f

E

FENV

SWB

j

env

FENV

_

ˆ

1

_

0

å

-

=

=

oleObject1108.bin

image951.wmf
(

)

å

=

=

245

230

2

_

_

16

/

ˆ

j

WB

exc

M

j

X

fenvL

oleObject1109.bin

oleObject105.bin

image952.wmf
(

)

240

/

ˆ

255

16

2

_

_

å

=

=

j

WB

exc

M

T

j

X

E

oleObject1110.bin

image953.wmf
75

>

FENV

E

oleObject1111.bin

image954.wmf
25

>

fenvL

oleObject1112.bin

image955.wmf
T

FENV

E

F

>

oleObject1113.bin

image956.wmf
T

FENV

E

E

and

nb

tilt

5

.

0

7

_

>

>

oleObject1114.bin

image95.wmf
)

(

ˆ

)

(

)

(

)

(

ˆ

'

i

r

i

m

i

p

i

f

k

k

k

+

+

=

image957.wmf
12

_

>

nb

tilt

oleObject1115.bin

image958.wmf
fractive

F

oleObject1116.bin

image959.wmf
fractive

F

oleObject1117.bin

image960.wmf
]

1

[

-

fractive

F

oleObject1118.bin

image961.wmf
1

,...,

0

)

(

ˆ

)

(

ˆ

_

_

_

_

_

-

=

=

off

cut

WB

exc

M

base

exc

M

K

k

k

X

k

X

oleObject1119.bin

oleObject106.bin

image962.wmf
off

cut

K

_

oleObject1120.bin

image963.wmf
246

_

=

off

cut

K

oleObject1121.bin

image964.wmf
320

_

=

off

cut

K

oleObject1122.bin

oleObject1123.bin

image965.wmf
319

,...,

0

)

(

)

(

ˆ

_

_

_

=

=

+

k

k

S

k

K

X

noise

off

cut

base

exc

M

oleObject1124.bin

image966.wmf
319

0

20101

.

12345

and

32768

)

(

,...,

k

k

S

seed

seed

seed

noise

=

+

=

=

l

l

l

image7.wmf
i

j

oleObject107.bin

oleObject1125.bin

image967.wmf
seed

l

oleObject1126.bin

image968.wmf
)

(

k

S

noise

oleObject1127.bin

image969.wmf
fractive

F

oleObject1128.bin

image970.wmf
)

1

(

ˆ

9

.

0

)

(

ˆ

)

015

.

0

8

.

0

(

*

)

(

ˆ

)

(

ˆ

)

(

ˆ

9

.

0

)

1

(

ˆ

)

015

.

0

8

.

0

(

*

)

(

ˆ

)

1

(

ˆ

+

<

×

+

=

<

+

×

+

=

+

j

f

j

f

if

j

j

f

j

f

j

f

j

f

if

j

j

f

j

f

env

env

env

env

env

env

env

env

oleObject1129.bin

image971.wmf
12

,...,

0

=

j

oleObject108.bin

oleObject1130.bin

image972.wmf
1

R

oleObject1131.bin

image973.wmf
)

1

(

),

(

ˆ

,

_

_

FD

dst

base

exc

M

St

k

k

X

=

oleObject1132.bin

image974.wmf
1

R

oleObject1133.bin

oleObject1134.bin

image975.wmf
k

oleObject1135.bin

image96.wmf
)

(

i

m

oleObject1136.bin

image976.wmf
(

)

(

)

(

)

(

)

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

+

+

+

-

+

-

=

3

.

0

,

1

)

1

(

ˆ

)

1

(

ˆ

2

)

1

(

ˆ

3

)

1

(

ˆ

max

,

_

_

,

_

_

,

_

_

,

_

_

1

e

e

FD

dst

base

exc

M

FD

dst

base

exc

M

FD

dst

base

exc

M

FD

dst

base

exc

M

St

X

St

X

St

X

St

X

R

oleObject1137.bin

image977.wmf
)

1

(

,

FD

dst

St

oleObject1138.bin

image978.wmf
2

R

oleObject1139.bin

image979.wmf
1

)

1

(

),

(

ˆ

,

_

_

-

=

FD

dst

base

exc

M

St

k

k

X

oleObject1140.bin

image980.wmf
2

R

oleObject109.bin

oleObject1141.bin

oleObject1142.bin

oleObject1143.bin

oleObject1144.bin

image981.wmf
(

)

(

)

(

)

(

)

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

-

+

-

+

+

+

=

5

,

2

)

1

(

ˆ

3

)

1

(

ˆ

1

)

1

(

ˆ

)

1

(

ˆ

min

,

_

_

,

_

_

,

_

_

,

_

_

2

e

e

FD

dst

base

exc

M

FD

dst

base

exc

M

FD

dst

base

exc

M

FD

dst

base

exc

M

St

X

St

X

St

X

St

X

R

oleObject1145.bin

image982.wmf
3

R

oleObject1146.bin

image983.wmf
)

2

(

),

(

ˆ

,

_

_

FD

dst

base

exc

M

St

k

k

X

=

oleObject1147.bin

image97.wmf
)]

1

2

/

(

ˆ

),...,

1

(

ˆ

),

0

(

ˆ

[

)

(

ˆ

'

-

=

M

r

r

r

i

r

t

k

t

k

t

k

k

image984.wmf
3

R

oleObject1148.bin

oleObject1149.bin

oleObject1150.bin

oleObject1151.bin

image985.wmf
(

)

(

)

(

)

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

è

æ

+

+

+

+

-

=

å

=

3

.

0

,

1

)

2

(

ˆ

)

2

(

ˆ

)

2

(

ˆ

max

,

_

_

,

_

_

4

1

,

_

_

3

e

e

FD

dst

base

exc

M

FD

dst

base

exc

M

j

FD

dst

base

exc

M

St

X

St

X

j

St

X

R

oleObject1152.bin

image986.wmf
)

2

(

,

FD

dst

St

oleObject1153.bin

image987.wmf
4

R

oleObject110.bin

oleObject1154.bin

image988.wmf
1

)

2

(

),

(

ˆ

,

_

_

-

=

FD

dst

base

exc

M

St

k

k

X

oleObject1155.bin

image989.wmf
4

R

oleObject1156.bin

oleObject1157.bin

oleObject1158.bin

oleObject1159.bin

image990.wmf
(

)

(

)

(

)

å

=

+

-

+

+

+

×

=

4

1

,

_

_

,

_

_

,

_

_

4

)

1

(

ˆ

1

)

2

(

ˆ

)

2

(

ˆ

5

.

0

j

FD

dst

base

exc

M

FD

dst

base

exc

M

FD

dst

base

exc

M

j

St

X

St

X

St

X

R

e

e

oleObject1160.bin

oleObject111.bin

image991.wmf
319

,...,

)

(

ˆ

)

(

ˆ

_

_

_

_

1

_

_

+

=

=

off

cut

off

cut

base

exc

M

ad

exc

M

K

K

k

k

X

k

X

oleObject1161.bin

image992.wmf
norm

L

oleObject1162.bin

image993.wmf
255

,...,

0

),

(

ˆ

_

_

=

k

k

X

WB

exc

M

oleObject1163.bin

image994.wmf
å

+

=

>

15

16

16

_

_

)

(

ˆ

8

)

(

23

j

j

k

WB

exc

M

sharp

k

X

j

A

oleObject1164.bin

image995.wmf
10

)

(

>

j

A

sharp

oleObject1165.bin

image98.wmf
)

(

ˆ

)

(

)

(

ˆ

'

i

z

i

m

i

f

k

k

+

=

image996.wmf
band

C

oleObject1166.bin

image997.wmf
15

,...,

0

=

j

oleObject1167.bin

image998.wmf
)

(

j

A

sharp

oleObject1168.bin

image999.wmf
15

,...,

0

)

(

ˆ

max

)

(

_

_

15

16

,...,

16

=

=

+

=

j

k

X

j

A

WB

exc

M

j

j

k

sharp

oleObject1169.bin

oleObject1170.bin

oleObject1171.bin

oleObject112.bin

image1000.wmf
ë

û

cur

norm

pre

norm

norm

L

L

L

_

_

5

.

0

5

.

0

+

=

oleObject1172.bin

image1001.wmf
cur

norm

L

_

oleObject1173.bin

image1002.wmf
ë

û

ë

û

ë

û

(

)

ç

ç

ç

è

æ

=

+

=

+

=

+

=

HARMONIC

mode

if

C

NORMAL

mode

if

C

TRANSIENT

mode

if

C

L

band

band

band

cur

norm

24

,

2

32

max

5

.

0

8

25

.

0

4

_

oleObject1174.bin

image1003.wmf
pre

norm

L

_

oleObject1175.bin

image1004.wmf
fractive

F

oleObject1176.bin

oleObject113.bin

image1005.wmf
norm

L

oleObject1177.bin

image1006.wmf
ë

û

ë

û

ë

û

ë

û

ë

û

ï

ï

ï

î

ï

ï

ï

í

ì

+

<

£

-

+

-

+

<

£

=

å

å

+

-

=

-

+

-

=

320

2

/

319

)

(

ˆ

2

/

319

)

(

ˆ

)

(

319

2

/

1

_

_

2

/

)

1

(

2

/

1

_

_

_

_

cut_off

norm

cut_off

K

L

k

j

ad

exc

M

norm

cut_off

cut_off

L

k

L

k

j

ad

exc

M

norm

rms

K

k

L

K

j

X

L

K

k

K

j

X

k

f

off

cut

norm

norm

norm

oleObject1178.bin

image1007.wmf
(

)

320

)

(

ˆ

sgn

)

(

_

_

1

_

_

+

<

£

=

off

cut

off

cut

ad

exc

M

K

k

K

k

X

k

sign

oleObject1179.bin

image1008.wmf
320

)

(

ˆ

)

(

_

_

1

_

_

+

<

£

=

off

cut

off

cut

ad

exc

M

K

k

K

k

X

k

amplitude

oleObject1180.bin

image1009.wmf
320

)

(

)

(

)

(

ˆ

_

_

_

2

_

_

+

<

£

-

=

off

cut

off

cut

norm

norm

rms

ad

exc

M

K

k

K

L

k

f

k

amplitude

k

X

oleObject1181.bin

oleObject7.bin

oleObject114.bin

image1010.wmf
0

)

(

ˆ

2

_

_

>

k

X

ad

exc

M

oleObject1182.bin

image1011.wmf
1

W

oleObject1183.bin

image1012.wmf
ï

î

ï

í

ì

×

>

×

-

×

=

otherwise

k

X

k

sign

k

X

if

k

X

W

k

sign

k

X

ad

exc

M

ad

exc

M

ad

exc

M

norm

exc

M

)

(

ˆ

)

(

0

)

(

ˆ

)

(

ˆ

)

2

.

1

(

)

(

)

(

ˆ

2

_

_

2

_

_

2

_

_

1

_

_

oleObject1184.bin

image1013.wmf
1

W

oleObject1185.bin

image1014.wmf
pre

cur

W

W

W

6

.

0

4

.

0

1

+

=

oleObject1186.bin

image99.emf
Safety-net

scheme

Predictive

scheme

Inter-frame

Prediction

Scheme

Selection (1bit)

2nd BC-TCVQ

Decoding

(30bits)

2nd Intra-frame

Prediction

1st BC-TCVQ

Decoding

(30bits)

1st Intra-frame

Prediction

Bitstream

t

ˆ

z

ˆ

t

ˆ

r

ˆ

z

ˆ

f

ˆ

m

p

image1015.wmf
25

.

0

=

cur

W

oleObject1187.bin

image1016.wmf
)

25

.

0

),

5

.

0

,

3

max(min(

norm

cur

L

W

=

oleObject1188.bin

oleObject1189.bin

image1017.wmf
(

)

(

)

(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

=

=

frame

NOISE

and

F

for

k

f

k

X

frame

TRANSIENT

for

k

f

k

X

k

X

fractive

norm

rms

norm

exc

M

norm

rms

ad

exc

M

exc

M

!

0

ˆ

ˆ

ˆ

_

_

_

_

1

_

_

_

oleObject1190.bin

image1018.wmf
319

,...,

_

_

+

=

off

cut

off

cut

K

K

k

oleObject1191.bin

image1019.wmf
rms

j

b

j

b

k

exc

M

swbcf

env

exc

M

SWB

SWB

M

swb

swb

k

X

j

N

j

f

k

X

k

X

e

+

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

=

å

-

+

=

1

)

1

(

)

(

2

_

_

_

)

(

ˆ

)

(

)

(

ˆ

)

(

ˆ

)

(

ˆ

image100.wmf
)

(

ˆ

2

i

z

oleObject1192.bin

image1020.wmf
)

1

(

)

(

_

_

+

+

<

£

+

j

b

K

k

j

b

K

swb

off

cut

swb

off

cut

oleObject1193.bin

image1021.wmf
3

,...,

0

=

j

oleObject1194.bin

image1022.wmf
HARMONIC

F

class

=

ˆ

oleObject1195.bin

image1023.wmf
å

+

+

+

=

<

15

16

16

_

_

_

_

)

(

ˆ

16

1

)

(

ˆ

j

K

j

K

k

exc

M

exc

M

off

cut

off

cut

k

X

k

X

oleObject1196.bin

image1024.wmf
15

16

16

_

_

+

+

£

£

+

j

K

k

j

K

off

cut

off

cut

oleObject115.bin

oleObject1197.bin

image1025.wmf
18

,...,

0

=

j

oleObject1198.bin

image1026.wmf
)

(

ˆ

2

.

0

)

(

ˆ

_

_

_

k

X

k

X

exc

M

temp

exc

M

×

=

oleObject1199.bin

image1027.wmf
)

(

ˆ

)

(

ˆ

_

_

_

k

X

k

X

exc

M

temp

exc

M

=

oleObject1200.bin

image1028.wmf
rms

L

j

b

K

j

b

K

k

temp

exc

M

swb

swb

temp

exc

M

temp

SWB

M

swb

off

cut

swb

off

cut

k

X

j

b

L

j

b

k

X

k

X

e

+

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

+

×

=

å

-

+

+

+

=

1

)

(

)

(

2

_

_

_

_

_

_

_

_

)

(

ˆ

)

(

)

(

)

(

ˆ

)

(

ˆ

oleObject1201.bin

image1029.wmf
1

=

L

image101.wmf
)

(

ˆ

2

i

r

oleObject1202.bin

image1030.wmf
2

=

L

oleObject1203.bin

image1031.wmf
)

1

(

)

(

_

_

+

+

<

£

+

j

b

K

k

j

b

K

swb

off

cut

swb

off

cut

oleObject1204.bin

image1032.wmf
j

oleObject1205.bin

image1033.wmf
L

oleObject1206.bin

image1034.wmf
j

oleObject116.bin

oleObject1207.bin

image1035.wmf
)

(

j

W

fenv

oleObject1208.bin

image1036.wmf
13

,...,

0

)

(

ˆ

)

1

(

)

(

ˆ

)

(

2

]

1

[

2

=

×

-

+

×

=

-

j

j

f

W

j

f

W

j

W

env

env

fenv

oleObject1209.bin

image1037.wmf
ï

ï

î

ï

ï

í

ì

>

×

=

-

-

otherwise

E

E

if

E

E

W

T

T

T

T

5

.

0

25

.

1

5

.

0

]

1

[

]

1

[

2

oleObject1210.bin

image1038.wmf
å

=

=

255

16

2

_

_

240

/

)

(

ˆ

j

WB

exc

M

T

j

X

E

oleObject1211.bin

image1039.wmf
]

1

[

-

T

E

oleObject117.bin

oleObject1212.bin

image1040.wmf
(

)

å

=

=

245

230

2

_

_

1

ˆ

16

1

j

WB

exc

M

fac

j

X

W

oleObject1213.bin

image1041.wmf
(

)

1

2

)

0

(

125

.

0

fac

fenv

fac

W

W

W

-

×

=

oleObject1214.bin

image1042.wmf
13

0

),

(

ˆ

)

(

3

<

£

=

j

j

f

j

W

env

fac

oleObject1215.bin

image1043.wmf
(

)

(

)

(

)

13

0

,

ˆ

1

)

(

_

)

(

4

<

£

-

+

×

=

j

j

f

j

W

j

fac

smooth

j

W

env

fenv

fac

oleObject1216.bin

image1044.wmf
)

(

_

j

fac

smooth

image102.wmf
)

(

ˆ

)

(

ˆ

)

(

)

(

)

(

ˆ

2

1

i

r

i

r

i

m

i

p

i

f

k

k

+

+

+

=

oleObject1217.bin

image1045.wmf
)

(

_

j

fac

smooth

oleObject1218.bin

image1046.wmf
)

(

ˆ

_

_

_

k

K

X

off

cut

temp

SWB

M

+

oleObject1219.bin

image1047.wmf
1

fac

W

oleObject1220.bin

image1048.wmf
1

fac

W

oleObject1221.bin

image1049.wmf
2

fac

W

oleObject118.bin

oleObject1222.bin

image1050.wmf
th

j

oleObject1223.bin

image1051.wmf
13

0

<

£

j

oleObject1224.bin

image1052.wmf
)

1

(

+

j

b

swb

oleObject1225.bin

image1053.wmf
)

(

ˆ

_

_

_

k

K

X

off

cut

temp

SWB

M

+

oleObject1226.bin

image1054.wmf
)

(

3

j

W

fac

oleObject119.bin

oleObject1227.bin

image1055.wmf
)

(

3

j

W

fac

oleObject1228.bin

image1056.wmf
)

(

4

j

W

fac

oleObject1229.bin

image1057.wmf
)

14

(

swb

b

oleObject1230.bin

image1058.wmf
)

(

ˆ

_

_

_

k

K

X

off

cut

temp

SWB

M

+

oleObject1231.bin

image1059.wmf
)

13

(

fenv

W

image8.wmf
i

k

image103.wmf
M

oleObject1232.bin

image1060.wmf
)

(

ˆ

_

_

k

X

temp

SWB

M

oleObject1233.bin

image1061.wmf
)

(

ˆ

_

k

X

SWB

SWB

M

oleObject1234.bin

image1062.wmf
320

_

_

+

<

£

off

cut

off

cut

K

k

K

oleObject1235.bin

image1063.wmf
)

(

ˆ

]

1

[

j

f

env

-

oleObject1236.bin

image1064.wmf
(

)

(

)

(

)

(

)

ï

î

ï

í

ì

=

-

+

=

=

-

13

,...,

8

3

/

8

2

ˆ

7

,...,

0

4

/

ˆ

ˆ

2

2

]

1

[

j

for

j

f

j

for

j

f

j

f

env

env

env

oleObject120.bin

oleObject1237.bin

image1065.wmf
4

0

)

(

ˆ

5

.

0

)

(

ˆ

_

_

_

_

<

£

+

×

=

+

k

k

K

X

k

K

X

off

cut

SHB

SWB

M

off

cut

SHB

SWB

M

oleObject1238.bin

image1066.wmf
(

)

640

0

,

ˆ

<

£

¢

n

n

s

SHB

oleObject1239.bin

image1067.wmf
(

)

(

)

4

0

ˆ

160

1

)

(

159

160

160

2

<

£

¢

=

å

+

=

j

n

s

j

E

j

j

n

SHB

SHB

oleObject1240.bin

image1068.wmf
4

0

)

(

ˆ

*

8

.

0

2

)

(

ˆ

*

8

.

0

)

(

)

(

)

(

ˆ

<

£

ï

î

ï

í

ì

¢

<

¢

<

=

j

otherwise

j

t

j

t

j

E

if

j

E

j

t

rms

rms

SHB

SHB

env

oleObject1241.bin

image1069.wmf
(

)

(

)

)

(

)

(

ˆ

*

ˆ

ˆ

j

E

j

t

n

s

n

s

SHB

env

SHB

SHB

¢

=

image104.wmf
)

(

ˆ

1

i

r

oleObject1242.bin

image1070.wmf
159

160

160

+

£

£

j

n

j

oleObject1243.bin

image1071.wmf
4

0

<

£

j

oleObject1244.bin

image1072.wmf
)

3

(

ˆ

env

t

oleObject1245.bin

image1073.wmf
)

3

(

ˆ

]

1

[

_

env

energy

td

t

E

=

-

oleObject1246.bin

image1074.wmf
fractive

F

oleObject121.bin

oleObject1247.bin

image1075.wmf
[

]

1

-

fractive

F

oleObject1248.bin

image1076.wmf
(

)

640

0

,

ˆ

<

£

n

n

s

ACELP

oleObject1249.bin

image1077.wmf
(

)

(

)

4

0

ˆ

160

1

159

160

160

2

]

[

<

£

=

å

+

=

j

n

s

E

j

j

n

ACELP

j

ACELP

oleObject1250.bin

image1078.wmf
]

[

]

1

[

8

.

1

j

ACELP

j

ACELP

E

E

×

>

+

oleObject1251.bin

image1079.wmf
50

]

1

[

>

+

j

ACELP

E

oleObject122.bin

oleObject1252.bin

image1080.wmf
î

í

ì

=

+

=

+

=

1

0

2

2

1

or

j

for

j

j

for

j

pos

oleObject1253.bin

image1081.wmf
2

>

pos

oleObject1254.bin

image1082.wmf
(

)

(

)

[

]

(

)

[

]

ï

ï

ï

î

ï

ï

ï

í

ì

+

×

<

£

×

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

-

+

÷

ø

ö

ç

è

æ

×

-

-

×

¢

×

<

£

×

¢

=

-

-

)

1

(

160

160

160

160

160

160

1

ˆ

160

0

ˆ

ˆ

2

_

1

_

1

_

1

_

pos

n

pos

for

pos

n

E

E

pos

n

n

s

pos

n

for

E

E

n

s

n

s

energy

td

energy

td

SHB

energy

td

energy

td

SHB

SHB

oleObject1255.bin

image1083.wmf
1

_

energy

td

E

oleObject1256.bin

image1084.wmf
2

_

energy

td

E

image105.wmf
)

(

ˆ

)

(

ˆ

)

(

)

(

ˆ

2

1

i

z

i

z

i

m

i

f

k

+

+

=

oleObject1257.bin

image1085.wmf
(

)

pos

n

n

s

SHB

×

<

£

¢

160

0

,

ˆ

oleObject1258.bin

image1086.wmf
(

)

)

1

(

160

160

,

ˆ

+

×

<

£

×

¢

pos

n

pos

n

s

SHB

oleObject1259.bin

image1087.wmf
[

]

1

_

-

energy

td

E

oleObject1260.bin

image1088.wmf
[

]

1

_

1

_

2

.

0

energy

td

energy

td

E

E

×

<

-

oleObject1261.bin

image1089.wmf
[

]

1

_

-

energy

td

E

oleObject123.bin

oleObject1262.bin

image1090.wmf
1

_

energy

td

E

oleObject1263.bin

image1091.wmf
[

]

(

)

(

)

å

=

-

¢

=

639

480

2

1

_

ˆ

160

1

n

SHB

energy

td

n

s

E

oleObject1264.bin

image1092.wmf
ind

k

ˆ

oleObject1265.bin

image1093.wmf
(

)

1

,

0

2

ˆ

)

ˆ

2

(

_

5

.

0

_

=

=

+

×

×

j

j

f

j

k

HB

codebook

WB

env

ind

oleObject1266.bin

image1094.wmf
)

(

_

k

HB

codebook

image106.wmf
i

oleObject1267.bin

image1095.wmf
(

)

)

1

(

ˆ

)

0

(

ˆ

5

.

0

ˆ

_

_

]

1

[

_

_

WB

env

WB

env

av

WB

env

f

f

f

+

=

-

oleObject1268.bin

image1096.wmf
BWE

WB

M

extl

last

_

!

_

=

oleObject1269.bin

image1097.wmf
1

,

0

),

(

]

1

[

_

=

-

j

j

f

WB

env

oleObject1270.bin

image1098.wmf
]

191

,

128

[

oleObject1271.bin

image1099.wmf
]

255

,

192

[

oleObject124.bin

oleObject1272.bin

image1100.wmf
256

0

),

(

ˆ

_

_

<

£

k

k

X

dec

core

M

oleObject1273.bin

image1101.wmf
(

)

(

)

å

=

=

191

128

2

_

_

ˆ

k

dec

core

M

L

k

X

E

oleObject1274.bin

image1102.wmf
(

)

å

=

=

223

192

2

_

_

_

)

(

ˆ

)

0

(

k

dec

core

M

WB

env

k

X

f

oleObject1275.bin

image1103.wmf
(

)

å

=

=

255

224

2

_

_

_

)

(

ˆ

)

1

(

k

dec

core

M

WB

env

k

X

f

oleObject1276.bin

image1104.wmf
å

=

=

3

0

)

(

_

_

j

j

factor

voice

fac

voice

oleObject125.bin

oleObject1277.bin

image1105.wmf
å

=

=

3

0

)

(

j

sum

j

pitch

T

oleObject1278.bin

image1106.wmf
(

)

)

1

(

),

0

(

max

16

_

_

WB

env

WB

env

L

f

f

E

×

<

oleObject1279.bin

image1107.wmf
308

<

sum

T

oleObject1280.bin

image1108.wmf
var

_

ener

F

oleObject1281.bin

image1109.wmf
var

_

ener

F

oleObject8.bin

image107.wmf
)

(

ˆ

1

i

z

oleObject1282.bin

image1110.wmf
1

a

oleObject1283.bin

image1111.wmf
CT

oleObject1284.bin

image1112.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

=

×

>

÷

÷

ø

ö

ç

ç

è

æ

×

×

>

÷

÷

ø

ö

ç

ç

è

æ

×

=

UNVOICED

CT

AND

f

f

if

esle

f

f

f

f

if

f

f

WB

env

WB

env

WB

env

WB

env

WB

env

WB

env

WB

env

WB

env

!

)

0

(

2

)

1

(

1

.

0

,

)

1

(

)

0

(

2

max

)

1

(

2

)

0

(

1

.

0

,

)

0

(

)

1

(

2

max

_

_

_

_

_

_

_

_

1

a

oleObject1285.bin

image1113.wmf
ï

î

ï

í

ì

×

>

×

=

otherwise

f

f

 f

if

f

f

env_WB

env_WB

env_WB

WB

env

ad

WB

env

(0)

(1)

2

(0)

)

0

(

)

0

(

_

1

1

_

_

a

oleObject1286.bin

image1114.wmf
ï

î

ï

í

ì

=

×

>

×

=

otherwise

f

UNVOICED

 AND CT

f

if f

f

f

WB

env

WB

env

WB

env

WB

env

ad

WB

env

)

1

(

!

)

0

(

2

)

1

(

)

1

(

)

1

(

_

_

_

_

1

1

_

_

a

oleObject126.bin

oleObject1287.bin

image1115.wmf
1

,

0

),

(

1

_

_

=

j

j

f

ad

WB

env

oleObject1288.bin

image1116.wmf
64

/

))

1

(

)

0

(

(

)

0

(

1

_

_

1

_

_

2

_

_

ad

WB

env

ad

WB

env

ad

WB

env

f

f

f

+

=

oleObject1289.bin

image1117.wmf
AUDIO

CT

=

!

oleObject1290.bin

image1118.wmf
UNVOICED

CT

=

!

oleObject1291.bin

image1119.wmf
0

var

_

=

ener

F

image108.emf
Safety-net

scheme

Predictive

scheme

Inter-frame

Prediction

Scheme

Selection (1bit)

2nd BC-TCVQ

Decoding

(30bits)

2nd Intra-frame

Prediction

4th SVQ

Decoding

(9bits)

3rd SVQ

Decoding

(9bits)

1st BC-TCVQ

Decoding

(30bits)

1st Intra-frame

Decoding

Bitstream

t

ˆ

1

ˆ

z

2

ˆ

z

z

ˆ

z

ˆ

f

ˆ

m

r

ˆ

2

ˆ

r

1

ˆ

r

t

ˆ

p

oleObject1292.bin

image1120.wmf
)

0

(

5

.

1

)

0

(

2

_

_

3

_

_

ad

WB

env

ad

WB

env

f

f

×

=

oleObject1293.bin

image1121.wmf
)

0

(

)

0

(

2

_

_

3

_

_

ad

WB

env

ad

WB

env

f

f

=

oleObject1294.bin

image1122.wmf
TRANSITION

CT

=

!

oleObject1295.bin

image1123.wmf
AUDIO

CT

=

!

oleObject1296.bin

image1124.wmf
UNVOICED

CT

=

!

image109.wmf
CL

T

oleObject1297.bin

image1125.wmf
)

0

(

40

3

_

_

ad

WB

env

L

f

E

×

>

oleObject1298.bin

image1126.wmf
9

.

0

1

>

a

oleObject1299.bin

image1127.wmf
0

=

adj

F

oleObject1300.bin

image1128.wmf
(

)

)

0

(

4

),

0

(

025

.

0

min

)

0

(

3

_

_

3

_

_

4

_

_

ad

WB

env

ad

WB

env

T

ad

WB

env

f

f

E

f

×

×

=

oleObject1301.bin

image1129.wmf
ï

î

ï

í

ì

>

+

=

-

-

otherwise

f

f

f

if

f

f

f

ad

WB

env

WB

env

ad

WB

env

WB

env

ad

WB

env

ad

WB

env

)

0

(

)

0

(

)

0

(

)

0

(

7

.

0

)

0

(

3

.

0

)

0

(

4

_

_

]

1

[

_

4

_

_

]

1

[

_

4

_

_

5

_

_

oleObject127.bin

oleObject1302.bin

image1130.wmf
adj

F

oleObject1303.bin

image1131.wmf
)

0

(

)

0

(

]

1

[

_

3

_

_

]

1

[

-

-

>

=

WB

env

ad

WB

env

f

 AND f

CT

CT

oleObject1304.bin

image1132.wmf
adj

F

oleObject1305.bin

image1133.wmf
1

,...,

0

),

(

]

1

[

_

=

-

j

j

f

WB

env

oleObject1306.bin

image1134.wmf
)

0

(

)

0

(

3

_

_

5

_

_

ad

WB

env

ad

WB

env

f

f

=

image110.wmf
p

g

ˆ

oleObject1307.bin

image1135.wmf
)

0

(

)

_

77

,

5

.

0

max(

,

5

.

1

min(

64

5

_

_

ad

WB

env

sum

L

f

T

fac

voice

E

×

×

×

>

oleObject1308.bin

image1136.wmf
L

ad

WB

env

ad

WB

env

E

f

f

<

×

×

)

0

(

)

0

(

3

5

_

_

5

_

_

oleObject1309.bin

image1137.wmf
UNVOICED

CT

=

-

!

]

1

[

oleObject1310.bin

image1138.wmf
var

_

env

F

oleObject1311.bin

image1139.wmf
(

)

)

0

(

4

),

0

(

015625

.

0

min

)

0

(

5

_

_

5

_

_

6

_

_

ad

WB

env

ad

WB

env

T

ad

WB

env

f

f

E

f

×

×

=

oleObject128.bin

oleObject1312.bin

image1140.wmf
ï

î

ï

í

ì

>

+

=

-

-

otherwise

f

f

f

if

f

f

f

ad

WB

env

WB

env

ad

WB

env

WB

env

ad

WB

env

ad

WB

env

)

0

(

)

0

(

)

0

(

)

0

(

7

.

0

)

0

(

3

.

0

)

0

(

6

_

_

]

1

[

_

6

_

_

]

1

[

_

6

_

_

7

_

_

oleObject1313.bin

image1141.wmf
)

0

(

)

0

(

5

_

_

7

_

_

ad

WB

env

ad

WB

env

f

f

=

oleObject1314.bin

image1142.wmf
ï

î

ï

í

ì

=

=

×

=

-

otherwise

f

UNVOICED

or CT

UNVOICED

if CT

f

f

ad

WB

env

ad

WB

env

ad

WB

env

)

0

(

)

0

(

5

.

0

)

0

(

7

_

_

]

1

[

7

_

_

8

_

_

oleObject1315.bin

image1143.wmf
AUDIO

CT

=

!

oleObject1316.bin

image1144.wmf
ï

î

ï

í

ì

=

×

×

=

otherwise

f

AUDIO

CT

if

fac

voice

T

f

f

ad

WB

env

sum

ad

WB

env

ad

WB

env

)

0

(

!

)

0

.

1

,

_

2

.

1

max(

))

400

,

125

.

0

max(

,

2

min(

)

0

(

)

0

(

8

_

_

8

_

_

9

_

_

image111.wmf
(

)

n

v

oleObject1317.bin

image1145.wmf
]

1

[

_

_

9

_

_

)

0

(

8000

_

_

-

>

>

av

WB

env

ad

WB

env

f

 AND f

bitrate

core

last

oleObject1318.bin

image1146.wmf
]

1

[

_

_

9

_

_

10

_

_

ˆ

9

.

0

)

0

(

1

.

0

)

0

(

-

×

+

×

=

av

WB

env

ad

WB

env

ad

WB

env

f

f

f

oleObject1319.bin

image1147.wmf
)

0

(

)

0

(

9

_

_

10

_

_

ad

WB

env

ad

WB

env

f

f

=

oleObject1320.bin

image1148.wmf
BWE

WB

 if M

f

f

extl

last

ad

WB

env

ad

WB

env

_

!

)

0

(

5

.

0

)

0

(

_

10

_

_

11

_

_

=

×

=

oleObject1321.bin

image1149.wmf
)

0

(

)

0

(

10

_

_

11

_

_

ad

WB

env

ad

WB

env

f

f

=

oleObject129.bin

oleObject1322.bin

image1150.wmf
ï

î

ï

í

ì

=

×

=

e

 otherwis

f

F

 if

f

f

ad

WB

env

env

ad

WB

env

ad

WB

env

)

0

(

1

)

0

(

5

.

1

)

1

(

11

_

_

var

_

11

_

_

2

_

_

oleObject1323.bin

image1151.wmf
ï

î

ï

í

ì

=

×

=

e

 otherwis

f

F

 if

f

f

ad

WB

env

env

ad

WB

env

WB

env

)

0

(

1

)

0

(

75

.

0

)

0

(

ˆ

11

_

_

var

_

11

_

_

_

oleObject1324.bin

image1152.wmf
ï

î

ï

í

ì

=

=

×

=

-

otherwise

f

UNVOICED

CT

OR

UNVOICED

CT

if

f

f

ad

WB

env

ad

WB

env

WB

env

)

1

(

)

1

(

5

.

0

)

1

(

ˆ

2

_

_

]

1

[

2

_

_

_

oleObject1325.bin

image1153.wmf
1

,

0

),

(

ˆ

_

=

j

j

f

WB

env

oleObject1326.bin

image1154.wmf
(

)

k

X

WB

base

exc

M

_

_

_

ˆ

image112.wmf
)

3

(

=

Q

Q

oleObject1327.bin

image1155.wmf
)

(

ˆ

_

_

k

X

dec

core

M

oleObject1328.bin

image1156.wmf
CT

oleObject1329.bin

image1157.wmf
type

core

F

_

oleObject1330.bin

image1158.wmf
239

,...,

0

)

(

ˆ

)

(

ˆ

_

_

_

_

_

=

=

k

k

X

k

X

dec

core

M

WB

base

exc

M

oleObject1331.bin

image1159.wmf
79

,...,

0

)

(

)

240

(

ˆ

_

_

_

=

=

+

k

k

S

k

X

noise

WB

base

exc

M

image9.wmf
2

,

1

,

'

=

i

I

i

oleObject130.bin

oleObject1332.bin

image1160.wmf
79

0

20101

.

12345

32768

)

(

,...,

 k

 and

k

S

seed

seed

seed

noise

=

+

=

=

l

l

l

oleObject1333.bin

image1161.wmf
seed

l

oleObject1334.bin

image1162.wmf
)

(

k

S

noise

oleObject1335.bin

image1163.wmf
norm

L

oleObject1336.bin

image1164.wmf
255

,...,

0

),

(

ˆ

_

_

=

k

k

X

dec

core

M

image113.wmf
M

oleObject1337.bin

image1165.wmf
(

)

(

)

å

+

=

>

×

15

16

16

_

_

ˆ

4

19

j

j

k

dec

core

M

sharp

k

X

j

A

oleObject1338.bin

image1166.wmf
10

)

(

>

j

A

sharp

oleObject1339.bin

image1167.wmf
band

C

oleObject1340.bin

image1168.wmf
15

,...,

0

=

j

oleObject1341.bin

image1169.wmf
)

(

j

A

sharp

oleObject131.bin

oleObject1342.bin

image1170.wmf
15

,...,

0

)

(

ˆ

max

)

(

_

_

15

16

,...,

16

=

=

+

=

j

k

X

j

A

dec

core

M

j

j

k

sharp

oleObject1343.bin

image1171.wmf
band

C

oleObject1344.bin

image1172.wmf
norm

L

oleObject1345.bin

image1173.wmf
ë

û

cur

norm

pre

norm

norm

L

L

L

_

_

5

.

0

5

.

0

+

=

oleObject1346.bin

image1174.wmf
cur

norm

L

_

image114.wmf
I

temp

_

oleObject1347.bin

image1175.wmf
ë

û

ë

û

(

)

ç

ç

è

æ

=

+

=

+

=

HARMONIC

mode

if

C

NORMAL

mode

if

C

L

band

band

cur

norm

24

,

2

32

max

5

.

0

8

_

oleObject1348.bin

image1176.wmf
pre

norm

L

_

oleObject1349.bin

image1177.wmf
ë

û

ë

û

ë

û

ë

û

ë

û

ï

ï

ï

î

ï

ï

ï

í

ì

<

£

-

-

<

£

=

å

å

-

=

-

+

-

=

320

2

/

319

)

(

ˆ

2

/

319

240

)

(

ˆ

)

(

319

2

/

_

_

_

2

/

)

1

(

2

/

_

_

_

_

k

L

j

X

L

k

j

X

k

f

norm

L

k

j

WB

base

exc

M

norm

L

k

L

k

j

WB

base

exc

M

norm

rms

norm

norm

norm

oleObject1350.bin

image1178.wmf
(

)

320

240

)

(

ˆ

sgn

)

(

_

_

_

<

£

=

k

k

X

k

sign

WB

base

exc

M

oleObject1351.bin

image1179.wmf
320

240

)

(

ˆ

)

(

_

_

_

<

£

=

k

k

X

k

amplitude

WB

base

exc

M

oleObject132.bin

oleObject1352.bin

image1180.wmf
320

240

)

(

45

.

0

)

(

)

(

ˆ

_

_

_

<

£

×

-

=

k

L

k

f

k

amplitude

k

X

norm

norm

rms

ad

exc

M

oleObject1353.bin

image1181.wmf
0

)

(

ˆ

_

_

>

k

X

ad

exc

M

oleObject1354.bin

image1182.wmf
1

W

oleObject1355.bin

image1183.wmf
ï

î

ï

í

ì

×

>

×

-

×

=

otherwise

k

X

k

sign

k

X

if

k

X

W

k

sign

k

X

ad

exc

M

ad

exc

M

ad

exc

M

norm

exc

M

)

(

ˆ

)

(

0

)

(

ˆ

)

(

ˆ

)

55

.

0

(

)

(

)

(

ˆ

_

_

_

_

_

_

1

_

_

oleObject1356.bin

image1184.wmf
25

.

0

1

=

W

oleObject133.bin

oleObject1357.bin

image1185.wmf
)

25

.

0

),

5

.

0

,

3

max(min(

1

norm

L

W

=

oleObject1358.bin

image1186.wmf
(

)

320

240

)

(

ˆ

ˆ

_

_

_

_

_

<

£

=

k

k

X

k

X

WB

base

exc

M

norm

exc

M

oleObject1359.bin

image1187.wmf
(

)

(

)

(

)

320

240

ˆ

ˆ

_

_

_

_

_

_

<

£

=

k

k

f

k

X

k

X

norm

rms

norm

exc

M

norm

WB

exc

M

oleObject1360.bin

image1188.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

ï

í

ì

+

<

£

<

£

+

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

+

÷

÷

ø

ö

ç

ç

è

æ

×

=

å

å

-

+

=

=

1

,

4

0

ˆ

)

(

ˆ

ˆ

80

ˆ

ˆ

1

1

2

_

_

_

_

_

319

240

2

_

_

_

_

_

_

_

_

j

b

k

j

b

j

otherwise

l

X

j

f

N

k

X

frame

HARMONIC

for

l

X

k

X

k

X

swb

swb

rms

j

b

j

b

l

norm

exc

M

swbc

norm

WB

exc

M

rms

l

nrom

WB

exc

M

norm

WB

exc

M

WB

exc

M

swb

swb

e

e

oleObject1361.bin

image1189.wmf
(

)

j

b

swb

image115.wmf
index

Jo

int_

oleObject1362.bin

image1190.wmf
)

(

j

f

N

swbc

oleObject1363.bin

image1191.wmf
4

0

<

£

j

oleObject1364.bin

image1192.wmf
(

)

(

)

320

240

ˆ

ˆ

_

_

_

_

_

<

£

=

k

for

k

X

k

X

norm

WB

exc

M

WB

exc

M

oleObject1365.bin

oleObject1366.bin

oleObject1367.bin

image1193.wmf
L

E

oleObject134.bin

oleObject1368.bin

image1194.wmf
a

oleObject1369.bin

image1195.wmf
b

oleObject1370.bin

image1196.wmf
type

core

F

_

oleObject1371.bin

image1197.wmf
(

)

(

)

(

)

(

)

ï

ï

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

ï

ï

í

ì

ï

ï

ï

þ

ï

ï

ï

ý

ü

=

=

ï

ï

ï

þ

ï

ï

ï

ý

ü

£

=

=

å

å

å

å

=

=

-

=

=

-

otherwise

otherwise

k

X

AUDIO

CT

if

k

X

F

if

otherwise

k

X

bitrate

AND

AUDIO

CT

if

k

X

E

k

dec

core

M

k

dec

core

M

type

core

k

dec

core

M

k

dec

core

M

L

239

160

_

_

239

80

)

1

(

_

_

_

239

80

_

_

239

160

)

1

(

_

_

ˆ

ˆ

1

ˆ

8000

!

ˆ

oleObject1372.bin

image1198.wmf
ï

ï

î

ï

ï

í

ì

ï

þ

ï

ý

ü

>

=

=

þ

ý

ü

£

=

-

-

otherwise

otherwise

f

f

AND

CT

CT

if

F

if

otherwise

bitrate

if

WB

env

WB

env

type

core

6

.

0

)

0

(

)

0

(

ˆ

4

.

0

1

5

.

0

8000

8

.

0

]

1

[

_

_

]

1

[

_

a

oleObject135.bin

oleObject1373.bin

image1199.wmf
ï

ï

î

ï

ï

í

ì

ï

þ

ï

ý

ü

>

=

=

þ

ý

ü

£

=

-

-

otherwise

otherwise

f

f

AND

CT

CT

if

F

if

otherwise

bitrate

if

WB

env

WB

env

type

core

67

.

1

)

0

(

)

0

(

ˆ

5

.

2

1

0

.

2

8000

25

.

1

]

1

[

_

_

]

1

[

_

b

oleObject1374.bin

image1200.wmf
0

_

=

type

core

F

oleObject1375.bin

image1201.wmf
]

1

[

]

1

[

2

5

.

0

-

-

×

<

<

×

L

L

L

E

E

E

oleObject1376.bin

image1202.wmf
1

]

1

[

_

=

-

ad

env

F

oleObject1377.bin

image1203.wmf
ad

env

F

_

oleObject136.bin

oleObject1378.bin

image1204.wmf
1

,

0

)

(

ˆ

5

.

0

)

(

ˆ

_

1

_

_

=

×

=

j

for

j

f

j

f

WB

env

ad

WB

env

oleObject1379.bin

image1205.wmf
]

1

[

-

L

E

oleObject1380.bin

image1206.wmf
]

1

[

_

-

ad

env

F

oleObject1381.bin

image1207.wmf
ad

env

F

_

oleObject1382.bin

image1208.wmf
1

,

0

)

(

ˆ

)

(

ˆ

_

1

_

_

=

=

j

for

j

f

j

f

WB

env

ad

WB

env

oleObject9.bin

oleObject137.bin

oleObject1383.bin

image1209.wmf
1

,

0

),

(

ˆ

)

(

_

]

1

[

_

=

=

-

j

j

f

j

f

WB

env

WB

env

oleObject1384.bin

image1210.wmf
)

0

(

ˆ

25

.

0

)

1

(

ˆ

1

_

_

1

_

_

ad

WB

env

ad

WB

env

f

f

×

<

oleObject1385.bin

image1211.wmf
8000

£

bitrate

oleObject1386.bin

image1212.wmf
BWE

WB

M

extl

last

_

_

=

oleObject1387.bin

image1213.wmf
AUDIO

CT

AND

AUDIO

CT

=

=

-

!

]

1

[

image116.wmf
Bit

I

temp

I

temp

+

<<

=

)

1

_

(

_

oleObject1388.bin

image1214.wmf
AUDIO

CT

AND

AUDIO

CT

=

=

-

!

]

1

[

oleObject1389.bin

image1215.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

ï

þ

ï

ý

ü

×

+

×

=

×

+

×

=

>

ï

þ

ï

ý

ü

×

+

×

=

×

+

×

=

-

-

-

-

-

otherwise

f

j

f

f

f

f

f

f

f

if

f

f

f

f

f

f

WB

env

ad

WB

env

ad

WB

env

WB

env

ad

WB

env

ad

WB

env

WB

env

ad

WB

env

WB

env

ad

WB

env

ad

WB

env

WB

env

ad

WB

env

ad

WB

env

)

1

(

4

.

0

)

(

ˆ

4

.

0

)

1

(

ˆ

)

0

(

5

.

0

)

0

(

ˆ

5

.

0

)

0

(

ˆ

)

0

(

)

0

(

ˆ

)

1

(

7

.

0

)

1

(

ˆ

3

.

0

)

1

(

ˆ

)

0

(

7

.

0

)

0

(

ˆ

3

.

0

)

0

(

ˆ

]

1

[

_

1

_

_

2

_

_

]

1

[

_

1

_

_

2

_

_

]

1

[

_

1

_

_

]

1

[

_

1

_

_

2

_

_

]

1

[

_

1

_

_

2

_

_

oleObject1390.bin

image1216.wmf
BWE

WB

M

extl

last

_

_

=

oleObject1391.bin

image1217.wmf
]

1

[

1

_

_

]

1

[

_

)

0

(

ˆ

)

0

(

-

-

×

<

×

L

ad

WB

env

L

WB

env

E

f

E

f

oleObject1392.bin

image1218.wmf
)

0

(

)

0

(

ˆ

]

1

[

_

1

_

_

-

>

WB

env

ad

WB

env

f

f

oleObject138.bin

oleObject1393.bin

image1219.wmf
AUDIO

CT

=

!

oleObject1394.bin

image1220.wmf
UNVOICED

CT

=

!

oleObject1395.bin

image1221.wmf
8000

£

bitrate

oleObject1396.bin

image1222.wmf
1

,

0

)

(

7

.

0

)

(

ˆ

3

.

0

)

(

ˆ

]

1

[

_

1

_

_

2

_

_

=

×

+

×

=

-

j

for

j

f

j

f

j

f

WB

env

ad

WB

env

ad

WB

env

oleObject1397.bin

image1223.wmf
]

1

[

-

L

E

image117.wmf
index

Jo

int_

oleObject1398.bin

image1224.wmf
L

E

oleObject1399.bin

image1225.wmf
BWE

WB

M

extl

last

_

_

=

oleObject1400.bin

image1226.wmf
]

1

[

]

1

[

-

-

×

<

<

×

L

L

L

E

E

E

b

a

oleObject1401.bin

image1227.wmf
UNVOICED

CT

=

-

!

]

1

[

oleObject1402.bin

image1228.wmf
1

,

0

)

(

5

.

0

)

(

ˆ

5

.

0

)

(

ˆ

]

1

[

_

1

_

_

2

_

_

=

×

+

×

=

-

j

for

j

f

j

f

j

f

WB

env

ad

WB

env

ad

WB

env

oleObject139.bin

oleObject1403.bin

image1229.wmf
1

,

0

)

(

ˆ

)

(

ˆ

1

_

_

2

_

_

=

=

j

for

j

f

j

f

ad

WB

env

ad

WB

env

oleObject1404.bin

image1230.wmf
ï

î

ï

í

ì

=

³

=

=

×

=

otherwise

j

f

j

f

mode

CNG

AND

CNG

first

AND

AUDIO

CT

if

j

f

att

j

f

ad

WB

env

ad

WB

env

ad

WB

env

ad

WB

env

)

(

ˆ

)

(

ˆ

2

_

1

_

!

)

(

ˆ

)

(

ˆ

2

_

_

3

_

_

2

_

_

3

_

_

oleObject1405.bin

image1231.wmf
att

oleObject1406.bin

image1232.wmf
]

2

_

[

_

-

=

mode

CNG

ATT

BWE

att

oleObject1407.bin

image1233.wmf
1

_

=

CNG

first

oleObject140.bin

oleObject1408.bin

image1234.wmf
2

_

³

mode

CNG

oleObject1409.bin

image1235.wmf
2

,

1

,

0

),

(

_

=

j

j

ATT

BWE

oleObject1410.bin

image1236.wmf
)

(

_

j

ATT

BWE

oleObject1411.bin

image1237.wmf
(

)

(

)

(

)

(

)

ï

î

ï

í

ì

<

£

×

=

<

£

×

=

320

280

)

1

(

ˆ

ˆ

ˆ

280

240

)

0

(

ˆ

ˆ

ˆ

3

_

_

_

_

_

3

_

_

_

_

_

k

for

f

k

X

k

X

k

for

f

k

X

k

X

ad

WB

env

WB

exc

M

HB

WB

M

ad

WB

env

WB

exc

M

HB

WB

M

oleObject1412.bin

oleObject1413.bin

image118.wmf
THR

I

temp

index

Jo

-

=

_

int_

image1238.wmf
(

)

)

1

(

ˆ

)

0

(

ˆ

5

.

0

)

0

(

ˆ

1

_

_

1

_

_

2

_

_

ad

WB

env

ad

WB

env

ad

WB

env

f

f

f

+

×

=

oleObject1414.bin

image1239.wmf
BWE

WB

M

extl

last

_

_

=

oleObject1415.bin

image1240.wmf
]

1

[

]

1

[

2

5

.

0

-

-

×

<

<

×

L

L

L

E

E

E

oleObject1416.bin

image1241.wmf
(

)

)

1

(

)

0

(

375

.

0

)

0

(

ˆ

25

.

0

)

0

(

ˆ

]

1

[

_

]

1

[

_

2

_

_

3

_

_

-

-

+

×

+

×

=

WB

env

WB

env

ad

WB

env

ad

WB

env

f

f

f

f

oleObject1417.bin

image1242.wmf
)

(

ˆ

)

0

(

ˆ

2

_

_

3

_

_

j

f

f

ad

WB

env

ad

WB

env

=

oleObject1418.bin

oleObject141.bin

image1243.wmf
(

)

(

)

320

240

)

0

(

ˆ

ˆ

ˆ

3

_

_

_

_

_

<

£

×

×

=

k

for

f

att

k

X

k

X

ad

WB

env

WB

exc

M

HB

WB

M

oleObject1419.bin

image1244.wmf
att

oleObject1420.bin

image1245.wmf
]

2

_

[

_

-

=

mode

CNG

ATT

BWE

att

oleObject1421.bin

oleObject1422.bin

oleObject1423.bin

oleObject1424.bin

image1246.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

î

ï

ï

í

ì

=

<

£

-

×

-

×

=

<

£

-

×

-

×

<

£

-

×

+

×

=

0

320

300

300

04

.

0

0

.

1

ˆ

1

320

280

280

02

.

0

0

.

1

ˆ

256

240

240

05

.

0

2

.

0

ˆ

ˆ

_

_

_

_

_

_

type

core

HB

WB

M

type

core

HB

WB

M

HB

WB

M

HB

WB

M

F

if

k

for

k

k

X

F

if

k

for

k

k

X

k

for

k

k

X

k

X

oleObject142.bin

oleObject1425.bin

image1247.wmf
(

)

1

,

0

,

]

1

[

_

=

-

j

j

f

WB

env

oleObject1426.bin

image1248.wmf
global

g

ˆ

oleObject1427.bin

image1249.wmf
4

0

),

(

ˆ

_

<

£

j

j

f

band

env

oleObject1428.bin

image1250.wmf
global

g

ˆ

oleObject1429.bin

image1251.wmf
4

0

),

(

ˆ

_

<

£

j

j

f

band

env

image119.wmf
2

1

/

int_

W

index

Jo

ind

=

oleObject1430.bin

image1252.wmf
min

en

pos

_

oleObject1431.bin

image1253.wmf
3

,...,

0

_

_

))

(

ˆ

min(

arg

=

=

j

band

env

min

en

j

f

pos

oleObject1432.bin

image1254.wmf
HIGHRATE

BW

SWB

M

if

extl

_

_

=

oleObject1433.bin

image1255.wmf
(

)

min

en

band

env

dec

non

env

pos

f

f

_

_

_

_

ˆ

5

.

0

ˆ

×

=

oleObject1434.bin

image1256.wmf
HIGHRATE

BW

FB

M

extl

_

_

=

image10.wmf
2

,

1

,

=

i

I

si

oleObject143.bin

oleObject1435.bin

image1257.wmf
att

I

ˆ

oleObject1436.bin

image1258.wmf
dec

non

env

f

_

_

ˆ

oleObject1437.bin

image1259.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

=

×

=

×

=

×

=

=

3

ˆ

ˆ

6

.

1

2

ˆ

ˆ

4

.

2

1

ˆ

ˆ

5

.

0

0

ˆ

ˆ

ˆ

_

_

_

_

_

_

_

_

_

_

att

dec

non

env

att

dec

non

env

att

dec

non

env

att

dec

non

env

dec

non

env

I

if

f

I

if

f

I

if

f

I

if

f

f

oleObject1438.bin

image1260.wmf
1

sv

N

oleObject1439.bin

image1261.wmf
tot

R

¢

image120.wmf
2

2

%

int_

W

index

Jo

ind

=

oleObject1440.bin

image1262.wmf
400

1

=

Thr

oleObject1441.bin

image1263.wmf
(

)

(

)

ï

î

ï

í

ì

-

>

¢

=

otherwise

pos

R

if

N

en

tot

sv

8

/

2

%

8

208

400

34

min

_

1

oleObject1442.bin

image1264.wmf
1

1

_

8

0

),

(

ˆ

sv

norm

M

N

k

k

X

×

<

£

oleObject1443.bin

image1265.wmf
1

1

_

8

0

),

(

ˆ

sv

norm

M

N

k

k

X

×

<

£

oleObject1444.bin

image1266.wmf
1

1

_

_

8

0

),

(

ˆ

)

(

ˆ

sv

norm

M

tmp

M

N

k

k

X

k

X

×

<

£

=

oleObject144.bin

oleObject1445.bin

image1267.wmf
)

(

b

nq

oleObject1446.bin

image1268.wmf
)

(

_

b

tmp

nq

oleObject1447.bin

image1269.wmf
1

0

),

(

)

(

_

sv

N

b

b

nq

b

tmp

nq

<

£

=

oleObject1448.bin

image1270.wmf
rem

R

oleObject1449.bin

image1271.wmf
2

ˆ

global

g

image121.wmf
1

ind

oleObject1450.bin

image1272.wmf
0625

.

0

*

ˆ

ˆ

2

2

global

global

g

g

=

oleObject1451.bin

image1273.wmf
2

sv

N

oleObject1452.bin

oleObject1453.bin

image1274.wmf
12

2

=

Thr

oleObject1454.bin

image1275.wmf
î

í

ì

>

=

otherwise

R

R

if

N

rem

rem

sv

12

/

396

33

2

oleObject1455.bin

oleObject145.bin

image1276.wmf
2

2

_

8

0

),

(

ˆ

sv

norm

M

N

k

k

X

×

<

£

oleObject1456.bin

image1277.wmf
i

oleObject1457.bin

image1278.wmf
b

oleObject1458.bin

image1279.wmf
1

0

sv

N

b

<

£

oleObject1459.bin

image1280.wmf
2

0

)

(

sv

N

i

AND

b

nq

<

=

oleObject1460.bin

image122.wmf
2

ind

image1281.wmf
8

0

),

*

8

(

ˆ

ˆ

)

8

(

ˆ

2

_

2

_

<

£

+

×

=

+

×

k

k

i

X

g

k

b

X

norm

M

global

tmp

M

oleObject1461.bin

image1282.wmf
)

(

2

i

nq

oleObject1462.bin

image1283.wmf
)

(

)

(

)

(

2

i

nq

b

nq

b

nq

+

=

oleObject1463.bin

image1284.wmf
i

oleObject1464.bin

image1285.wmf
1

b

oleObject1465.bin

oleObject146.bin

image1286.wmf
2

sv

N

i

<

oleObject1466.bin

image1287.wmf
0

)!

(

_

1

=

b

tmp

nq

oleObject1467.bin

image1288.wmf
8

0

),

8

(

ˆ

ˆ

)

8

(

ˆ

)

8

(

ˆ

2

_

2

1

_

1

_

<

£

+

×

×

+

+

×

=

+

×

k

k

i

X

g

k

b

X

k

b

X

norm

M

global

tmp

M

tmp

M

oleObject1468.bin

image1289.wmf
)

(

)

(

)

(

2

1

1

i

nq

b

nq

b

nq

+

=

oleObject1469.bin

oleObject1470.bin

image1290.wmf
tot

R

¢

image123.wmf
)

(

1

N

I

oleObject1471.bin

image1291.wmf
400

>

¢

tot

R

oleObject1472.bin

image1292.wmf
272

0

)

(

ˆ

)

(

ˆ

_

_

<

£

=

+

k

k

X

k

k

X

temp

M

start

spec

M

oleObject1473.bin

image1293.wmf
start

k

oleObject1474.bin

image1294.wmf
304

=

start

k

oleObject1475.bin

image1295.wmf
ï

î

ï

í

ì

-

<

£

+

=

+

+

<

£

=

+

2

1

_

2

_

1

_

_

272

0

)

(

ˆ

)

(

ˆ

0

)

(

ˆ

)

(

ˆ

ind

ind

temp

M

ind

start

spec

M

ind

temp

M

start

spec

M

k

k

k

k

X

k

k

k

X

k

k

k

X

k

k

X

oleObject147.bin

oleObject1476.bin

image1296.wmf
1

ind

k

oleObject1477.bin

image1297.wmf
2

ind

k

oleObject1478.bin

image1298.wmf
ë

û

2

/

8

64

min

_

min

_

1

en

en

ind

pos

pos

k

×

+

×

=

oleObject1479.bin

image1299.wmf
ë

û

2

/

)

1

(

8

)

1

(

64

min

_

min

_

2

+

×

+

+

×

=

en

en

ind

pos

pos

k

oleObject1480.bin

image1300.wmf
ï

ï

î

ï

ï

í

ì

×

+

<

£

+

+

=

+

+

=

<

£

+

+

=

+

+

)

2

%

(

8

64

0

)

(

ˆ

)

(

ˆ

3

72

0

)

128

(

ˆ

)

200

(

ˆ

min

_

2

_

1

_

min

_

_

_

en

ind

start

spec

M

ind

start

spec

M

en

start

spec

M

start

spec

M

pos

k

otherwise

k

k

k

X

k

k

k

X

pos

if

k

k

k

X

k

k

X

oleObject148.bin

oleObject1481.bin

image1301.wmf
)

(

b

nq

oleObject1482.bin

image1302.wmf
3

min

_

=

en

pos

oleObject1483.bin

image1303.wmf
9

0

)

16

(

)

25

(

<

£

+

=

+

b

b

nq

b

nq

oleObject1484.bin

image1304.wmf
1

1

1

),

(

))

(

33

(

sv

ind

ind

N

b

k

b

nq

k

b

nq

<

£

=

-

-

oleObject1485.bin

image1305.wmf
2

%

8

0

)

(

)

(

min

_

2

1

en

ind

ind

pos

b

b

k

nq

b

k

nq

+

<

£

+

=

+

oleObject10.bin

oleObject149.bin

oleObject1486.bin

image1306.wmf
200

1

<

rem

R

oleObject1487.bin

image1307.wmf
575

,...,

304

),

(

ˆ

_

=

k

k

X

spec

M

oleObject1488.bin

image1308.wmf
start

pos

oleObject1489.bin

image1309.wmf
end

pos

oleObject1490.bin

image1310.wmf
0

]

[

=

b

nq

image124.wmf
N

oleObject1491.bin

image1311.wmf
i

oleObject1492.bin

image1312.wmf
0

]

0

[

=

nq

oleObject1493.bin

image1313.wmf
start

pos

oleObject1494.bin

image1314.wmf
0

)!

(

=

start

pos

nq

oleObject1495.bin

image1315.wmf
start

pos

oleObject150.bin

oleObject1496.bin

image1316.wmf
end

pos

oleObject1497.bin

image1317.wmf
0

)

(

=

end

pos

nq

oleObject1498.bin

image1318.wmf
end

pos

i

=

oleObject1499.bin

image1319.wmf
1

-

=

end

end

pos

pos

oleObject1500.bin

image1320.wmf
start

start

end

pos

pos

pos

>

-

image125.wmf
)

(

4

N

I

oleObject1501.bin

image1321.wmf
end

pos

oleObject1502.bin

image1322.wmf
1

2

-

×

=

start

end

pos

pos

oleObject1503.bin

image1323.wmf
start

pos

b

b

<

£

0

,

oleObject1504.bin

image1324.wmf
(

)

(

)

(

)

8

0

32768

8

8

ˆ

8

ˆ

_

_

<

£

+

×

×

+

+

×

+

×

=

+

×

+

k

k

b

s

k

pos

k

X

k

b

k

X

noise

start

spec

M

start

spec

M

b

a

oleObject1505.bin

image1325.wmf
a

oleObject151.bin

oleObject1506.bin

image1326.wmf
b

oleObject1507.bin

image1327.wmf
25

.

0

=

a

oleObject1508.bin

oleObject1509.bin

image1328.wmf
ï

ï

î

ï

ï

í

ì

×

>

£

>

=

otherwise

T

T

AND

wb

tilt

if

else

wb

tilt

if

pitch

pitch

100

25

.

0

100

0

.

5

_

25

.

0

0

.

5

_

25

.

0

b

oleObject1510.bin

image1329.wmf
e

+

=

å

=

4

0

)

(

i

pitch

i

pitch

T

oleObject1511.bin

image126.wmf
23

I

image1330.wmf
b

oleObject1512.bin

image1331.wmf
1

-

start

pos

oleObject1513.bin

image1332.wmf
pos

oleObject1514.bin

image1333.wmf
end

pos

oleObject1515.bin

image1334.wmf
î

í

ì

-

<

=

otherwise

pos

pos

pos

if

pos

pos

start

end

1

oleObject1516.bin

oleObject152.bin

image1335.wmf
34

,

0

]!

[

£

=

i

i

nq

oleObject1517.bin

oleObject1518.bin

image1336.wmf
i

pos

start

=

oleObject1519.bin

image1337.wmf
i

pos

end

=

oleObject1520.bin

image1338.wmf
b

oleObject1521.bin

image1339.wmf
34

<

£

b

pos

start

image127.wmf
N

oleObject1522.bin

oleObject1523.bin

image1340.wmf
0

)!

(

=

end

pos

nq

oleObject1524.bin

image1341.wmf
end

pos

i

=

oleObject1525.bin

image1342.wmf
end

start

pos

pos

=

oleObject1526.bin

image1343.wmf
34

=

i

oleObject1527.bin

oleObject153.bin

image1344.wmf
34

=

end

pos

oleObject1528.bin

image1345.wmf
(

)

(

)

(

)

8

0

32768

8

ˆ

8

ˆ

2

_

_

<

£

×

+

+

×

+

×

=

+

×

+

k

k

s

k

pos

k

X

k

b

k

X

noise

start

spec

M

start

spec

M

b

a

oleObject1529.bin

image1346.wmf
b

oleObject1530.bin

image1347.wmf
1

-

end

pos

oleObject1531.bin

image1348.wmf
start

pos

oleObject1532.bin

image128.wmf
23

I

image1349.wmf
2

pos

oleObject1533.bin

image1350.wmf
1

-

start

pos

oleObject1534.bin

image1351.wmf
î

í

ì

-

=

-

=

otherwise

pos

pos

if

pos

pos

start

1

0

1

2

2

2

oleObject1535.bin

image1352.wmf
(

)

8

0

13849

31821

and

<

£

+

×

=

=

k

k

s

seed

seed

seed

noise

l

l

l

oleObject1536.bin

image1353.wmf
seed

l

oleObject1537.bin

image11.wmf
2

,

1

,

=

i

I

li

oleObject154.bin

image1354.wmf
(

)

k

s

noise

oleObject1538.bin

image1355.wmf
34

<

i

oleObject1539.bin

image1356.wmf
34

<

i

oleObject1540.bin

image1357.wmf
wb

tilt

_

oleObject1541.bin

image1358.wmf
)

(

ˆ

16

n

s

oleObject1542.bin

image129.wmf
)

(

2

N

I

image1359.wmf
34

0

,

<

£

b

b

oleObject1543.bin

image1360.wmf
(

)

0

8

ˆ

_

=

+

×

+

k

b

k

X

start

spec

M

oleObject1544.bin

image1361.wmf
(

)

(

)

8

0

5

.

0

0

5

.

0

8

ˆ

min

min

_

<

£

î

í

ì

×

-

>

×

=

+

×

+

k

otherwise

E

k

s

if

E

k

b

k

X

noise

start

spec

M

oleObject1545.bin

image1362.wmf
wb

tilt

_

oleObject1546.bin

image1363.wmf
min

E

oleObject1547.bin

oleObject155.bin

image1364.wmf
(

)

(

)

(

)

0

8

ˆ

8

ˆ

min

_

_

7

,...,

0

min

>

+

×

+

+

×

+

=

=

k

b

k

X

if

k

b

k

X

E

start

spec

M

start

spec

M

k

oleObject1548.bin

image1365.wmf
(

)

(

)

0

.

1

8

ˆ

max

min

_

7

,...,

0

min

>

+

×

+

=

=

E

AND

k

b

k

X

E

start

spec

M

k

oleObject1549.bin

oleObject1550.bin

image1366.wmf
min

min

5

.

0

E

E

×

=

oleObject1551.bin

image1367.wmf
400

3

min

_

£

¢

=

tot

en

R

AND

pos

oleObject1552.bin

image1368.wmf
(

)

(

)

7

,...,

0

8

8

1

200

ˆ

200

ˆ

1

_

_

=

÷

÷

ø

ö

ç

ç

è

æ

+

×

÷

ø

ö

ç

è

æ

-

×

+

+

=

+

+

k

k

R

k

k

k

X

k

k

X

start

spec

M

start

spec

M

image130.wmf
)

(

3

N

I

oleObject1553.bin

image1369.wmf
1

R

oleObject1554.bin

image1370.wmf
(

)

(

)

(

)

(

)

e

e

+

+

+

+

+

+

=

å

å

=

-

-

=

7

0

2

_

1

8

2

_

1

200

ˆ

200

ˆ

k

start

spec

M

k

start

spec

M

k

k

X

k

k

X

R

oleObject1555.bin

image1371.wmf
(

)

(

)

1

,...,

0

576

ˆ

576

ˆ

_

_

_

_

-

=

+

-

=

+

dec

non

dec

non

spec

M

spec

M

L

k

k

L

X

k

X

oleObject1556.bin

image1372.wmf
dec

non

L

_

oleObject1557.bin

image1373.wmf
î

í

ì

=

signal

FB

for

signal

SWB

for

L

dec

non

224

64

_

oleObject156.bin

oleObject1558.bin

oleObject1559.bin

image1374.wmf
(

)

(

)

,

4

0

,

2

.

2

)

(

ˆ

min

)

(

ˆ

max

_

_

<

£

>

j

j

f

j

f

band

env

band

env

oleObject1560.bin

image1375.wmf
(

)

(

)

7

,...,

0

200

576

ˆ

576

ˆ

2

_

_

=

×

+

+

=

+

k

R

k

X

k

X

spec

M

spec

M

oleObject1561.bin

image1376.wmf
2

R

oleObject1562.bin

image1377.wmf
(

)

(

)

(

)

(

)

e

e

+

+

+

+

=

å

å

=

-

-

=

7

0

2

_

1

8

2

_

2

576

ˆ

576

ˆ

k

spec

M

k

spec

M

k

X

k

X

R

oleObject1563.bin

image131.wmf
23

I

image1378.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

<

£

×

+

=

+

<

£

÷

÷

ø

ö

ç

ç

è

æ

×

+

×

÷

ø

ö

ç

è

æ

-

×

+

=

+

+

×

<

£

×

<

£

×

+

=

+

dec

non

dec

non

env

spec

M

denorm

M

dec

non

env

band

env

spec

M

denorm

M

band

env

start

spec

M

start

denorm

M

L

k

f

k

X

k

X

k

f

k

f

k

k

X

k

X

j

k

j

j

j

f

k

k

X

k

k

X

_

_

_

_

_

_

_

_

_

_

_

_

_

8

ˆ

)

576

(

ˆ

)

576

(

ˆ

8

0

ˆ

8

)

3

(

ˆ

8

1

)

576

(

ˆ

)

576

(

ˆ

)

1

(

68

68

,

4

0

)

(

ˆ

)

(

ˆ

)

(

ˆ

oleObject1564.bin

image1379.wmf
(

)

ï

ï

ï

î

ï

ï

ï

í

ì

<

£

-

-

×

×

×

+

=

+

<

£

-

×

×

×

+

=

+

dec

non

dec

non

dec

non

dec

non

env

spec

M

denorm

M

dec

non

dec

non

env

spec

M

denorm

M

L

k

L

L

k

f

k

X

k

X

L

k

k

f

k

X

k

X

_

1

_

1

_

_

_

_

_

1

_

_

_

_

_

,

320

/

)

(

1

ˆ

65

.

0

)

576

(

ˆ

)

576

(

ˆ

0

,

)

160

/

1

(

ˆ

2

.

2

)

576

(

ˆ

)

576

(

ˆ

oleObject1565.bin

image1380.wmf
64

1

_

=

dec

non

L

oleObject1566.bin

image1381.wmf
88

1

_

=

dec

non

L

oleObject1567.bin

image1382.wmf
16

0

),

(

_

<

£

k

k

f

coefs

overlap

oleObject1568.bin

oleObject157.bin

image1383.wmf
16

0

)

(

ˆ

)

(

)

(

ˆ

_

_

_

<

£

+

×

=

+

k

k

k

X

k

f

k

k

X

start

denorm

M

coefs

overlap

start

denorm

M

oleObject1569.bin

image1384.wmf
)

(

_

k

f

coefs

overlap

oleObject1570.bin

oleObject1571.bin

oleObject1572.bin

oleObject1573.bin

oleObject1574.bin

image1385.wmf
global

g

ˆ

oleObject1575.bin

image132.wmf
)

(

2

N

I

image1386.wmf
dec

non

start

denorm

M

global

tot

start

denorm

M

global

start

M

L

k

otherwise

k

k

X

g

R

if

k

k

X

g

k

k

X

_

_

_

272

0

)

(

ˆ

ˆ

400

)

(

ˆ

ˆ

85

.

0

)

(

ˆ

+

<

£

ï

î

ï

í

ì

+

×

£

¢

+

×

×

=

+

oleObject1576.bin

image1387.wmf
ï

î

ï

í

ì

<

£

+

=

<

£

+

=

-

-

signal

FB

for

k

k

k

X

k

X

signal

SWB

for

k

k

k

X

k

X

start

M

M

start

M

M

496

0

)

(

ˆ

)

(

ˆ

336

0

)

(

ˆ

)

(

ˆ

]

1

[

]

1

[

oleObject1577.bin

image1388.wmf
]

1

[

_

-

shb

ener

E

oleObject1578.bin

image1389.wmf
14

0

),

(

ˆ

]

1

[

_

<

£

-

j

j

f

SWB

env

oleObject1579.bin

image1390.wmf
å

=

-

×

×

=

4

0

_

]

1

[

_

)

(

ˆ

25

.

0

ˆ

j

band

env

global

shb

ener

j

f

g

E

oleObject1580.bin

oleObject158.bin

image1391.wmf
14

0

ˆ

ˆ

)

(

ˆ

]

1

[

_

<

£

×

=

-

j

f

g

j

f

env

global

SWB

env

oleObject1581.bin

image1392.wmf
j

oleObject1582.bin

image1393.wmf
4

0

<

£

j

oleObject1583.bin

image1394.wmf
global

g

ˆ

oleObject1584.bin

image1395.wmf
1

,

0

),

(

ˆ

_

=

i

i

f

band

env

oleObject1585.bin

image133.wmf
)

(

3

N

I

oleObject1586.bin

image1396.wmf
1

,

0

),

(

ˆ

_

=

i

i

f

band

env

oleObject1587.bin

image1397.wmf
)

0

(

ˆ

env

I

oleObject1588.bin

image1398.wmf
8

)

0

(

ˆ

<

env

I

oleObject1589.bin

oleObject1590.bin

image1399.wmf
8

)

(

ˆ

0

<

£

j

I

env

oleObject1591.bin

oleObject11.bin

oleObject159.bin

image1400.wmf
4

1

<

£

j

oleObject1592.bin

image1401.wmf
8

)

0

(

ˆ

³

env

I

oleObject1593.bin

oleObject1594.bin

image1402.wmf
15

)

(

ˆ

8

<

£

j

I

env

oleObject1595.bin

image1403.wmf
4

1

<

£

j

oleObject1596.bin

image1404.wmf
dec

non

L

_

oleObject160.bin

oleObject1597.bin

image1405.wmf
î

í

ì

=

signal

FB

for

signal

SWB

for

L

dec

non

56

16

_

oleObject1598.bin

image1406.wmf
dec

non

env

f

_

_

ˆ

oleObject1599.bin

image1407.wmf
HIGHRATE

BWE

SWB

M

extl

_

_

=

oleObject1600.bin

image1408.wmf
)

1

(

ˆ

ˆ

_

_

_

band

env

dec

non

env

f

f

=

oleObject1601.bin

image1409.wmf
HIGHRATE

BWE

FB

M

extl

_

_

=

oleObject161.bin

oleObject1602.bin

image1410.wmf
att

I

ˆ

oleObject1603.bin

image1411.wmf
dec

non

env

f

_

_

ˆ

oleObject1604.bin

image1412.wmf
att

I

ˆ

oleObject1605.bin

image1413.wmf
ï

ï

ï

î

ï

ï

ï

í

ì

=

×

=

×

=

×

=

=

3

ˆ

ˆ

5

.

0

2

ˆ

ˆ

3

.

0

1

ˆ

ˆ

1

.

0

0

ˆ

ˆ

ˆ

_

_

_

_

_

_

_

_

_

_

att

dec

non

env

att

dec

non

env

att

dec

non

env

att

dec

non

env

dec

non

env

I

if

f

I

if

f

I

if

f

I

if

f

f

oleObject1606.bin

image1414.wmf
)

(

ˆ

_

k

X

norm

M

image134.wmf
N

M

C

I

N

I

%

)

(

23

2

=

oleObject1607.bin

image1415.wmf
64

0

)

(

ˆ

)

4

(

ˆ

_

_

<

£

=

+

×

+

k

k

X

k

L

j

k

X

norm

M

fr

start

spec

M

oleObject1608.bin

oleObject1609.bin

image1416.wmf
64

=

start

k

oleObject1610.bin

image1417.wmf
fr

L

oleObject1611.bin

image1418.wmf
640

=

fr

L

oleObject1612.bin

oleObject162.bin

image1419.wmf
960

=

fr

L

oleObject1613.bin

image1420.wmf
139

,...,

76

),

(

ˆ

_

=

k

k

X

spec

M

oleObject1614.bin

image1421.wmf
b

oleObject1615.bin

image1422.wmf
8

0

<

£

b

oleObject1616.bin

image1423.wmf
0

)

(

=

b

nq

oleObject1617.bin

image135.wmf
]

/

Int[

)

(

23

3

N

M

C

I

N

I

=

image1424.wmf
(

)

(

)

)

1

(

8

8

65536

4

ˆ

_

+

×

<

£

×

=

+

×

+

b

k

b

k

s

k

L

j

k

X

noise

fr

start

spec

M

oleObject1618.bin

image1425.wmf
(

)

)

1

(

8

8

13849

31821

and

+

×

<

£

×

+

×

=

=

b

k

b

k

s

seed

seed

seed

noise

l

l

l

oleObject1619.bin

oleObject1620.bin

oleObject1621.bin

oleObject1622.bin

oleObject1623.bin

image1426.wmf
(

)

0

4

ˆ

_

=

+

×

+

k

L

j

k

X

fr

start

spec

M

oleObject1624.bin

oleObject163.bin

image1427.wmf
(

)

(

)

)

1

(

8

8

5

.

0

0

5

.

0

4

ˆ

min

min

_

+

×

<

£

×

î

í

ì

×

-

>

×

=

+

×

+

b

k

b

otherwise

E

k

s

if

E

k

L

j

k

X

noise

fr

start

spec

M

oleObject1625.bin

image1428.wmf
wb

tilt

_

oleObject1626.bin

oleObject1627.bin

image1429.wmf
(

)

(

)

(

)

0

4

ˆ

4

ˆ

min

_

7

8

,...,

8

min

>

+

×

+

+

×

+

=

+

=

k

L

j

k

X

if

k

L

j

k

X

E

fr

start

M

fr

start

spec

M

b

b

k

oleObject1628.bin

image1430.wmf
(

)

(

)

0

.

1

4

ˆ

max

min

_

7

8

,...,

8

min

>

+

×

+

=

+

=

E

AND

k

L

j

k

X

E

fr

start

spec

M

b

b

k

oleObject1629.bin

oleObject1630.bin

oleObject164.bin

oleObject1631.bin

image1431.wmf
4

0

)

)

4

(

4

140

(

ˆ

5

.

0

)

4

140

(

ˆ

_

_

_

+

<

£

+

+

-

×

+

×

=

+

×

+

dec

non

dec

non

fr

M

fr

spec

M

L

k

k

L

L

j

X

k

L

j

X

oleObject1632.bin

image1432.wmf
ï

ï

î

ï

ï

í

ì

+

<

£

×

+

×

+

=

+

×

+

<

£

×

+

×

+

=

+

×

+

<

£

×

+

×

+

=

+

×

+

4

4

ˆ

)

4

140

(

ˆ

)

4

140

(

ˆ

68

34

)

1

(

ˆ

)

4

(

ˆ

)

4

(

ˆ

34

0

)

0

(

ˆ

)

4

(

ˆ

)

4

(

ˆ

_

_

_

_

_

_

_

_

_

_

_

dec

non

dec

non

env

fr

spec

M

fr

denorm

M

band

env

fr

start

spec

M

fr

start

denorm

M

band

env

fr

start

spec

M

fr

start

denorm

M

L

k

f

k

L

j

X

k

L

j

X

k

f

k

L

j

k

X

k

L

j

k

X

k

f

k

L

j

k

X

k

L

j

k

X

oleObject1633.bin

image1433.wmf
16

0

),

(

_

<

£

k

k

f

coefs

overlap

oleObject1634.bin

image1434.wmf
)

4

(

)

4

(

ˆ

9

.

0

)

4

(

ˆ

_

_

_

k

f

k

L

j

k

X

k

L

j

k

X

coefs

overlap

fr

start

denorm

M

fr

start

denorm

M

×

×

+

×

+

×

=

+

×

+

oleObject1635.bin

image1435.wmf
4

0

<

£

k

oleObject165.bin

oleObject1636.bin

oleObject1637.bin

image1436.wmf
dec

non

fr

start

denorm

M

global

fr

start

M

L

k

k

L

j

k

X

g

k

L

j

k

X

_

_

68

0

)

4

(

ˆ

ˆ

)

4

(

ˆ

+

<

£

+

×

+

×

=

+

×

+

oleObject1638.bin

image1437.wmf
)

(

ˆ

_

n

s

syn

hb

oleObject1639.bin

oleObject1640.bin

image1438.wmf
]

[

m

E

oleObject1641.bin

image1439.wmf
(

)

3

,

,

0

(

ˆ

1

4

/

)

1

(

4

/

2

_

]

[

K

=

=

å

-

×

+

×

=

m

for

n

s

E

fr

fr

L

m

L

m

n

syn

hb

m

oleObject166.bin

oleObject1642.bin

image1440.wmf
[

]

m

LT

E

oleObject1643.bin

image1441.wmf
[

]

[

]

[

]

3

,

,

0

)

1

(

1

K

=

+

-

=

-

m

for

E

E

E

m

m

LT

m

LT

a

a

oleObject1644.bin

image1442.wmf
a

oleObject1645.bin

image1443.wmf
[

]

[

]

3

1

LT

LT

E

E

=

-

oleObject1646.bin

image1444.wmf
m

image12.wmf
[

]

2

,

1

)

(

/

'

0

=

=

i

k

I

I

i

i

si

p

image136.wmf
%

oleObject1647.bin

image1445.wmf
]

[

m

E

oleObject1648.bin

image1446.wmf
[

]

m

LT

E

oleObject1649.bin

image1447.wmf
m

oleObject1650.bin

image1448.wmf
pos

oleObject1651.bin

image1449.wmf
[

]

[

]

m

LT

m

E

E

r

>

oleObject167.bin

oleObject1652.bin

image1450.wmf
r

oleObject1653.bin

image1451.wmf
5

.

12

=

r

oleObject1654.bin

image1452.wmf
0

>

pos

oleObject1655.bin

image1453.wmf
3

_

<

wb

tilt

oleObject1656.bin

image1454.wmf
500

)

(

4

0

>

+

å

=

e

j

j

pitch

oleObject168.bin

oleObject1657.bin

image1455.wmf
[

]

1

-

LT

E

oleObject1658.bin

image1456.wmf
[

]

[

]

ï

î

ï

í

ì

=

=

-

-

otherwise

E

M

M

if

E

E

LT

extl

extl

last

LT

1

_

1

!

oleObject1659.bin

image1457.wmf
E

oleObject1660.bin

image1458.wmf
4

/

fr

L

pos

N

×

=

oleObject1661.bin

image1459.wmf
(

)

å

=

=

N

n

syn

hb

n

s

E

0

2

_

)

(

ˆ

image137.wmf
1

1

-

-

N

M

C

oleObject1662.bin

image1460.wmf
[

]

[

]

ï

ï

ï

î

ï

ï

ï

í

ì

+

<

£

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

×

+

×

×

×

÷

÷

ø

ö

ç

ç

è

æ

-

×

-

×

<

£

×

×

×

=

¢

-

-

8

/

)

(

8

2

.

0

)

(

8

1

)

(

ˆ

0

2

.

0

)

(

ˆ

)

(

ˆ

1

_

1

_

_

fr

fr

LT

fr

syn

hb

LT

syn

hb

syn

hb

L

N

n

N

L

N

n

E

E

pos

L

N

n

n

s

N

n

E

E

pos

n

s

n

s

oleObject1663.bin

image1461.wmf
class

F

oleObject1664.bin

image1462.wmf
[

]

1

-

class

F

oleObject1665.bin

image1463.wmf
CORE

HQ

core

last

_

_

=

oleObject1666.bin

image1464.wmf
extl

extl

last

M

M

=

!

_

oleObject169.bin

oleObject1667.bin

image1465.wmf
3

_

<

wb

tilt

oleObject1668.bin

image1466.wmf
pro

post

g

_

oleObject1669.bin

image1467.wmf
(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

¢

<

¢

=

å

å

=

-

-

=

otherwise

n

s

pos

if

n

s

g

n

syn

hb

L

L

n

syn

hb

pro

post

fr

fr

79

0

2

_

max

1

80

2

_

_

)

(

ˆ

80

1

160

)

(

ˆ

80

1

oleObject1670.bin

image1468.wmf
max

pos

oleObject1671.bin

image1469.wmf
1

,...,

0

_

max

)

)

(

ˆ

max(

arg

-

=

¢

=

Lfr

n

syn

hb

n

s

pos

image138.wmf
1

0

-

-

N

y

M

C

oleObject1672.bin

image1470.wmf
pro

post

g

_

oleObject1673.bin

image1471.wmf
(

)

)

)

(

ˆ

1

,

1

min(

1

2

_

1

2

_

_

2

1

e

+

¢

-

=

å

-

=

ind

ind

k

k

n

syn

hb

ind

ind

pro

post

pro

post

n

s

k

k

g

g

oleObject1674.bin

image1472.wmf
1

ind

k

oleObject1675.bin

image1473.wmf
2

ind

k

oleObject1676.bin

image1474.wmf
)

40

,

0

max(

max

1

-

=

pos

k

ind

oleObject170.bin

oleObject1677.bin

image1475.wmf
)

40

,

min(

max

2

+

=

pos

L

k

fr

ind

oleObject1678.bin

image1476.wmf
(

)

ï

ï

î

ï

ï

í

ì

ï

þ

ï

ý

ü

<

£

+

×

¢

<

£

×

¢

=

<

£

×

¢

=

¢

¢

otherwise

L

n

k

n

g

n

s

k

n

k

g

n

s

BWE

FB

OR

BWE

SWB

M

if

L

n

k

g

n

s

n

s

fr

ind

pro

post

syn

hb

ind

ind

pro

post

syn

hb

extl

last

fr

ind

pro

post

syn

hb

syn

hb

2

_

_

2

2

_

_

_

1

_

_

_

)

(

)

(

ˆ

)

(

ˆ

_

_

)

(

ˆ

)

(

ˆ

b

oleObject1679.bin

image1477.wmf
)

(

n

b

oleObject1680.bin

image1478.wmf
î

í

ì

>

=

otherwise

g

if

pro

post

5

.

0

5

.

0

1

_

a

oleObject1681.bin

image1479.wmf
(

)

fr

ind

ind

fr

pro

post

ind

L

n

k

k

L

g

k

n

n

<

£

-

-

×

-

=

2

2

_

2

)

(

)

(

)

(

a

b

oleObject171.bin

oleObject1682.bin

image1480.wmf
)

(

ˆ

]

1

[

_

n

s

syn

hb

-

oleObject1683.bin

image1481.wmf
fr

pro

post

syn

hb

syn

hb

L

n

g

n

s

n

s

<

£

×

=

-

-

0

)

(

ˆ

)

(

ˆ

_

]

1

[

_

]

1

[

_

oleObject1684.bin

image139.wmf
1

0

1

1

2

...

)

(

)

0

(

-

-

-

-

-

-

-

=

N

y

M

N

M

C

C

N

I

y

R

oleObject172.bin

oleObject12.bin

oleObject173.bin

image140.wmf
)

0

(

y

R

oleObject174.bin

oleObject175.bin

oleObject176.bin

image141.wmf
]

1

,

1

[

0

-

-

Î

N

M

y

oleObject177.bin

image142.wmf
)

0

(

p

oleObject178.bin

image143.wmf
1

0

)

0

(

-

=

y

p

image13.wmf
[

]

2

,

1

)

(

/

'

'

0

=

-

=

i

k

I

I

I

i

i

i

li

p

oleObject179.bin

image144.wmf
1

>

N

oleObject180.bin

image145.wmf
2

1

)

0

(

-

-

-

N

p

M

C

oleObject181.bin

image146.wmf
2

1

)

0

(

-

-

-

N

y

p

M

C

oleObject182.bin

image147.wmf
)

0

(

y

R

oleObject183.bin

image148.wmf
)

0

(

y

R

oleObject13.bin

oleObject184.bin

image149.wmf
)

1

(

1

y

R

oleObject185.bin

image150.wmf
)

1

(

p

oleObject186.bin

image151.wmf
1

1

)

1

(

-

=

y

p

oleObject187.bin

image152.wmf
2

1

)

1

(

)

0

(

-

-

-

-

-

¼

-

-

n

N

n

p

p

M

C

oleObject188.bin

image153.wmf
2

)

1

(

)

0

(

-

-

-

-

-

¼

-

-

n

N

yn

n

p

p

M

C

image14.wmf
)

(

0

i

k

p

oleObject189.bin

image154.wmf
)]

1

(

)[

1

(

-

-

n

p

n

R

oleObject190.bin

image155.wmf
)]

1

(

)[

1

(

-

-

n

p

n

R

oleObject191.bin

image156.wmf
)

(

yn

Rn

oleObject192.bin

image157.wmf
1

-

£

N

n

oleObject193.bin

image158.wmf
)

(

n

p

oleObject14.bin

oleObject194.bin

image159.wmf
1

)

(

-

=

yn

n

p

oleObject195.bin

oleObject196.bin

image160.wmf
)}

1

(

),...,

1

(

),

0

(

{

)

(

-

=

N

p

p

p

N

P

oleObject197.bin

image161.wmf
)

(

3

N

I

oleObject198.bin

oleObject199.bin

image162.wmf
N

q

PPT

N

PPT

C

C

N

I

q

T

Δ

)

0

(

Δ

3

)

(

)]

0

(

[

-

-

-

=

image15.wmf
i

k

oleObject200.bin

image163.wmf
)

0

(

q

oleObject201.bin

oleObject202.bin

image164.wmf
]

1

[0,

)

0

(

-

Î

N

q

oleObject203.bin

image165.wmf
N

Q

N

-

=

Δ

oleObject204.bin

image166.wmf
1

-

=

Q

PPT

oleObject205.bin

oleObject15.bin

oleObject206.bin

image167.wmf
)]

0

(

[

q

T

oleObject207.bin

image168.wmf
0

v

oleObject208.bin

image169.wmf
1

Δ

>

N

oleObject209.bin

image170.wmf
)

(

)

0

(

)]

1

(

[

1

Δ

)

1

(

1

Δ

0

1

N

q

PPT

N

v

PPT

C

C

v

T

q

T

-

-

-

-

-

-

=

oleObject210.bin

image171.wmf
)

1

(

q

image16.wmf
2

,

1

,

=

i

I

li

oleObject211.bin

image172.wmf
)

1

(

q

oleObject212.bin

image173.wmf
]

1

,

0

[

)

1

(

-

Î

N

v

q

oleObject213.bin

oleObject214.bin

image174.wmf
)]

1

(

[

1

q

T

oleObject215.bin

image175.wmf
1

v

oleObject216.bin

oleObject16.bin

image176.wmf
)

(

)

1

(

)(

1

(

)]

(

[

Δ

)

(

Δ

)

1

(

N

h

q

h

PPT

N

h

q

h

PPT

C

C

h

q

h

T

h

q

Th

-

-

-

-

-

-

-

-

-

=

oleObject217.bin

image177.wmf
)

(

h

q

oleObject218.bin

image178.wmf
)

(

h

q

oleObject219.bin

image179.wmf
]

1

,

)

1

(

[

)

(

-

-

Î

N

h

v

h

q

oleObject220.bin

image180.wmf
]

1

Δ

[2,

-

Î

N

h

oleObject221.bin

image17.wmf
2

,

1

,

=

i

I

si

oleObject222.bin

image181.wmf
)]

(

[

h

q

Th

oleObject223.bin

image182.wmf
vh

oleObject224.bin

oleObject225.bin

image183.wmf
)}

1

Δ

(

),...,

1

(

),

0

(

{

)

(

'

-

=

N

q

q

q

N

SU

oleObject226.bin

oleObject227.bin

image184.wmf
)

1

Δ

(

,...,

)

1

(

)

0

(

-

£

£

£

N

q

q

q

oleObject17.bin

oleObject228.bin

image185.wmf
)

1

(

)

(

+

=

i

q

i

q

oleObject229.bin

image186.wmf
)

(

i

q

oleObject230.bin

image187.wmf
)

(

'

N

SU

oleObject231.bin

image188.wmf
N

oleObject232.bin

image189.wmf
)

(

N

SU

image18.wmf
0

v

oleObject233.bin

image190.wmf
1

0

,

1

)

(

-

<

£

=

N

i

i

su

oleObject234.bin

image191.wmf
)

;

Δ

;

0

(

+

+

<

=

i

N

i

i

For

oleObject235.bin

image192.wmf
1

))

(

(

))

(

(

+

=

i

q

su

i

q

su

oleObject236.bin

image193.wmf
0

_

index

final

oleObject237.bin

image194.wmf
1

_

index

final

oleObject18.bin

oleObject238.bin

image195.wmf
2

_

index

final

oleObject239.bin

image196.wmf
3

_

index

final

oleObject240.bin

image197.wmf
hi

track

_

oleObject241.bin

image198.wmf
0

h

oleObject242.bin

image199.wmf
low

track

_

0

image19.wmf
1

,...,

0

,

)

(

0

-

=

=

S

j

v

j

x

oleObject243.bin

oleObject244.bin

image200.wmf
1

h

oleObject245.bin

image201.wmf
low

track

_

1

oleObject246.bin

oleObject247.bin

image202.wmf
2

h

oleObject248.bin

image203.wmf
low

track

_

2

oleObject19.bin

oleObject249.bin

oleObject250.bin

image204.wmf
3

h

oleObject251.bin

image205.wmf
low

track

_

3

oleObject252.bin

oleObject253.bin

oleObject254.bin

oleObject255.bin

oleObject256.bin

image20.wmf
8

=

S

oleObject257.bin

oleObject258.bin

image206.wmf
0

hi

oleObject259.bin

image207.wmf
1

hi

oleObject260.bin

image208.wmf
2

hi

oleObject261.bin

image209.wmf
3

hi

oleObject262.bin

oleObject20.bin

oleObject263.bin

oleObject264.bin

image210.wmf
H

SLP

hi

2

oleObject265.bin

oleObject266.bin

oleObject267.bin

image211.wmf
2

SLP

hi

oleObject268.bin

oleObject269.bin

image212.wmf
3

2

3

_

_

%

range

Bit

Hi

hi

hi

SLP

=

image21.wmf
1

0

,

v

v

oleObject270.bin

image213.wmf
3

2

1

_

_

/

range

Bit

Hi

hi

hi

SLP

H

SLP

=

oleObject271.bin

image214.wmf
H

SLP

hi

1

oleObject272.bin

oleObject273.bin

image215.wmf
1

SLP

hi

oleObject274.bin

oleObject275.bin

image216.wmf
2

1

2

_

_

%

range

Bit

Hi

hi

hi

SLP

=

oleObject21.bin

oleObject276.bin

image217.wmf
2

1

0

_

_

/

range

Bit

Hi

hi

hi

SLP

H

SLP

=

oleObject277.bin

image218.wmf
H

SLP

hi

0

oleObject278.bin

oleObject279.bin

image219.wmf
0

SLP

hi

oleObject280.bin

oleObject281.bin

oleObject282.bin

image22.wmf
0

k

image220.wmf
1

0

1

_

_

%

range

Bit

Hi

hi

hi

SLP

=

oleObject283.bin

image221.wmf
1

0

0

_

_

/

range

Bit

Hi

hi

hi

SLP

=

oleObject284.bin

oleObject285.bin

oleObject286.bin

oleObject287.bin

oleObject288.bin

oleObject289.bin

oleObject290.bin

oleObject22.bin

oleObject291.bin

oleObject292.bin

image222.wmf
(

)

n

c

oleObject293.bin

oleObject294.bin

image223.wmf
(

)

(

)

(

)

T

z

z

z

F

-

-

-

-

=

85

.

0

1

1

1

1

)

0

(

b

oleObject295.bin

image224.wmf
(

)

T

z

-

-

85

.

0

1

1

oleObject296.bin

image225.wmf
T

image23.wmf
1

k

oleObject297.bin

image226.wmf
(

)

1

1

1

-

-

z

b

oleObject298.bin

image227.wmf
1

b

oleObject299.bin

image228.wmf
(

)

z

F

oleObject300.bin

image229.wmf
(

)

(

)

(

)

(

)

(

)

2

1

0

ˆ

ˆ

h

h

z

A

z

A

z

F

z

F

=

oleObject301.bin

image230.wmf
75

.

0

1

=

h

oleObject23.bin

oleObject302.bin

image231.wmf
9

.

0

2

=

h

oleObject303.bin

image232.wmf
12800

=

celp

sr

oleObject304.bin

image233.wmf
8

.

0

1

=

h

oleObject305.bin

image234.wmf
92

.

0

2

=

h

oleObject306.bin

image235.wmf
16000

=

celp

sr

image24.wmf
1

,...,

0

,

)

(

1

1

-

=

=

k

j

v

j

x

oleObject307.bin

image236.wmf
)

(

/

1

z

F

p

oleObject308.bin

image237.wmf
)

(

n

q

oleObject309.bin

oleObject310.bin

image238.wmf
q

g

ˆ

oleObject311.bin

oleObject312.bin

image239.wmf
norm

q

i

q

g

E

g

,

ˆ

ˆ

ˆ

×

=

oleObject24.bin

oleObject313.bin

image240.wmf
norm

q

g

,

ˆ

oleObject314.bin

image241.wmf
i

E

ˆ

oleObject315.bin

image242.wmf
norm

q

c

q

g

g

g

,

ˆ

ˆ

ˆ

×

=

oleObject316.bin

image243.wmf
c

g

ˆ

oleObject317.bin

image244.wmf
j

n

image25.wmf
0

k

oleObject318.bin

image245.wmf
)

8

(

ˆ

j

S

¢

oleObject319.bin

image246.wmf
)

(

k

S

¢

oleObject320.bin

image247.wmf
)

8

(

ˆ

j

S

¢

oleObject321.bin

image248.wmf
)

8

(

ˆ

j

S

¢

oleObject322.bin

oleObject323.bin

oleObject25.bin

image249.wmf
j

I

oleObject324.bin

image250.wmf
v

j

I

oleObject325.bin

oleObject326.bin

oleObject327.bin

oleObject328.bin

image251.wmf
v

j

r

oleObject329.bin

image252.wmf
5

<

j

n

image26.wmf
0

v

oleObject330.bin

image253.wmf
0

=

v

j

r

oleObject331.bin

image254.wmf
j

n

Q

oleObject332.bin

image255.wmf
5

>

j

n

oleObject333.bin

oleObject334.bin

oleObject335.bin

image256.wmf
1

=

v

j

r

oleObject26.bin

oleObject336.bin

image257.wmf
7

<

j

n

oleObject337.bin

image258.wmf
2

=

v

j

r

oleObject338.bin

image259.wmf
0

>

j

n

oleObject339.bin

oleObject340.bin

image260.wmf
j

n

4

oleObject341.bin

image27.wmf
S

image261.wmf
j

z

oleObject342.bin

image262.wmf
v

j

r

oleObject343.bin

image263.wmf
v

j

I

oleObject344.bin

image264.wmf
j

v

oleObject345.bin

image265.wmf
v

j

I

oleObject346.bin

oleObject27.bin

image266.wmf
v

j

r

oleObject347.bin

image267.wmf
v

j

M

oleObject348.bin

image268.wmf
v

j

r

v

j

M

2

=

oleObject349.bin

image269.wmf
v

j

M

oleObject350.bin

image270.wmf
j

v

oleObject351.bin

image28.wmf
0

v

oleObject352.bin

image271.wmf
)

8

(

ˆ

j

S

¢

oleObject353.bin

image272.wmf
j

j

v

j

M

j

v

z

S

+

×

=

¢

)

8

(

ˆ

oleObject354.bin

image273.wmf
)

(

ˆ

k

S

¢

oleObject355.bin

image274.wmf
)

(

ˆ

k

Q

d

oleObject356.bin

image275.wmf
)

(

ˆ

k

U

d

oleObject28.bin

oleObject357.bin

oleObject358.bin

image276.wmf
n

S

oleObject359.bin

image277.wmf
n

n

m

m

C

1

-

oleObject360.bin

image278.wmf
n

mid

I

,

oleObject361.bin

image279.wmf
n

mid

I

,

oleObject362.bin

image29.wmf
[

]

0

p

image280.wmf
1

L

oleObject363.bin

image281.wmf
0

L

oleObject364.bin

image282.emf
(1, 4, 6)

↓ ↓ ↓

0 1 2 3 4 5 6 7

(0 2, 0, 0, 4, 0, 6, 0)

The position vector

The element position

The original absolute vector of

(upper level vector)

(0 2, 0, 0, 4, 0, 6, 0)

↑ ↑ ↑

(2, 4, 6)

Some elements are replaced by vector

which position is indicated in the position vector

The new absolute vector of

(lower level vector)

oleObject365.bin

image283.wmf
0

L

oleObject366.bin

image284.wmf
20

=

a

K

oleObject367.bin

oleObject29.bin

image285.wmf
pos

oleObject368.bin

image286.wmf
n

mid

I

,

oleObject369.bin

image287.wmf
n

n

n

n

m

pos

m

m

m

C

C

-

-

-

-

1

1

oleObject370.bin

image288.wmf
1

0

-

=

pos

q

oleObject371.bin

image289.wmf
n

n

n

n

m

q

m

m

m

C

C

0

1

1

-

-

-

-

oleObject372.bin

image30.wmf
[

]

[

]

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

+

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

<

£

÷

÷

ø

ö

ç

ç

è

æ

-

-

+

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

1

0

1

...

1

2

1

1

1

0

...

1

2

1

1

0

0

0

0

0

0

k

p

S

k

S

k

S

I

k

p

S

k

S

k

S

li

image290.wmf
mid

I

oleObject373.bin

image291.wmf
pos

oleObject374.bin

image292.wmf
1

1

+

-

i

q

oleObject375.bin

image293.wmf
mid

I

oleObject376.bin

image294.wmf
i

m

pos

m

i

m

q

m

n

n

n

i

n

C

C

-

-

-

-

-

-

-

-

-

1

1

1

1

oleObject377.bin

oleObject30.bin

image295.wmf
1

-

i

q

oleObject378.bin

image296.wmf
1

-

=

pos

q

i

oleObject379.bin

image297.wmf
i

oleObject380.bin

image298.wmf
i

m

q

m

i

m

q

m

n

i

n

n

i

n

C

C

-

-

-

-

-

-

-

-

-

1

1

1

1

oleObject381.bin

oleObject382.bin

oleObject383.bin

image31.wmf
÷

÷

ø

ö

ç

ç

è

æ

-

-

<

1

1

0

k

S

I

li

image299.wmf
i

E

ˆ

oleObject384.bin

image300.wmf
c

E

oleObject385.bin

image301.wmf
(

)

÷

÷

ø

ö

ç

ç

è

æ

=

å

=

63

0

2

64

1

log

10

i

c

i

c

E

oleObject386.bin

image302.wmf
(

)

i

c

oleObject387.bin

image303.wmf
(

)

c

i

E

E

c

g

-

=

¢

ˆ

05

.

0

10

oleObject388.bin

oleObject31.bin

image304.wmf
p

g

ˆ

oleObject389.bin

image305.wmf
c

c

g

g

¢

=

g

ˆ

ˆ

oleObject390.bin

image306.wmf
g

ˆ

oleObject391.bin

image307.wmf
)

(

log

]

0

[

0

10

1

0

10

c

E

CT

a

a

c

g

-

+

=

oleObject392.bin

image308.wmf
c

E

oleObject393.bin

image32.wmf
[

]

0

0

=

p

image309.wmf
å

å

=

-

+

+

=

-

+

+

+

+

=

k

i

i

p

i

k

k

i

i

c

i

g

b

g

b

CT

b

b

k

c

g

1

]

1

[

1

1

]

1

[

10

1

1

0

)

(

log

]

[

0

10

oleObject394.bin

image310.wmf
)

(

10

log

c

E

oleObject395.bin

image311.wmf
p

g

oleObject396.bin

image312.wmf
g

oleObject397.bin

image313.wmf
g

.

0

c

c

g

g

=

oleObject398.bin

oleObject32.bin

oleObject399.bin

image314.wmf
(

)

(

)

(

)

63

,

,

0

,

ˆ

ˆ

K

=

+

=

¢

n

for

n

c

g

n

v

g

n

u

c

p

oleObject400.bin

image315.wmf
(

)

n

c

oleObject401.bin

image316.wmf
(

)

(

)

(

)

(

)

63

,

,

0

,

ˆ

ˆ

ˆ

K

=

+

+

=

¢

n

for

n

q

g

n

c

g

n

v

g

n

u

q

c

p

oleObject402.bin

image317.wmf
(

)

n

u

¢

oleObject403.bin

image318.wmf
(

)

n

u

¢

image33.wmf
0

v

oleObject404.bin

image319.wmf
(

)

n

u

oleObject405.bin

image320.wmf
(

)

z

A

ˆ

1

oleObject406.bin

image321.wmf
(

)

(

)

(

)

(

)

2

18

.

0

1

64

.

0

18

.

0

-

¢

+

-

¢

+

¢

=

n

v

n

v

n

v

n

v

oleObject407.bin

image322.wmf
k

oleObject408.bin

image323.wmf
dB

c

g

ˆ

oleObject33.bin

oleObject409.bin

image324.wmf
max

G

oleObject410.bin

image325.wmf
d

oleObject411.bin

image326.wmf
c

g

ˆ

oleObject412.bin

image327.wmf
[

]

[

]

(

)

[

]

0

1

0

ˆ

1

end

end

end

q

q

q

l

l

-

+

=

-

oleObject413.bin

image328.wmf
[

]

0

end

q

image34.wmf
[

]

1

p

oleObject414.bin

image329.wmf
[

]

0

ˆ

end

q

oleObject415.bin

image330.wmf
9

.

0

=

l

oleObject416.bin

oleObject417.bin

image331.wmf
[

]

1

ˆ

-

end

q

oleObject418.bin

oleObject419.bin

image332.wmf
[

]

0

ˆ

mid

q

oleObject34.bin

oleObject420.bin

image333.wmf
b

oleObject421.bin

image334.wmf
[

]

(

)

[

]

[

]

[

]

(

)

[

]

[

]

(

)

[

]

[

]

(

)

[

]

[

]

0

0

0

0

0

1

0

1

1

1

ˆ

1

ˆ

5

.

0

1

ˆ

1

end

end

end

mid

end

end

mid

end

end

end

q

q

q

q

q

q

q

q

q

q

b

b

b

b

b

b

+

-

=

¢

+

+

-

=

¢

+

-

=

¢

-

-

-

-

oleObject422.bin

oleObject423.bin

image335.wmf
(

)

1

1

-

-

=

z

z

H

k

oleObject424.bin

image336.wmf
k

oleObject425.bin

image35.wmf
[

]

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

=

1

0

...

1

2

1

1

0

0

0

1

k

p

S

k

S

k

S

I

I

li

li

image337.wmf
(

)

(

)

0

1

e

e

r

r

=

k

oleObject426.bin

image338.wmf
(

)

0

e

r

oleObject427.bin

image339.wmf
(

)

1

e

r

oleObject428.bin

image340.wmf
g

~

oleObject429.bin

image341.wmf
g

~

oleObject430.bin

oleObject35.bin

image342.wmf
RMS

g

oleObject431.bin

image343.wmf
RMS

g

g

g

1

.

0

~

9

.

0

~

+

=

oleObject432.bin

oleObject433.bin

image344.wmf
a

oleObject434.bin

image345.wmf
(

)

n

e

oleObject435.bin

image346.wmf
(

)

n

r

image36.wmf
[

]

1

0

-

-

p

S

oleObject436.bin

image347.wmf
(

)

n

e

ˆ

oleObject437.bin

image348.wmf
(

)

(

)

(

)

(

)

(

)

255

,

,

0

,

1

1

ˆ

2

2

K

=

-

+

-

+

=

n

for

n

r

n

e

n

e

a

a

a

a

oleObject438.bin

oleObject439.bin

oleObject440.bin

image349.wmf
b

oleObject441.bin

image350.wmf
g

oleObject36.bin

oleObject442.bin

image351.wmf
n

ˆ

oleObject443.bin

image352.wmf
[

]

0

g

oleObject444.bin

image353.wmf
[

]

[

]

(

)

d

g

n

g

-

=

-

1

0

,

ˆ

max

oleObject445.bin

image354.wmf
[

]

1

-

g

oleObject446.bin

image355.wmf
05

.

0

=

d

image37.wmf
S

oleObject447.bin

oleObject448.bin

oleObject449.bin

image356.wmf
1

=

bfi

f

oleObject450.bin

oleObject451.bin

oleObject452.bin

image357.wmf
SAD

f

oleObject453.bin

image358.wmf
5

=

K

oleObject37.bin

oleObject454.bin

image359.wmf
a

oleObject455.bin

oleObject456.bin

image360.wmf
(

)

K

n

1

1

-

+

=

=

g

b

a

oleObject457.bin

image361.wmf
g

a

=

oleObject458.bin

image362.wmf
g

b

=

oleObject459.bin

image38.wmf
1

0

-

k

image363.wmf
c

g

ˆ

oleObject460.bin

image364.wmf
20

)

ˆ

(

10

ˆ

c

dB

c

E

g

c

g

-

=

oleObject461.bin

image365.wmf
c

E

oleObject462.bin

image366.wmf
30

9

.

1

ˆ

-

´

=

k

g

dB

c

oleObject463.bin

image367.wmf
k

oleObject464.bin

oleObject38.bin

oleObject465.bin

image368.wmf
2

ˆ

c

g

oleObject466.bin

image369.wmf
20

ˆ

10

ˆ

dB

c

g

c

g

=

oleObject467.bin

image370.wmf
å

å

=

=

×

×

+

=

63

0

2

63

0

2

2

)

(

2

)

(

ˆ

)

25

.

0

2

25

.

0

(

ˆ

n

n

c

c

n

c

n

c

g

k

g

oleObject468.bin

image371.wmf
i

c

dB

c

E

E

k

g

ˆ

20

25

.

1

ˆ

+

-

-

´

=

oleObject469.bin

oleObject470.bin

image39.wmf
0

k

image372.wmf
2

k

oleObject471.bin

oleObject472.bin

image373.wmf
(

)

(

)

(

)

63

,

,

0

,

2

ˆ

ˆ

2

K

=

+

=

¢

n

for

n

c

g

n

c

g

n

u

c

c

oleObject473.bin

image374.wmf
(

)

n

c

oleObject474.bin

image375.wmf
(

)

n

c

2

oleObject475.bin

image376.wmf
(

)

n

c

g

c

ˆ

oleObject39.bin

oleObject476.bin

oleObject477.bin

oleObject478.bin

oleObject479.bin

image377.wmf
lev

N

oleObject480.bin

image378.wmf
(

)

n

u

¢

oleObject481.bin

image379.wmf
(

)

n

u

¢

oleObject482.bin

image40.wmf
0

v

image380.wmf
(

)

n

u

oleObject483.bin

image381.wmf
(

)

n

c

oleObject484.bin

image382.wmf
=

p

i

oleObject485.bin

image383.wmf
p

g

ˆ

oleObject486.bin

image384.wmf
[

]

1

ˆ

-

c

g

oleObject487.bin

oleObject40.bin

image385.wmf
[

]

k

p

g

-

ˆ

oleObject488.bin

image386.wmf
[

]

1

-

p

i

oleObject489.bin

image387.wmf
[

]

[

]

[

]

[

]

i

i

i

as

number

selection

final

the

compute

i

i

update

i

i

then

i

i

if

i

then

j

if

j

j

then

g

if

k

for

j

initialize

else

i

i

then

g

g

if

i

else

i

then

g

if

else

i

then

g

if

i

then

bitrate

UC

VC

if

else

i

bitrate

bitrate

UC

bitrate

UC

if

i

initialize

p

p

p

p

p

p

p

p

p

k

p

p

p

c

c

p

p

p

p

p

+

=

=

-

=

>

-

=

>

+

=

>

=

=

+

=

>

=

=

<

=

<

=

£

Ù

Ù

=

£

Ù

³

Ù

Ú

£

Ù

=

-

-

-

-

1

1

1

1

1

0

2

1

6

.

0

ˆ

5

.

0

0

1

ˆ

3

ˆ

2

1

9

.

0

ˆ

0

6

.

0

ˆ

1

9600

!

!

0

))

16400

9600

(

(

)

7200

(!

2

oleObject490.bin

image388.wmf

oleObject491.bin

image389.wmf
c

g

ˆ

oleObject492.bin

image41.wmf
x

image390.wmf
l

oleObject493.bin

image391.wmf
(

)

n

l

r

-

=

1

5

.

0

oleObject494.bin

image392.wmf
n

r

oleObject495.bin

image393.wmf
(

)

(

)

C

C

E

E

E

E

r

+

-

=

n

n

n

oleObject496.bin

image394.wmf
n

E

oleObject497.bin

image1.wmf
I

oleObject41.bin

image395.wmf
C

E

oleObject498.bin

oleObject499.bin

image396.wmf
l

oleObject500.bin

oleObject501.bin

image397.wmf
q

oleObject502.bin

image398.wmf
q

oleObject503.bin

image42.wmf
2

1

0

,

,

v

v

v

image399.wmf
[

]

(

)

[

]

(

)

[

]

å

=

-

-

=

14

0

2

1

0

i

dist

i

f

i

f

LSF

oleObject504.bin

image400.wmf
[

]

(

)

i

f

0

oleObject505.bin

image401.wmf
[

]

(

)

i

f

1

-

oleObject506.bin

image402.wmf
q

oleObject507.bin

image403.wmf
1

0

,

400000

25

.

1

£

£

-

=

q

q

by

d

constraine

LSF

dist

oleObject508.bin

oleObject42.bin

oleObject509.bin

oleObject510.bin

image404.wmf
m

S

oleObject511.bin

image405.wmf
lq

=

m

S

oleObject512.bin

image406.wmf
m

S

oleObject513.bin

oleObject514.bin

image407.wmf
[

]

0

g

image43.wmf
2

1

0

,

,

k

k

k

oleObject515.bin

image408.wmf
c

g

ˆ

oleObject516.bin

image409.wmf
[

]

1

-

g

oleObject517.bin

image410.wmf
c

g

ˆ

oleObject518.bin

image411.wmf
[

]

1

-

g

oleObject519.bin

image412.wmf
[

]

0

g

oleObject43.bin

oleObject520.bin

image413.wmf
c

g

ˆ

oleObject521.bin

image414.wmf
[

]

[

]

1

0

-

³

g

g

oleObject522.bin

oleObject523.bin

oleObject524.bin

oleObject525.bin

oleObject526.bin

image415.wmf
[

]

[

]

1

0

-

£

g

g

image44.wmf
1

,...,

0

,

)

(

2

2

-

=

=

k

j

v

j

x

oleObject527.bin

image416.wmf
[

]

(

)

c

m

m

c

g

S

g

S

g

ˆ

1

ˆ

0

-

+

=

oleObject528.bin

image417.wmf
(

)

n

u

¢

oleObject529.bin

image418.wmf
(

)

1

1

-

-

+

-

=

z

c

z

c

z

F

pe

pe

inno

oleObject530.bin

image419.wmf
(

)

n

r

c

pe

-

=

1

125

.

0

oleObject531.bin

image420.wmf
12800

=

celp

sr

oleObject44.bin

oleObject532.bin

image421.wmf
(

)

n

r

c

pe

-

=

1

15

.

0

oleObject533.bin

image422.wmf
16000

=

celp

sr

oleObject534.bin

image423.wmf
n

r

oleObject535.bin

image424.wmf
(

)

(

)

(

)

(

)

[

]

63

,

,

0

1

1

K

=

-

+

+

-

=

¢

n

for

n

c

n

c

c

n

c

n

c

pe

oleObject536.bin

image425.wmf
(

)

1

-

c

image45.wmf
2

,

1

,

=

i

I

li

oleObject537.bin

image426.wmf
(

)

64

c

oleObject538.bin

image427.wmf
(

)

(

)

(

)

n

c

g

n

v

g

n

u

c

p

¢

+

=

ˆ

ˆ

oleObject539.bin

image428.wmf
(

)

(

)

(

)

(

)

(

)

1

1

ˆ

-

+

+

-

¢

=

n

c

n

c

c

g

n

u

n

u

pe

c

oleObject540.bin

oleObject541.bin

image429.wmf
(

)

n

u

oleObject542.bin

oleObject45.bin

image430.wmf
(

)

n

u

c

oleObject543.bin

oleObject544.bin

image431.wmf
(

)

n

u

x

oleObject545.bin

image432.wmf
w

L

oleObject546.bin

image433.wmf
L

oleObject547.bin

image434.wmf
640

=

c

L

image46.wmf
2

,

1

,

1

1

2

1

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

=

i

k

k

k

I

L

li

i

oleObject548.bin

image435.wmf
(

)

(

)

(

)

(

)

ï

î

ï

í

ì

-

+

=

-

=

-

-

=

=

1

,...,

1

,...,

0

1

,...

w

x

w

c

L

L

L

n

n

u

L

n

n

u

L

n

n

u

n

u

oleObject549.bin

oleObject550.bin

oleObject551.bin

image436.wmf
(

)

wn

u

oleObject552.bin

image437.wmf
(

)

(

)

(

)

(

)

ï

ï

ï

î

ï

ï

ï

í

ì

-

+

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

-

-

=

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

=

1

,...,

1

2

2

cos

1

5

.

0

1

,...,

0

0

.

1

1

,...

1

2

2

cos

1

5

.

0

w

w

w

w

w

w

L

L

L

n

L

L

L

n

L

n

L

n

L

L

n

n

w

p

p

oleObject553.bin

oleObject554.bin

