3GPP TSG-SA WG3 Meeting #94Ad-Hoc
S3-190929
Stockholm (Sweden), 11-15 March 2019
revision of S3-190639
Source:
NEC
Title:
Solution for Established Key Synchronization
Document for:
Approval

Agenda Item:
5.5
1
Decision/action requested

Accept this pCR for inclusion in TR 33.835
2
References

[1]
3GPP TS 33.835 Study on Authentication and Key Management for Application based on 3GPP credentials in 5G
[2]
S3-190640 Discussion on Implicit Bootstrapping

[3]
S3-190646 New KI on Synchronization of Keys when using established keys
3
Rationale

As explained in document [2] it is necessary to identify the key that is used for AKMA [1] in case of implicit bootstrapping or established key use. This solution proposes how to identify the key when it is to be used with AKMA according to the key issue introduced in [3].

Revision 1:

-
The title was changed;

-
An Editor’s Note was added in to study the impact of using ngKSI for key identification;
-
An Editor’s Note was added to say that the evaluation should address backwards compatibility issues, if any.
4
Detailed proposal

**** Start of Change ****
6.X
Solution X: Key Identification when Implicit Bootstrapping is used
6.x.1
Introduction
This solution addresses key issue #3 (Authentication) and key issue #xx (Established Key Synchronization).
This solution introduces a key identifier in order to identify the key used for implicit bootstrapping. The key to be identified depends on the solution and can be an established key from the 5G key hierarchy or a key derived from this key hierarchy such as the KAKMA. This solution refers to the KAUSF and the AUSF, however, it can easily be generalized to also work for other keys and other network functions.

The solution has two options:

1)
The key identifier is calculated from the keys;

2)
The ngKSI is reused.
6.x.2
Solution details
6.x.2.1
Option 1 – Key Identifier calculated from the keys

In this option, an AKMA KAUSF identifier (A-KI) is calculated from the KAUSF as follows:

A-KI = KDF (KAKMA, "AKMA").

The UE and the AUSF will store the KAUSF together with this identifier. The UE and AUSF may store more than one A-KI and KAUSF pair in order to combat desynchronization errors.

In order to use the key, the procedure is as follows:

1)
Whenever the UE starts an initiation procedure for AKMA, the UE will retrieve the A-KI corresponding to the latest KAUSF from memory. The UE will then send a service request according to solution 2 to the AKMA server including the A-KI of the KAUSF.

2)
The AKMA server / AUSF looks up the key based on the A-KI received (and UE identity if included) and if found uses this key for further procedures with the UE. If no key was found, the AUSF will either:

-
Fall back to solution #2 and run an authentication; or

-
Return an error message with another A-KI that the AUSF has in memory for the UE.

3)
Upon reception of the response the UE will either:

-
Perform the authentication according to solution #2; or

-
Retrieve the KAUSF that corresponds to the A-KI received or if not found, return an error message.
6.x.2.2
Option 2 – Reuse of ngKSI
Editor’s Note: The impacts of using ngKSI for key identification is FFS.
In this option, the existing ngKSI is reused. In order to do so the AUSF has to receive the ngKSI that is communicated to the UE. This can be achieved as follows:

EAP AKA'

After the SEAF has received the RES from the UE, the SEAF forwards the RES in a Nausf_Authentication Authenticate Request message. In this message, the SEAF also includes the ngKSI

The AUSF then stores the ngKSI together with the KAUSF.

5G AKA

After the SEAF has received the RES* from the UE, the SEAF forwards the RES* in a Nausf_Authentication Authenticate Request message. In this message, the SEAF also includes the ngKSI

The AUSF then stores the ngKSI together with the KAUSF.

Binding of the ngKSI to KSEAF
In order to make sure that both the UE and the AUSF have the same ngKSI, the calculation of the KSEAF is changed as follows to also include the ngKSI.:

KSEAF = KDF (KAUSF, Serving network name, ngKSI)
Using the key
In order to use the key, the procedure is as follows:

1)
Whenever the UE starts an initiation procedure for AKMA, the UE will retrieve the ngKSI corresponding to the latest KAUSF from memory. The UE will then send a service request according to solution 2 to the AKMA server including the ngKIS of the KAUSF.

2)
The AKMA server / AUSF looks up the key based on the ngKSI received (and UE identity if included) and if found uses this key for further procedures with the UE. If no key was found, the AUSF will either:

-
Fall back to solution #2 and run an authentication; or

-
Return an error message with another ngKSI that the AUSF has in memory for the UE.

3)
Upon reception of the response the UE will either:

-
Perform the authentication according to solution #2; or

-
Retrieve the KAUSF that corresponds to the ngKSI received or if not found, return an error message.
6.x.3
Evaluation
Editor’s note: The evaluation is FFS.
Editor’s Note: The evaluation should make statements of how and whether backwards compatibility is achieved if existing network nodes are touched.

