3GPP TR 33.730 V1.10.0 (20252026-1202)
14
Release 20

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 33.730 V1.10.0 (20252026-1202)

	[bookmark: spectype2]Technical Report




	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group System Aspects;
Study on Security Assurance Specification (SCAS) for Container-based Products;
[bookmark: specRelease](Release 20)

		

	

	


	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.


[bookmark: _MON_1684549432]
	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
https://www.3gpp.org


	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2025, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association



[bookmark: tableOfContents]
Contents
Foreword	5
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	8
3.3	Abbreviations	8
4	Assumptions	8
5	Assets and threats for Container-based Products	9
5.1	Introduction	9
5.2	 Critical Assets	9
5.2.1	Mapping of existing Critical Assets from GNP	9
5.2.2	Mapping of existing Critical Assets from GVNP	10
5.2.3	Critical Assets for GCNP	10
5.3	 Threats	11
5.3.1	Generic threats format	11
5.3.2	Generic threats for GCNP	12
5.3.2.1	Introduction	12
5.3.2.2	Threats related to 3GPP-defined interfaces	12
5.3.2.3	Threats related to interfaces introduced in container environments	12
5.3.2.4	Spoofing identity	12
5.3.2.4.1	Default Accounts	12
5.3.2.4.2	Weak Password Policies	12
5.3.2.4.3	Password peek	12
5.3.2.4.4	Direct Root Access	12
5.3.2.4.5	IP Spoofing	13
5.3.2.4.6	Malware	13
5.3.2.4.7	Eavesdropping	13
5.3.2.4.8	Service Account Token Abuse	13
5.3.2.4.9	API Endpoint Impersonation	13
5.3.2.5	Tampering	13
5.3.2.5.1	Software Tampering	13
5.3.2.5.2	Ownership File Misuse	13
5.3.2.5.3	Boot tampering	13
5.3.2.5.4	Log Tampering	14
5.3.2.5.5	OAM traffic Tampering	14
5.3.2.5.6	File Write Permissions Abuse	14
5.3.2.5.7	User Session Tampering	14
5.3.2.5.8	Exposed Containerization API	14
5.3.2.5.9	Image Registry Tampering	14
5.3.2.5.10	Pod Spec/Manifest Modification	14
5.3.2.5.11	File Tampering inside Containers	15
5.3.2.6	Repudiation	15
5.3.2.6.1	Lack of User Activity Trace	15
5.3.2.6.2	Lack of Container-Level Audit Logging	15
5.3.2.6.3	Orchestrator Audit Logs Disabled	15
5.3.2.7	Information disclosure	15
5.3.2.7.1	Poor key generation	15
5.3.2.7.2	Poor key management	16
5.3.2.7.3	Weak cryptographic algorithms	16
5.3.2.7.4	Insecure Data Storage	16
5.3.2.7.5	System Fingerprinting	16
5.3.2.7.6	Malware	16
5.3.2.7.7	Personal Identification Information Violation	16
5.3.2.7.8	Insecure Default Configuration	16
5.3.2.7.9	File/Directory Read Permissions Misuse	16
5.3.2.7.10	Insecure Network Services	16
5.3.2.7.11	Unnecessary Services	16
5.3.2.7.12	Log Disclosure	16
5.3.2.7.13	Unnecessary Applications	17
5.3.2.7.14	Eavesdropping	17
5.3.2.7.15	Security threat caused by lack of GCNP traffic isolation	17
5.3.2.7.16	Secrets in Environment Variables	17
5.3.2.7.17	Secrets in Image Layers	17
5.3.2.8	Denial of Service	17
5.3.2.8.1	Resource Starvation via Orchestration	18
5.3.2.8.2	Container Spawn Storm	18
5.3.2.8.3	DoS via Log Volume	18
5.3.2.9	Elevation of privilege	18
5.3.2.9.1	Abuse of Linux Capabilities	18
5.3.2.9.2	Privilege Escalation via Orchestration Misconfiguration	19
5.3.2.9.3	Running as Root inside Containers	19
5.3.2.9.4	Use of Privileged Containers	19
5.3.2.10	Generic assets and threats for network functions supporting SBA interfaces	20
6	Test cases for Container-based Products	20
6.1	Analysis of existing general test cases	20
6.1.1	Security functional requirements deriving from containerization and related test cases	28
6.1.1.1	Security non-functional requirements related to passwords	28
6.1.1.2	Security requirements related to logging	28
6.1.1.3	Using trusted image repositories for container image handling	28
6.1.1.4	Vulnerability scanning for containerized NF	29
6.1.1.5	Containerized NF run-time security	30
6.1.1.6	Data protection in containerized NF	30
6.2	Potential new test cases for GCNP	30
7	Conclusions	32
Annex A: Change history	33




[bookmark: foreword][bookmark: _Toc215153919]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall	indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should	indicates a recommendation to do something
should not	indicates a recommendation not to do something
may	indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can	indicates that something is possible
cannot	indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction]
[bookmark: scope][bookmark: _Toc215153920]
1	Scope
The present document studies the applicability and adaptation of the GNP threats/assets in TR 33.926 [2], the GVNP threats/assets in TR 33.927 [3] and the existing general SCAS test cases in TS 33.117 [4] to generic 3GPP container-based network products (GCNPs).

It identifies:
-	Critical assets and threats relevant to GCNPs, including adaptations of existing threats and new GCNP-specific threats.
-	Applicability of existing SCAS test cases to GCNPs.
-	New or modified test cases to address GCNP-specific threats and deployment characteristics.
The study focuses on GCNPs where the container orchestration platform (e.g. Kubernetes) and container runtime are part of the evaluated network product boundary.
[bookmark: references][bookmark: _Toc215153921]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TR 33.926: „Security Assurance Specification (SCAS) threats and critical assets in 3GPP network product classes“
[3]	3GPP TR 33.927: „Security Assurance Specification (SCAS); threats and critical assets in 3GPP virtualized network product classes“
[4]	3GPP TS 33.117: „Catalogue of general security assurance requirements“
[5]	ETSI GS NFV-IFA 011: "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; VNF Descriptor and Packaging Specification".
[6]	ETSI GR NFV-IFA 029: "Network Functions Virtualisation (NFV) Release 3; Architecture; Report on the Enhancements of the NFV architecture towards "Cloud-native" and "PaaS"".

[bookmark: definitions][bookmark: _Toc215153922]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc215153923]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc215153924]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc215153925]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

CISM	Container Infrastructure Service Management
CNF	Containerized Network Function
CNI	Container Network Interface
GCNP	Generic Containerized Network Product
GNP	Generic Network Product
GVNP	Generic Virtualized Network Product
VNF	Virtualized Network Function

[bookmark: clause4][bookmark: _Toc215153926]4	Assumptions

A Generic Container-based Network Product (GCNP) constitutes a minimal container product consisting of:
-	Container image(s) containing the network function implementation and dependencies
-	Image registry reference with associated metadata (tags, manifests)
-	Basic configuration parameters (environment variables, command arguments)
-	Minimal deployment descriptors (orchestration manifests)
Beyond the minimal container product, GCNP vendor offerings may represent different product packaging classes of increasing sophistication:
-	Templated Package Product: Vendor-supplied templated deployment packages (e.g., Helm charts, Kustomize overlays) with comprehensive configuration management and standardized packaging for simplified customer deployment
-	Enhanced Container Product: Vendor-provided Custom Resource Definitions (CRDs), installation scripts, and comprehensive deployment automation, enabling platform-agnostic deployment with advanced lifecycle capabilities
-	Platform-ready Product: Complete vendor-delivered solution including monitoring components, observability integration, backup/restore procedures, and comprehensive documentation for enterprise platform integration
NOTE:	Operator-based automation and platform-specific integrations are typically implemented by system integrators or customer platform teams rather than delivered directly by network function vendors.
The GCNP operates within a container orchestration environment that is either:
-	included within the network product boundary, or
-	assumed to have undergone equivalent security assurance evaluation if residing outside the product boundary
The GCNP may consist of multiple containers (pods) forming the network function.
The Vendor defines the product boundaries in accordance with SECAM principles as established in TR 33.916, clause 4.2.
The minimal GCNP (Container images, orchestration manifests, and runtime configuration) is under the vendor's control, within the scope of security evaluation.
Networking between GCNP components utilizes a Container Network Interface (CNI) plugin; security controls at the orchestration level fall within scope if contained within the product boundary.
Host OS and underlying hardware platform security remain out of scope unless explicitly included in the vendor-defined product boundary.
The security assurance methodology follows the principles established in TR 33.916, clause 5, with environmental assumptions requiring validation during deployment by the network operator.
4.1	Overview 
4.1.1	Description of the GCNP model
A container-based network product class is the class of products that implement 3GPP defined network functionalities running on container infrastructure (e.g. Container as a Service platform), along with PaaS supporting container-based services. The deployment scenarios are summarized in ETSI NFV-IFA 029 [6]. There are several deployment models for container-based network products, the two most common types are containers on bare metal and containers in virtual machines. For GCNP on bare metal and GCNP in virtual machine, the models are depicted in figure 4.1.1-1.

 
Figure 4.1.1-1: GCNP model for container on bare metal and container in virtual machine
The components in Figure 4.1.1-1 are described in the following clauses.
Editor’s Note: The impact of different deployment models above to GCNP model is to be analysed.
4.1.2	Functions defined by 3GPP
A generic container-based network function implements 3GPP-defined functions. The 3GPP-defined functions are deployed over the Container Infrastructure Service as defined in ETSI NFV-IFA 029 [6].
4.1.3	Other functions
A GCNP will also contain functionalities not or not fully covered by 3GPP specifications. 
Examples include, but are not limited to, remote management functions.
4.1.4	Operating system (OS)
The GCNP does not include any OS, since it shares the host OS of the container infrastructure. Depending on the vendors product boundary definition, the test lab has to decide on the applicability of OS-related test cases.
4.1.5	Container Infrastructure
Depending on the vendors product boundary definition, the test lab has to decide on the applicability of Container Infrastructure-related test cases.

4.1.6	Interfaces
Remote logical interfaces are those interfaces used to communicate with the GCNP from other network nodes. These interfaces also include remote access interfaces for GCNP maintenance through e.g. an Element Management (EM) or a Virtualized Network Function Manager (VNFM).
[bookmark: _Toc215153927]5	Assets and threats for Container-based Products 
[bookmark: _Toc215153928]5.1	Introduction
The present clause contains assets and threats that are believed to apply to more than one container-based network product (GCNP).
The format follows TR 33.926 [2] and TR 33.927 [3] to allow alignment with existing SCAS threat catalogues, with adaptations for containerized deployments.
Container-based network products may consist of multiple container images orchestrated by a container orchestration platform (e.g. Kubernetes), either included in the product boundary or assumed to have undergone equivalent evaluation. The threats below cover both intra-GCNP interactions and interfaces between the GCNP and external entities (e.g. OAM systems, service-based interfaces).
[bookmark: _Toc215153929]5.2		Critical Assets
[bookmark: _Toc215153930]5.2.1	Mapping of existing Critical Assets from GNP
Mapping of critical assets of GNP (see TR 33.926 [2], clause 5.2) to GCNP.
	Critical Asset for GNP
	Applicablity for GCNP

	User account data and credentials (e.g. passwords)
	applicable for GCNP

	Log data
	applicable for GCNP

	Configuration data, e.g. GNP's IP address, ports, VPN ID, Management Objects (e.g. user group, command group) etc.
	applicable for GCNP with adaptations

	Operating System (OS), i.e. the files that make up the OS and its processes (code and data)
	applicable for GCNP with adaptations

	GNP Application
	applicable for GCNP with adaptations

	Sufficient processing capacity: that processing powers are not consumed close to limits
	not applicable

	Hardware, e.g. mainframe, board, power supply unit etc.
	not applicable

	Console interface, for local access
	applicable for GCNP

	OAM interface, for remote access
	applicable for GCNP

	GNP Software: binary code or executable code
	applicable for GCNP


[bookmark: _Toc215153931]5.2.2	Mapping of existing Critical Assets from GVNP
Mapping of critical assets of GVNP (see TR 33.927 [3], clause 5.2.1) to GCNP.
	Critical Asset for GVNP
	Applicablity for GCNP

	User account data and credentials (e.g. passwords, private key)
	applicable for GCNP

	Log data
	applicable for GCNP

	Configuration data, e.g. GVNP's IP address, ports, VPN ID, Management Objects (e.g. user group, command group) etc.
	applicable for GCNP with adaptations

	Guest Operating System, i.e. the files that make up the guest OS and its processes (code and data)
	applicable for GCNP with adaptations

	GVNP Application
	applicable for GCNP with adaptations

	Sufficient processing capacity: that processing powers are not consumed close to limits
	not applicable

	OAM interface, for remote access: interface between GVNP and OAM system
	applicable for GCNP with adaptations

	Interface between virtualised network function (VNF) and VNFM
	applicable for GCNP with adaptations

	Interface between VNF and virtualisation layer, for providing the execution environment to run VNF
	applicable for GCNP with adaptations

	GVNP Software package (binary code or executable code) which includes: 
-	VNFD;
-	VNF image and image description file;
-	Configuration data (e.g. manifest file as defined in [5])
	applicable for GCNP with adaptations



[bookmark: _Toc215153932]5.2.3	Critical Assets for GCNP
List of new, copied and derived critical assets for GCNP.
	Critical Asset for GCNP
	Origin

	User account data and credentials (e.g. passwords, private key, API tokens, Kubernetes service account tokens)
	copied from GNP and GVNP

	Log data (container logs, orchestrator audit logs, security event logs)
	copied from GNP and GVNP

	Configuration data - including CNF’s network configuration (IP addresses, ports, VPN IDs), orchestration manifests, Helm charts, Kubernetes RBAC policies, and CNI network policies
	copied from GNP and GVNP

	Container images - including base images, application layers, manifests, and associated image signatures
	derived from GNP and GVNP
The GCNP shares the hosts kernel and a base image is provided containing the minimal userland from another OS.

	Guest operating system layers inside containers - including files and processes of the container image OS layer
	derived from GNP and GVNP

	Container orchestration configuration - e.g. Deployment/StatefulSet specs, PodSecurity settings, NetworkPolicies
	new for GNP

	GCNP Application - the software components implementing 3GPP-defined NF functionality
	derived from GNP and GVNP

	Sufficient processing capacity: that processing powers are not consumed close to limits
	derived from GNP and GVNP


	Sufficient storage capacity: limited or exhausted storage capacity should not hinder the functionality
	new for GNP

	Service interfaces defined in relevant 3GPP specifications
	copied from GNP and NF-specific sections

	Service interfaces not defined by 3GPP but exposed by the CNF, container orchestration API
	new for GCNP

	OAM interface, for remote access: interface between GCNP and OAM system
	derived from GNP and GVNP

	Interface between GCNP workloads and the orchestration control plane (e.g. Kubernetes API) - In the container SCAS context, the VNFM role is effectively handled by the Container Infrastructure Service Management (CISM),
	new for GCNP

	Interface between GCNP workloads and containerization layer, for providing the execution environment to run CNF; CNI - Execution environment interface between container runtime and orchestration platform
	new for GCNP



[bookmark: _Toc215153933]5.3		Threats
[bookmark: _Toc131404810][bookmark: _Toc131404711][bookmark: _Toc215153934]5.3.1	Generic threats format
Threats are described using the following format:
-	Threat Name: 
-	Threat Category:
-	Threat Description:
-	Threatened Asset: 
[bookmark: _Toc131404811][bookmark: _Toc131404712][bookmark: _Toc215153935]5.3.2	Generic threats for GCNP
[bookmark: _Toc131404812][bookmark: _Toc131404713][bookmark: _Toc215153936]5.3.2.1	Introduction
The common STRIDE threat categories used in TR 33.926 [2], clause 5.3.1 also apply to GCNP. Many generic threats from TR 33.926 clause 5.3 are applicable with adaptation for container contexts. In addition, GCNP have unique threats due to container runtime, orchestration APIs, and image distribution.
[bookmark: _Toc215153937]5.3.2.2	Threats related to 3GPP-defined interfaces
GCNP inherit all the threats related to 3GPP-defined interfaces in TR 33.926 [2], clause 5.3.2, without any changes. It means that there is no need repeat the threats relating to 3GPP-defined interfaces which are covered in 3GPP security specifications. If threats relating to 3GPP-defined interfaces are found to be not sufficiently covered in existing 3GPP security specifications, they need to be addressed in the SCAS for containerized network products.
As in TR 33.927. clause 5.3.2.2, threats for 3GPP-defined interfaces are as per TR 33.926, clause 5.3.2 unless GCNP-specific considerations arise (e.g. exposure of SBA endpoints through orchestration misconfiguration). If existing protections are absent or misconfigured, these interfaces remain in scope for container SCAS.
[bookmark: _Toc131404715][bookmark: _Toc131404814][bookmark: _Toc215153938]5.3.2.3	Threats related to interfaces introduced in container environments
Two interfaces unique to GCNP are identified as critical assets:
-	Interface between GCNP workloads and the orchestration control plane (e.g. Kubernetes API).
-	Interface between GCNP workloads and the container runtime API (e.g. Docker socket, containerd API).
If unprotected, these interfaces can be exploited for privilege escalation, container escape, or manipulation of other workloads.
[bookmark: _Toc131404716][bookmark: _Toc131404815][bookmark: _Toc215153939]5.3.2.4	Spoofing identity
[bookmark: _Toc131404717][bookmark: _Toc131404816][bookmark: _Toc215153940]5.3.2.4.1	Default Accounts
The threat in clause 5.3.3.1 of TR 33.926 [2] applies to GCNP. 
The difference is that VNF is accessed through VNC (Virtual Network Console) rather than through the physical console interface, an attacker can use a default account to access a CNF via VNC.
Default accounts can be present in container images.
[bookmark: _Toc131404718][bookmark: _Toc131404817][bookmark: _Toc215153941]5.3.2.4.2	Weak Password Policies
The threat in clause 5.3.3.2 of TR 33.926 [2] applies to GCNP. 
However, the attacker using the weak password accesses GCNP through VNC (Virtual Network Console) rather than through the physical console interface.
[bookmark: _Toc131404719][bookmark: _Toc131404818][bookmark: _Toc215153942]5.3.2.4.3	Password peek
The threat in clause 5.3.3.3 of TR 33.926 applies to GCNP. 
However, the attacker using the peeked password accesses GCNP through VNC (Virtual Network Console) rather than through the physical console interface.
[bookmark: _Toc131404720][bookmark: _Toc131404819][bookmark: _Toc215153943]5.3.2.4.4	Direct Root Access
The threat in clause 5.3.3.4 of TR 33.926 [2] applies to GCNP. 
[bookmark: _Toc131404721][bookmark: _Toc131404820][bookmark: _Toc215153944]5.3.2.4.5	IP Spoofing
The threat in clause 5.3.3.5 of TR 33.926 [2] applies to GCNP. 
However, the objective of unauthorized access is a VNF, not a computer.
[bookmark: _Toc131404722][bookmark: _Toc131404821][bookmark: _Toc215153945]5.3.2.4.6	Malware
The threat in clause 5.3.3.6 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404723][bookmark: _Toc131404822][bookmark: _Toc215153946]5.3.2.4.7	Eavesdropping
The threat in clause 5.3.3.7 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc215153947]5.3.2.4.8	Service Account Token Abuse
-	Threat Name: Service Account Token Abuse
-	Threat Category: Spoofing identity
-	Threat Description: An attacker could steal a Kubernetes service account token from a pod and use it to impersonate the GCNP, resulting in the attacker being able to interact with the container API, enumerate resources, privilege escalation, lateral movement, data exfiltration and abuse of resources resulting in denial of service.
-	Threatened Asset: Kubernetes API credentials
[bookmark: _Toc215153948]5.3.2.4.9	API Endpoint Impersonation
An attacker could spoof an orchestration API or SBA endpoint to mislead GCNP components.
[bookmark: _Toc131404823][bookmark: _Toc215153949]5.3.2.5	Tampering
[bookmark: _Toc131404724][bookmark: _Toc131404824][bookmark: _Toc215153950]5.3.2.5.1	Software Tampering
The threat in clause 5.3.4.1 of TR 33.926 [2] applies to GCNP. 
Different from traditional physical network products, the entire GCNP is instantiated from the container image(s) and other information (e.g. configuration data, software environmental parameters, license terms information, script, manifest file, checksum, etc.).
-	Threat Name: Software Tampering
-	Threat Category: Tampering
-	Threat Description: Compared with GNP software, GCNP software has additional attack surfaces, e.g. in the process of CNF package onboarding, during which the software package of a GCNP can be tampered/altered if not protected. An attacker, for example, can inject malicious code or tamper the information inside the unprotected package during on boarding. Then after the instantiation of the GCNP, the tampered code can be executed to conduct several attacks (e.g. DoS, Information Stealing, Frauds and so on).
-	Threatened Asset: all critical assets of GCNP as listed in clause 5.2.1.
[bookmark: _Toc131404725][bookmark: _Toc131404825][bookmark: _Toc215153951]5.3.2.5.2	Ownership File Misuse
The threat in clause 5.3.4.2 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc215153952]5.3.2.5.3	Boot tampering
This threat is not applicable for GCNP since GCNP do not have a boot process in the traditional sense.
[bookmark: _Toc131404727][bookmark: _Toc131404827][bookmark: _Toc215153953]5.3.2.5.4	Log Tampering
The threat in clause 5.3.4.4 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404728][bookmark: _Toc131404828][bookmark: _Toc215153954]5.3.2.5.5	OAM traffic Tampering
The threat in clause 5.3.4.5 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404729][bookmark: _Toc131404829][bookmark: _Toc215153955]5.3.2.5.6	File Write Permissions Abuse
The threat in clause 5.3.4.6 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404730][bookmark: _Toc131404830][bookmark: _Toc215153956]5.3.2.5.7	User Session Tampering
The threat in clause 5.3.4.7 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc215153957]5.3.2.5.8	Exposed Containerization API
-	Threat Name: Exposed Containerization API
-	Threat Category: Tampering
-	Threat Description: An attacker who gains access to this API can exploit it to escalate their privileges within the system, potentially gaining unauthorized access to sensitive container configurations, network settings, and runtime data. This elevated access allows them to manipulate container security contexts, modify resource allocations, and potentially compromise both the containerized applications and the underlying host system's security boundaries.
-	Threatened Asset: orchestrator and runtime APIs
[bookmark: _Toc215153958]5.3.2.5.9	Image Registry Tampering
-	Threat Name: Image Registry Tampering
-	Threat Category: Tampering
-	Threat Description: An attacker who gains unauthorized access to a container image registry can insert malicious layers or replace trusted images with backdoored versions. This allows the attacker to embed malware, backdoors, or exploit code within images that are later pulled and run by production environments. When a compromised image is deployed, the attacker can gain initial access to target systems, escalate privileges, or persist undetected within the cluster. The threat is particularly severe if production systems automatically pull images from registries without rigorous validation or scanning, potentially enabling widespread compromise across multiple services or environments.
-	Threatened Asset: container image integrity
[bookmark: _Toc215153959]5.3.2.5.10	Pod Spec/Manifest Modification
-	Threat Name: Pod Spec/Manifest Modification
-	Threat Category: Tampering
-	Threat Description: An attacker who alters deployment manifests or pod specifications can modify pod configurations to add elevated capabilities, host mounts, or enable privileged mode. This manipulation enables the attacker to bypass container isolation, gain root-level access on the host, and access sensitive files or resources outside the container. By exploiting these changes, the attacker can escalate privileges, compromise cluster security, persist undetected, and move laterally within the Kubernetes environment. Such unauthorized modifications increase the risk of data theft, operational disruption, and full cluster compromise, especially if security controls such as least privilege or Pod Security Standards are not enforced.
-	Threatened Asset: deployment/manifest configurations
[bookmark: _Toc215153960]5.3.2.5.11	File Tampering inside Containers
-	Threat Name: File Tampering inside Containers
-	Threat Category: Tampering
-	Threat Description: An attacker who gains access to a container with writable filesystem layers can modify container files if read-only enforcement is not applied. Such tampering allows insertion or alteration of binaries, scripts, or configuration files within the container environment. This can lead to persistence of malicious code, privilege escalation, disruption of application behaviour, data theft, or lateral movement within the cluster. The risk increases significantly when containers are configured without strict immutability policies or security contexts that enforce read-only root filesystems. File tampering may also undermine the integrity and trustworthiness of container images and deployed workloads, potentially causing widespread impact across the environment.
-	Threatened Asset: in-container filesystem integrity
[bookmark: _Toc131404831][bookmark: _Toc215153961]5.3.2.6	Repudiation
[bookmark: _Toc131404731][bookmark: _Toc131404832][bookmark: _Toc215153962]5.3.2.6.1	Lack of User Activity Trace
The threat in clause 5.3.5.1 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc215153963]5.3.2.6.2	Lack of Container-Level Audit Logging
-	Threat Name: Lack of Container-Level Audit Logging
-	Threat Category: Repudiation
-	Threat Description: Absence of comprehensive audit logs for container-related events - such as container start/stop, image pulls, and capability assignments - creates a blind spot in monitoring and security. Without these logs, it becomes difficult or impossible to track user actions, detect unauthorized changes, or investigate suspicious activity within the container environment. This lack of traceability undermines accountability, making it easier for attackers or malicious insiders to repudiate their actions and evade detection or forensic analysis. The absence of container-level audit logging also hinders compliance with regulatory requirements and weakens the overall security posture by masking operational anomalies and potential attacks.
-	Threatened Asset: container event traceability
[bookmark: _Toc215153964]5.3.2.6.3	Orchestrator Audit Logs Disabled
-	Threat Name: Orchestrator Audit Logs Disabled
-	Threat Category: Repudiation
-	Threat Description: When Kubernetes orchestrator audit logs are disabled or not properly configured, it becomes impossible to prove or track actions taken via kubectl commands or API requests. This lack of audit trail severely undermines accountability and traceability within the cluster, enabling attackers or malicious insiders to perform unauthorized activities without leaving evidence. Without these logs, organizations lose critical visibility into who accessed or modified cluster resources, hindering detection of malicious behaviour, incident investigation, forensic analysis, and compliance with security policies or regulatory requirements. This gap increases the risk of undetected privilege escalation, unauthorized configuration changes, data tampering, or service disruptions, ultimately weakening the security posture and trustworthiness of the Kubernetes environment.
-	Threatened Asset: orchestration control operations
[bookmark: _Toc131404833][bookmark: _Toc215153965]5.3.2.7	Information disclosure
[bookmark: _Toc131404732][bookmark: _Toc131404834][bookmark: _Toc215153966]5.3.2.7.1	Poor key generation
The threat in clause 5.3.6.1 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404733][bookmark: _Toc131404835][bookmark: _Toc215153967]5.3.2.7.2	Poor key management
The threat in clause 5.3.6.2 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404734][bookmark: _Toc131404836][bookmark: _Toc215153968]5.3.2.7.3	Weak cryptographic algorithms
The threat in clause 5.3.6.3 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404735][bookmark: _Toc131404837][bookmark: _Toc215153969]5.3.2.7.4	Insecure Data Storage
-	Threat name: Insecure Data Storage
-	Threat Category: Information Disclosure
[bookmark: OLE_LINK2][bookmark: OLE_LINK1]-	Threat Description: The GCNP remotely stores sensitive data (e.g. passwords, private keys) on the logical volume that the orchestrator allocates to the GCNP. An attacker can retrieve these data if they have been stored in an insecure way (e.g. clear text, unsalted hashes). 
-	Threatened Asset: any sensitive data stored on the logical volume of the GCNP 
[bookmark: _Toc131404736][bookmark: _Toc131404838][bookmark: _Toc215153970]5.3.2.7.5	System Fingerprinting
The threat in clause 5.3.6.5 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404737][bookmark: _Toc131404839][bookmark: _Toc215153971]5.3.2.7.6	Malware
-	Threat name: Malware.
-	Threat Category: Information Disclosure.
-	Threat Description: A malware installed on the logical volume that the orchestrator allocates to the GCNP can access to the stored sensitive data (e.g. subscription data, logs).
-	Threatened Asset: any sensitive data stored on the logical volume of the GCNP 
[bookmark: _Toc131404738][bookmark: _Toc131404840][bookmark: _Toc215153972]5.3.2.7.7	Personal Identification Information Violation
The threat in clause 5.3.6.7 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404739][bookmark: _Toc131404841][bookmark: _Toc215153973]5.3.2.7.8	Insecure Default Configuration
The threat in clause 5.3.6.8 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404740][bookmark: _Toc131404842][bookmark: _Toc215153974]5.3.2.7.9	File/Directory Read Permissions Misuse
The threat in clause 5.3.6.9 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404741][bookmark: _Toc131404843][bookmark: _Toc215153975]5.3.2.7.10	Insecure Network Services
The threat in clause 5.3.6.10 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404742][bookmark: _Toc131404844][bookmark: _Toc215153976]5.3.2.7.11	Unnecessary Services
The threat in clause 5.3.6.11 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404743][bookmark: _Toc131404845][bookmark: _Toc215153977]5.3.2.7.12	Log Disclosure
The threat in clause 5.3.6.12 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404744][bookmark: _Toc131404846][bookmark: _Toc215153978]5.3.2.7.13	Unnecessary Applications
The threat in clause 5.3.6.13 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404745][bookmark: _Toc131404847][bookmark: _Toc215153979]5.3.2.7.14	Eavesdropping
The threat in clause 5.3.6.14 of TR 33.926 [2] applies to GCNP.
[bookmark: _Toc131404746][bookmark: _Toc131404848][bookmark: _Toc215153980]5.3.2.7.15	Security threat caused by lack of GCNP traffic isolation
The threat in clause 5.3.6.15 of TR 33.926 [2] applies to GCNP with the following addition:
 -	Threat name: Security threat caused by lack of GCNP traffic isolation.
-	Threat Category: Information Disclosure.
-	Threat Description: Absence or misconfiguration of network traffic isolation within the GCNP (Global Container Network Platform) can lead to unauthorized visibility and access to network communications between containers, pods, or services. Without proper isolation mechanisms - such as Kubernetes Network Policies, namespace segmentation, or service mesh controls - traffic can flow freely across workloads that should be isolated. This exposes sensitive data in transit, increases the risk of eavesdropping, data leakage, and lateral movement by malicious actors who compromise one component of the cluster. Attackers may intercept unencrypted or unauthorized traffic, gain insights into internal service architectures, and exploit this information to escalate attacks or exfiltrate confidential information. Effective traffic isolation is critical to maintaining confidentiality and limiting the blast radius of breaches especially in multi-tenant or complex microservices environments.
-	Threatened Asset: inter-pod/network traffic confidentiality
[bookmark: _Toc215153981]5.3.2.7.16	Secrets in Environment Variables
 -	Threat name: Secrets in Environment Variables.
-	Threat Category: Information Disclosure.
-	Threat Description: Storing secrets such as credentials or tokens in environment variables exposes them to significant security risks. These secrets are easily accessible by anyone with access to the container or node since environment variables can be inspected inside the container, appear in pod specs, and may be exposed in logs or debugging output. This exposure increases the chance of credential leakage, unauthorized access, and lateral movement within the cluster. Additionally, environment variables typically lack encryption at rest and in transit, have poor auditability, and are difficult to rotate once compromised, further exacerbating the risk. Attackers who access these environment variables can use the exposed secrets to gain unauthorized access to sensitive systems or data.
-	Threatened Asset: container runtime secrets
[bookmark: _Toc215153982]5.3.2.7.17	Secrets in Image Layers
 -	Threat name: Secrets in Image Layers
-	Threat Category: Information Disclosure.
-	Threat Description: Embedding secrets, such as private keys or credentials, within container image layers exposes them to anyone who can pull or inspect the image. Even if later removed in newer layers, these secrets remain retrievable from image history. Attackers gaining access to these secrets can authenticate to sensitive systems, bypass security controls, and potentially compromise the wider environment. This risk is heightened when images are stored in public or unsecured registries without proper scanning or scrubbing.
-	Threatened Asset: embedded image secrets
[bookmark: _Toc131404747][bookmark: _Toc131404849][bookmark: _Toc215153983]5.3.2.8	Denial of Service
The threats in all clauses of clause 5.3.7 for TR 33.926 [2] apply to GCNP. 
In addition, the following threats apply to GCNP.
[bookmark: _Toc215153984]5.3.2.8.1	Resource Starvation via Orchestration
 -	Threat name: Resource Starvation via Orchestration
-	Threat Category: Denial of Service.
-	Threat Description: An attacker who orchestrates pods with excessive CPU and memory requests can deliberately exhaust cluster resources, causing denial of service across workloads. By scheduling malicious pods that consume disproportionate compute or memory resources without proper limits, the attacker starves legitimate applications of critical resources, leading to degraded performance, application crashes, or total service unavailability. This threat is amplified in environments lacking resource quotas, limits, or proper orchestration policies, and can also drive up cloud costs through unnecessary autoscaling. Such attacks impact cluster stability, availability, and reliability, making resource management and enforcement crucial to mitigating risk.
-	Threatened Asset: cluster resource availability
[bookmark: _Toc215153985]5.3.2.8.2	Container Spawn Storm
 -	Threat name: Container Spawn Storm
-	Threat Category: Denial of Service.
-	Threat Description: An attacker who abuses the ability to create large numbers of pods or containers can overwhelm cluster resources, causing performance degradation, service disruption, and denial of service. By rapidly spawning excessive pods without proper controls or limits, the attacker exhausts CPU, memory, network, and orchestration resources, destabilizing the Kubernetes environment. This attack may also increase cloud infrastructure costs due to uncontrolled scaling. The threat is particularly severe in clusters lacking effective resource quotas, rate limiting, or admission controls, enabling the attacker to degrade availability or cause outages across multiple applications and services.
-	Threatened Asset: cluster orchestration capacity
[bookmark: _Toc215153986]5.3.2.8.3	DoS via Log Volume
 -	Threat name: DoS via Log Volume
-	Threat Category: Denial of Service.
-	Threat Description: An attacker generates excessive container logs to fill storage resources, causing denial of service by exhausting disk space or overwhelming log processing systems. This attack can disrupt cluster operations, block legitimate logging and monitoring, and hinder incident detection and response. Without controls like log rate limiting, retention policies, or alerting on unusual log volumes, excessive logging can degrade cluster performance, cause service outages, and increase operational costs. This threat is especially impactful in busy Kubernetes environments where logs are critical for security and operational visibility.
-	Threatened Asset: storage and logging subsystems
[bookmark: _Toc131404748][bookmark: _Toc131404850][bookmark: _Toc215153987]5.3.2.9	Elevation of privilege
All threats in clause 5.3.8 for TR 33.926 [2] apply to GCNP.
In addition, the following threats apply to GCNP:
[bookmark: _Toc215153988]5.3.2.9.1	Abuse of Linux Capabilities
 -	Threat name: Abuse of Linux Capabilities
-	Threat Category: Elevation of privilege
-	Threat Description: An attacker who exploits excessive or unnecessary Linux capabilities (e.g. CAP_SYS_ADMIN) granted to a container can escalate privileges beyond the intended scope. Linux capabilities break down root privileges into fine-grained permissions, and when improperly assigned or not dropped, they enable a compromised container process to perform privileged actions such as modifying system configurations, accessing sensitive kernel interfaces, or escaping container isolation. This abuse can lead to full host compromise, lateral movement within the cluster, or persistent control over the Kubernetes environment. The risk increases when containers run with default or elevated capabilities without careful restriction, lacking security context settings like dropping all unused capabilities or disabling privilege escalation mechanisms. Properly restricting Linux capabilities and using Kubernetes securityContext controls (e.g., allowPrivilegeEscalation: false) is critical to mitigating this threat.
-	Threatened Asset: host and container privilege boundaries
[bookmark: _Toc215153989]5.3.2.9.2	Privilege Escalation via Orchestration Misconfiguration
 -	Threat name: Privilege Escalation via Orchestration Misconfiguration
-	Threat Category: Elevation of privilege
-	Threat Description: An attacker who exploits RBAC misconfiguration in a Kubernetes cluster can create pods with elevated privileges by assigning themselves roles or permissions beyond their intended scope. Misconfigured role-based access control (RBAC) settings may allow an attacker to create or modify roles and role bindings that grant them the ability to launch pods with privileged settings, such as adding capabilities, mounting host filesystems, or running in privileged mode. This can lead to container breakout, host compromise, lateral movement within the cluster, and full cluster takeover. The risk is particularly high when the attacker is allowed the escalate permission on roles or clusterroles, enabling them to escalate privileges beyond their assigned limitations.
-	Threatened Asset: RBAC and orchestration policies
[bookmark: _Toc215153990]5.3.2.9.3	Running as Root inside Containers
 -	Threat name: Running as Root inside Containers
-	Threat Category: Elevation of privilege
-	Threat Description: When containers run with root user privileges by default, attackers who compromise such containers gain powerful capabilities that facilitate exploitation of container breakout vulnerabilities. Root execution inside containers enables attackers to perform privileged operations, bypass container isolation, manipulate kernel interfaces, and potentially escape to the host system. This gives them the ability to gain full root access on the underlying host, escalate privileges within the cluster, and control critical resources. Running containers as root increases the risk surface for attacks leveraging known and unknown kernel or runtime vulnerabilities, allowing attackers to execute arbitrary code with minimal restrictions and achieve persistent control over the Kubernetes environment.
-	Threatened Asset: container isolation enforcement
[bookmark: _Toc215153991]5.3.2.9.4	Use of Privileged Containers
 -	Threat name: Use of Privileged Containers
-	Threat Category: Elevation of privilege
-	Threat Description: Allowing containers to run in privileged mode grants them nearly unrestricted access to the host system, effectively bypassing key security mechanisms and container isolation. This elevated access enables an attacker who compromises such a container to interact directly with the host kernel, modify system files, and access sensitive data on the host and other workloads. Privileged containers can facilitate container escape, lateral movement, and full host takeover, significantly expanding the attacker’s capabilities. Running containers as privileged violates the principle of least privilege and greatly increases the risk of privilege escalation, cluster compromise, and persistence of malicious activity.
-	Threatened Asset: host and cluster security controls
[bookmark: _Toc215153992]5.3.2.10	Generic assets and threats for network functions supporting SBA interfaces
The assets and threats for containerized network functions supporting SBA interface are the same as the assets and threats specified in clause 6 for TR 33.926 [2].

[bookmark: _Toc513475447][bookmark: _Toc48930863][bookmark: _Toc49376112][bookmark: _Toc56501565][bookmark: _Toc95076612][bookmark: _Toc106618431]

[bookmark: _Toc95076616][bookmark: _Toc106618435][bookmark: _Toc162509847][bookmark: _Toc215153993]6	Test cases for Container-based Products
[bookmark: _Toc215153994]6.1	Analysis of existing general test cases
The following table lists all test cases present in TS 33.117 [4] and states their applicability for GCNP.
All test cases marked with „applicable“ do not need any further work and can be applied for GCNP.
	Section Nr
	Section Title
	Test Name
	Applicability for GCNP

	4.2.2.2.2
	Protection at the transport layer
	TC_PROTECT_TRANSPORT_LAYER
	applicable	

	4.2.2.2.3.1
	Authorization token verification failure handling within one PLMN
	TC_AUTHORIZATION_TOKEN_VERIFICATION_FAILURE_ONE_PLMN
	applicable	


	4.2.2.2.3.2
	Authorization token verification failure handling in different PLMNs
	TC_AUTHORIZATION_TOKEN_VERIFICATION_FAILURE_DIFF_PLMN
	applicable	


	4.2.2.2.4.1
	Correct handling of client credentials assertion validation failure
	TC_CLIENT_CREDENTIALS_ASSERTION_VALIDATION
	applicable	


	4.2.3.2.2
	Protecting data and information -- Confidential System Internal Data
	TC_CONFIDENTIAL_SYSTEM_INTERNAL_DATA
	applicable	


	4.2.3.2.3
	Protecting data and information in storage
	TC_PSW_STOR_SUPPORT
	applicable

	4.2.3.2.4
	Protecting data and information in transfer
	TC_PROTECT_DATA_INFO_TRANSFER_1
	applicable

	4.2.3.2.5
	Logging access to personal data
	TC_LOGGING_ACCESS_TO_PERSONAL_DATA
	applicable

	4.2.3.3.2
	Boot from intended memory devices only
	TC_BOOT_INT_MEM_1
	N/A	

	4.2.3.3.3
	System handling during excessive overload situations
	TC_SYSTEM_HANDLING_OF_OVERLOAD_SITUATIONS
	applicable

	4.2.3.3.5
	Network Product software package integrity
	TC_SW_PKG_INTEGRITY_1
	Adaptation or new test case needed
Keep the same intent but validate signed OCI images/Helm charts at pull/admission time; ensure only authorized principals can change trust roots/admission policies (e.g., imagePolicyWebhook).
Validate provenance and signature of container base images as well as application layers

	4.2.3.4.1.1
	Successful authentication and authorization of system functions
	TC_SYS_FUN_USAGE	
	applicable

	4.2.3.4.1.2
	Unambiguous identification of the user
	TC_ACCOUNT_DOCUMENTATION
	applicable

	4.2.3.4.1.2
	Unambiguous identification of the user
	TC_ACCOUNT_DEFAULTS
	applicable

	4.2.3.4.1.2
	Unambiguous identification of the user
	TC_ACCOUNT_NUMBER
	applicable

	4.2.3.4.2.1
	Account protection by at least one authentication attribute.
	TC_ACCOUNT_PROTECTION
	applicable

	4.2.3.4.2.2
	Deletion or disablement of predefined accounts
	TC_PREDEFINED_ACCOUNT_DELETION
	Adaptation needed
Check for predefined user accounts, service accounts, and default credentials present in container images or orchestration manifests.
Editor’s Note: It is needed to clarify whether certificate is a kind of credentials.

	4.2.3.4.2.3
	Deletion or disablement of predefined or default authentication attributes.
	TC_PREDEFINED_AUTHENTICATION_ATTRIBUTES_DELETION
	Adaptation needed
Instead of only checking for default passwords or keys on the network product’s host OS, the tester inspects container images and orchestration configuration for predefined authentication attributes, like e.g. API keys, tokens ...
Any such attributes should either:
· Trigger a forced change/rotation at first use or deployment, or
· Be replaced with dynamically generated secrets at runtime via a secure secret management mechanism.

	4.2.3.4.3.1
	Password Structure
	TC_PASSWORD_STRUCT
	applicable

	4.2.3.4.3.2
	Password changes
	TC_PASSWORD_CHANGES
	applicable

	4.2.3.4.3.3
	Protection against brute force and dictionary attacks
	TC_PROTECT_AGAINST_BRUTE_FORCE_AND_DICTIONARY_ATTACKS
	applicable

	4.2.3.4.3.4
	Hiding password display
	TC_HIDING_PASSWORD_DISPLAY
	applicable

	4.2.3.4.4.1
	Network Product Management and Maintenance interfaces
	TC_MUTUAL_AUTHENTICATION-ON_NETWORK_PRODUCT_MANAGEMENT_PROTOCOLS
	applicable

	4.2.3.4.5 a
	Policy regarding consecutive failed login attempts
	TC_FAILED_LOGIN_ATTEMPTS a
	applicable

	4.2.3.4.5 b
	Policy regarding consecutive failed login attempts
	TC_FAILED_LOGIN_ATTEMPTS b
	applicable

	4.2.3.4.6.1
	Authorization policy
	TC_AUTHORIZATION_POLICY
	applicable

	4.2.3.4.6.2
	Role-based access control
	TC_RBAC_SUPPORT
	applicable

	4.2.3.5.1
	Protecting sessions -- logout function
	TC_PROTECTING_SESSION_LOGOUT
	Adaptation or new test case needed
For stateless APIs, test token revocation/expiry and session invalidation on role/secret rotation rather than UI cookie sessions.

	4.2.3.5.2
	Protecting sessions -- Inactivity timeout
	TC_PROTECTING_SESSION_INAC_TIMEOUT
	

	4.2.3.6.1
	Security event logging
	TC_SECURITY_EVENT_LOGGING
	Adaptation needed
Evidence and method should target container logs (stdout/err), audit logs, and orchestrator audit; verify shipping via sidecar/DaemonSet/agent rather than OS syslog alone.
Verify audit logging from Mandatory Access Control systems (AppArmor, SELinux) inside the CNF

	4.2.3.6.2
	Log transfer to centralized storage
	TC_LOG_TRANS_TO_CENTR_STORAGE
	

	4.2.3.6.3
	Protection of security event log files
	TC_EVENT_LOG
	

	4.2.4.1.1.1
	Handling of growing content
	TC_HANDLING_OF_GROWING_CONTENT
	Adaptation or new test case needed
Clarify to run within the pod’s network/UTS namespace and evaluate the image and pod security context (non-root, read-only FS, dropped caps) instead of host OS

	4.2.4.1.1.2
	Handling of ICMP
	TC_HANDLING_OF_ICMP
	

	4.2.4.1.1.3
	Handling of IP options and extensions
	TC_HANDLING-IP-OPTIONS-AND-EXTENSIONS
	

	4.2.4.1.2.1
	Authenticated Privilege Escalation only
	TC_OS_PRIVILEGE
	

	4.2.4.2.2
	System account identification
	TC_UNIQUE_SYSTEM_ACCOUNT_IDENTIFICATION
	

	4.2.5.1
	HTTPS
	HTTPS
	applicable

	4.2.5.2.1
	Webserver logging
	TC_WEBSERVER_LOGGING
	applicable

	4.2.5.3
	HTTP User sessions
	TC_HTTP_USER_SESSIONS
	applicable

	4.2.6.2.1
	Packet filtering
	TC_PACKET_FILTERING
	applicable

	4.2.6.2.3
	GTP-C Filtering
	TC_GTP-C_FILTERING
	applicable

	4.2.6.2.4
	GTP-U Filtering
	TC_GTP-U_FILTERING
	applicable

	4.3.2.1
	No unnecessary or insecure services / protocols
	TC_NO_UNNECESSARY_SERVICE
	Adaptation needed
Also target containerization/orchestrator APIs (e.g., kube-API, container runtime sockets) reachable from inside workloads.

	4.3.2.2
	Restricted reachability of services
	TC_RESTRICTED_REACHABILITY_OF_SERVICES
	Adaptation needed
Enforce via NetworkPolicies / service mesh policy; no wildcard allows

	4.3.2.3
	No unused software
	TC_NO_UNUSED_SOFTWARE
	Adaptation or new test case needed
Inspect container images for installed packages, binaries, or libraries not required for the CNF’s documented functionality. Remove or rebuild images without such software to reduce attack surface.
Assess OCI images & SBOMs; strip shells/pkg managers unless justified; ensure supported, patched bases
Use automated container scanning or SBOM tools (e.g., Syft/Grype).

	4.3.2.4
	No unused functions
	TC_NO_UNUSED_FUNCTIONS
	Adaptation or new test case needed
Review deployment manifests, Helm charts, and application configs to ensure disabled/undocumented features, debug endpoints, or optional APIs are not present or exposed in running containers.
Use automated container scanning or SBOM tools (e.g., Syft/Grype).

	4.3.2.5
	No unsupported components
	TC_NO_UNSUPPORTED_COMPONENTS
	Adaptation or new test case needed
Verify base images, libraries, and runtime dependencies in container images are vendor-supported and security-patched; replace unsupported OS layers or packages before deployment.
Use automated container scanning or SBOM tools (e.g., Syft/Grype).

	4.3.2.6
	Remote login restrictions for privileged users
	TC_REMOTE_LOGIN_RESTRICTIONS_PRIVILEGED_USERS
	applicable

	4.3.2.7
	Filesystem Authorization privileges
	TC_FILESYSTEM_AUTHORIZATION_PRIVILEGES
	applicable

	4.3.3.1.1
	IP-Source address spoofing mitigation
	TC_IP_SPOOFING_MITIGATION
	applicable

	4.3.3.1.2
	Minimized kernel network functions
	TC_PROXY_ARP_DISABLING
	applicable

	4.3.3.1.2
	Minimized kernel network functions
	TC_DIRECTED_BROAD_DISABLING
	applicable

	4.3.3.1.2
	Minimized kernel network functions
	TC_IP_MULTICAST_HANDLING
	applicable

	4.3.3.1.2
	Minimized kernel network functions
	TC_GRATUITOUS_ARP_DISABLING
	Adaptation or new test case needed
In containers, ARP behaviour is often governed by the node kernel/CNI. Scope the test to the pod namespace (send/observe) or mark N/A if the CNF cannot influence L2

	4.3.3.1.2
	Minimized kernel network functions
	TC_BROADCAST_ICMP_HANDLING
	applicable

	4.3.3.1.3
	No automatic launch from removable media
	TC_NO_AUTO_LAUNCH_FROM_REMOVABLE_MEDIA
	N/A	

	4.3.3.1.4
	SYN Flood Prevention
	TC_SYN_FLOOD_PREVENTION
	applicable


	4.3.3.1.5
	Protection from buffer overflows
	TC_PROTECTION_FROM_BUFFER_OVERFLOW
	applicable


	4.3.3.1.6
	External file system mount restrictions
	TC_EXTERNAL_FILE_SYSTEM_MOUNT_RESTRICTIONS
	applicable


	4.3.4.2
	No system privileges for web server
	TC_NO_SYSTEM_PRIVILEGES_WEB_SERVER
	applicable


	4.3.4.3
	No unused HTTP methods
	TC_NO_UNUSED_HTTP_METHODS
	applicable


	4.3.4.4
	No unused add-ons
	TC_NO_UNUSED_ADD-ONS
	applicable


	4.3.4.5
	No compiler
	TC_NO_COMPILER_FOR_CGI
	applicable


	4.3.4.6
	No CGI or other scripting for uploads
	TC_NO_CGI_OR_SCRIPTING_FOR_UPLOADS
	applicable


	4.3.4.7
	No execution of system commands with SSI
	TC_NO_EXECUTION_OF_SYSTEM_COMMANDS
	applicable


	4.3.4.8
	Access rights for web server configuration
	TC_ACCESS_RIGHTS_WEB_SERVER_FILES
	applicable


	4.3.4.9
	No default content
	TC_NO_DEFAULT_CONTENT
	applicable


	4.3.4.10
	No directory listings
	TC_NO_DIRECTORY_LISTINGS
	applicable


	4.3.4.11
	Web server information in HTTP headers
	TC_NO_WEB_SERVER_HEADER_INFORMATION
	applicable


	4.3.4.12
	Web server information in error pages
	TC_NO_WEB_SERVER_ERROR_PAGES_INFORMATION
	applicable


	4.3.4.13
	Minimized file type mappings
	TC_NO_WEB_SERVER_FILE_TYPE MAPPINGS
	applicable


	4.3.4.14
	Restricted file access
	TC_RESTRICTED_FILE_ACCESS
	applicable


	4.3.5.1
	Traffic Separation
	TC_TRAFFIC_SEPARATION
	Adaptation or new test case needed
Verify that control plane, user plane, and management/OAM traffic are isolated at the container networking level — e.g., by using separate Kubernetes network policies, CNI configurations, service mesh policy enforcement, namespaces, or dedicated interfaces — so that no pod or container can send or receive traffic outside its assigned plane.

	4.3.6.2
	No code execution or inclusion of external resources by JSON parsers
	TC_JSON_PARSER_CODE_EXEC_INCL
	applicable

	4.3.6.3
	Unique key values in Information Elements (IEs)
	TC_UNIQUE_KEY_VALUES
	applicable

	4.3.6.4
	The valid format and range of values for IEs
	TC_IE_VALUE_FORMAT
	applicable

	4.4.2
	Port scanning
	TC_BVT_PORT_SCANNING
	applicable


	4.4.3
	Vulnerability scanning
	TC_BVT_VULNERABILITY_SCANNING
	Adaptation needed
Adapt to running vulnerability scans against container images and, where applicable, the running containers to identify known CVEs in OS packages, libraries, or application code, using tools that understand container layers and registries, and ensuring findings are addressed before deployment.

	4.4.4
	Robustness and fuzz testing
	TC_BVT_ROBUSTNESS_AND_FUZZ_TESTING
	applicable




[bookmark: _Toc215153995]6.1.1	Security functional requirements deriving from containerization and related test cases
[bookmark: _Toc215153996]6.1.1.1	Security non-functional requirements related to passwords
All text from TS 33.117 [1], clause 4.2.3.4.3 applies to containerized elements. 

[bookmark: _Toc215153997]6.1.1.2	Security requirements related to logging
All text from TS 33.117 [1], clauses 4.2.3.6.1, 4.2.3.6.2 and 4.2.3.6.3 apply to containerized elements. 
Requirement Name: Logs from containerized functions are available
Requirement Description:
The containerized NF shall provide sufficient logging mechanisms (e.g., stdout/stderr container logs, audit logs, orchestrator audit, audit log from MAC, like AppArmor or SELinux). Security and Audit logs shall be collected and stored allowing security monitoring, forensic and threat detection. The possibility of forwarding relevant Security and Audit logs to external SIEM system must be in place (e.g., Syslog over TLS, REST API over HTTPS, SFTP).
Test Name: TC_SECURE_CONTAINER_LOGGING_CAPABILITIES
Purpose:
Ensure that Security and Audit logs are collected and stored allowing security monitoring, forensic and threat detection.
Pre-Conditions:
-	Vendor documentation on logging mechanisms used in the network product
-	test environment with external SIEM or system, that is able to receive logs (may be simulated)
Execution Se the following steps:
1.	The tester reviews the documentation provided by the vendor describing how logs from containerized functions are being handled and verifies that this in line with the requirement description
2.	The tester verifies the forwarding to an external SIEM by enabling log forwarding, triggering a security event and verifying at the SIEM, that the event has been forwarded.
Expected Results:
-	The vendor documentation matches the requirements.
-	The triggered event is logged and forwarded to the external system.
Expected format of evidence:
-	Snapshots containing the information gathered from documentation.
-	Event logs triggered at the network product and logs of the external system receiving the forwarded event logs.

[bookmark: _Toc215153998]6.1.1.3	Using trusted image repositories for container image handling 
Requirement Name: Securing container function source by using trusted image repositories
Requirement Description:
The containerized NF shall use trusted/private source image repositories while building the container image.
Test Name: TC_SECURE_CONTAINER_IMAGE_REPOSITORIES
Purpose:
Ensure that containers are built using trusted image bases. Images coming from untrusted/public source code repositories (e.g., Public-DockerHub) shall not be used due to risk factors.
-	HTTPS protocol for accessing internal repositories shall be used.
-	Trust level of image content shall be checked to ensure source and integrity of the image.
Pre-Conditions:
-	Vendor documentation describing the container build procedure, configuration of trusted repositories and image integrity verification
Execution Se the following steps:
1. The tester reviews the documentation provided by the vendor describing the container build procedure and listing trusted image repositories.
2. The tester verifies that the build procedure enforces image integrity verification using at least cryptographic verification, by performing a build with a valid image and with a tampered image.
3. For both static and dynamically built containers, the tester reviews the build files (e.g., Dockerfile, CI/CD pipeline scripts, OCI) to verify the image sources specified are only trusted repositories and there are no references to public or untrusted repositories (e.g., Public-DockerHub).
4. The tester verifies the image repositories referenced in the build files are accessed via HTTPS.
Expected Results:
-	The vendor documetation contains a description of the build procedure, how to configure trusted repositories and how to setup image integrity verification.
-	The build procedure enforces image integrity verification. The valid image is used by the build procedure, while the tampered image gets rejected.
-	The image sources consist only of trusted repositories accessed via HTTPS.
Expected format of evidence:
-	Snapshots of the configuration or documentation.
-	Logs of the build procedures
-	Logs or network traces/pcaps showing the build procedures use only trusted repositories over HTTPS


[bookmark: _Toc215153999]6.1.1.4	Vulnerability scanning for containerized NF
All text from TS 33.117 [1], clause 4.4.3 applies to containerized elements. Because of the nature of containerized applications and their high dependency on 3rd party software specific vulnerability scanning tools need to be used. Therefore, the test case TC_BVT_VULNERABILITY_SCANNING specified in 4.4.3 need to be enhanced with the testcase below. 
Requirement Name: Securing container functions by vulnerability scanning
Requirement Description:
The containerized NF shall not contain any known vulnerabilities.
Test Name: TC_SECURE_CONTAINER_VULNERABILITY_SCANNING
Purpose:
Ensure that containers are not containing any known vulnerabilities. Trust level of image content shall be checked to ensure security and integrity of the image. Vulnerability scanning of container image shall be performed during development phase, discovering the vulnerabilities, and remediating those vulnerabilities before Developer/SO ships the container image to the Container registries. Vulnerabilities shall be resolved, and validated security patches shall be installed in a timely manner by the vendor.
Pre-Conditions:
Test environment with vulnerability analysis tool suited for scanning container images.
Execution Se the following steps:
The tester runs suitable vulnerability analysis tool to scan containers for known vulnerabilities.

Expected Results:
There are no known critical vulnerabilities reported by the tool.
Vulnerability scanners, by their nature, (e.g. depending on how they are configured) can result in false findings/positives. The tool’s documentation may even mention to repeat checks to determine a recurring problem. The tester shall make best efforts to determine if there is an issue with the network product or the test tool and if necessary, work with the vendor of the network product to come to a consensus on the test result outcome.
Expected format of evidence:
Snapshots of vulnerability scanner resultsSnapshots of the configuration or documentation, snapshots from vulnerability scanner.

[bookmark: _Toc215154000]6.1.1.5	Containerized NF run-time security
Requirement Name: Securing container functions by configuration and hardening testing
Requirement Description:
The containerized NF shall not contain any known misconfigurations.
Test Name: TC_SECURE_CONTAINER_ RUNTIME_CONFIGURATION
Purpose:
Ensure proper Security hardening was performed. Apart from vulnerability scan of container image, analysis of container security measures implemented the network function for FN in running state shall be performed. Test should prove that all possible misconfiguration wass were resolved, and validated security patches were installed. 
Container and orchestrator in a running state shall be hardened in relation to security benchmark (e.g., CIS benchmark or other common auditing tools). Network Access Policies shall be configured for securing containerized functions by default. If network segmentation in applicable, related policies preventing lateral movement across containers should be present. Security polices shall be configured for securing PODs and Containers where applicable. Usage of Privileged container, Default Namespace, Ports, Services, Public IP Address etc. shall be restricted. 
Pre-Conditions:
Test environment with vulnerability scanning tool suited for scanning container and orchestrator in running state.
NOTE:	If the network product consists only of containers and no orchestrator, the test environmant provides an orchestrator and only the container-specific results of the scanning tool will be taken into account for test evaluation.
Execution Se the following steps:
The tester runs a benchmark analysis tool to scan container and orchestrator for known misconfigurations.
Expected Results:
Expected format of evidence:
Snapshots of the configuration or documentation, snapshots from benchmark tool.

[bookmark: _Toc215154001]6.1.1.6	Data protection in containerized NF
All text from TS 33.117 [1], clause 4.2.3.2.3 applies to containerized elements. 
Requirement Name: Data protection of secrets, credentials and keys in containerized NFs
Requirement Description: 
Encryption at-rest, in-transit shall be applied for control plane and data plane. Secrets, credentials, and keys shall be securely stored in secure way, and the access rights to those secrets, credential, keys shall be restricted rather than keeping them in configuration file. Secrets, credentials and keys may be stored insecurely in e.g., environment variable, configuration files, manifests, history files, images.
Test Name: TC_CNF_SECURE_SECRETS_STORAGE
Pre-Conditions:
-	Vendor documentation on how secrets, credentials and keys are securely handled by the containerized network product.
Execution Se the following steps:
1. The tester rReviews the documentation provided by the vendor describing secretdata handling procedures.
2. The tester rRuns container vulnerability analysis tool or a configuration check tool capable of analysing the way secrets are stored and accessed by the containerized functions.
3. The tester Ensure ensures that secrets, keys ,and credentials are not stored in an insecure way (e.g., plain text).

Expected Results:
-	The vendor documentation describes the secret handling of the network product.
-	The scanning tool results and tester observations do not contain any insecurely stored secrets, credentials or keys.
Expected format of evidence:
Snapshots of the configuration or documentation, snapshots from security testing tool.
6.1.1.7	Resource quotas and limits enforcement
Requirement Name: Resource quotas and limits enforcement
Requirement Description: 
The containerized NF shall have resource requests and limits defined for CPU, memory, and storage to prevent resource exhaustion and denial of service. Resource quotas shall be configured at appropriate levels (namespace, pod, container) to limit total resource consumption. Limits shall prevent individual containers from consuming excessive resources. Resource management shall prevent resource starvation via orchestration, container spawn storms, and DoS via excessive resource consumption. The orchestration platform shall enforce these constraints and prevent deployment of workloads that would exceed quotas.
Threat Reference: 5.3.2.8.1, 5.3.2.8.2, 5.3.2.8.3
Test Name: TC_CNF_RESOURCE_QUOTAS_AND_LIMITS
Purpose:
Ensure resource management controls prevent denial of service through resource exhaustion, container spawn storms, and uncontrolled resource consumption.
Pre-Conditions:
-	Vendor documentation on resource requirements and capacity planning
-	Test environment with container orchestrator and resource quota enforcement
-	Access to deployment manifests and resource policy definitions
-	Resource monitoring tools
Execution Steps:
1.	The tester reviews the vendor documentation describing resource requirements (CPU, memory, storage), capacity planning guidelines, and resource management strategy.
2.	The tester examines all pod specifications and deployment manifests to verify resource definitions:
a.	Verify all containers have CPU requests and limits defined
b.	Verify all containers have memory requests and limits defined
c.	Verify ephemeral storage limits are defined where applicable
d.	Verify requests are realistic for expected workload
e.	Verify limits prevent runaway resource consumption
3.	The tester examines resource quota and limit range configurations:
a.	Verify namespace-level resource quotas are defined
b.	Verify limit ranges constrain individual pod/container resources
c.	Verify quotas cover CPU, memory and object counts (e.g., maximum pods) and verify quotas for ephemeral storage, where applicable.
d.	Check that quotas align with documented capacity requirements
4.	The tester verifies resource enforcement by the orchestration platform:
a.	Attempt to deploy a pod exceeding container limits (should be rejected or throttled)
b.	Attempt to deploy pods that would exceed namespace quota (should be rejected)
c.	Attempt to excessively instantiate containers (should be prevented by pod count quota)
d.	Verify resource constraints are applied to running containers
5.	The tester performs resource exhaustion testing:
a.	Deploy workload that attempts to consume resources beyond limits
b.	Verify container is throttled (CPU) or terminated (memory) when exceeding limits
c.	Verify other workloads are not affected (resource isolation)
d.	Test that log volume is constrained (log rotation, size limits) if applicable to deployment
e.	The tester monitors resource usage and verifies it stays within defined bounds during normal and stress conditions.
Expected Results:
-	The vendor documentation describes resource requirements and capacity planning.
-	All container specifications include resource requests and limits for CPU and memory.
-	Namespace resource quotas and limit ranges are configured appropriately.
-	The orchestration platform enforces resource constraints and rejects deployments exceeding quotas.
-	Containers are throttled or terminated when exceeding limits.
-	Resource exhaustion attempts do not affect other workloads or cause system-wide DoS.
-	Container/Pod instantiation is limited by quota enforcement.
-	Log volume growth is controlled through size limits or rotation mechanisms.
Expected format of evidence:
-	Snapshots of vendor documentation on resource requirements
-	Pod specification files showing resource requests and limits
-	Resource quota and limit range definitions
-	Logs showing rejection of pods exceeding quotas or limits
-	Resource monitoring data showing enforcement during normal and stress conditions
-	Test results demonstrating resource isolation and constraint enforcement

Editor’s Note: The requirement and threat references will be edited during normative phase.
[bookmark: _Toc215154002]6.2	Potential new test cases for GCNP
The following table lists potential new test cases for GCNP currently not covered by existing test cases.
	Test Name
	Purpose
	Threat Reference

	TC_CNF_NO_EXPOSED_CONTAINERIZATION_API
	Ensure kube-API / container runtime sockets aren’t reachable from workloads.
Related to “Exposed Containerization API” threat.
	Exposed Containerization API 
5.3.2.5.8

	TC_CNF_NO_UNUSED_CAPABILITIES
	Explicitly check for Linux caps in pod security context (drop all; no CAP_SYS_ADMIN/NET_ADMIN/PTRACE unless justified).
	Abuse of Linux Capabilities 
5.3.2.9.1

	TC_CNF_IMAGE_PROVENANCE_AND_SIGNATURE
	Verify signed OCI images/Helm at pull/admission (distinct from classic SW package integrity).
Editor’s Note: Additional description is needed to explain about the aforementioned distinction.
	Software Tampering
5.3.2.5.1

	TC_CNF_REGISTRY_SECURITY
	authN/Z, TLS, signing, and scanning on the image registry to deter Image Registry Tampering
	Image Registry Tampering
5.3.2.5.9

	TC_CNF_NO_SECRETS_IN_ENV
	Forbid or securely use (e.g., encrytped) credentials/tokens in env vars; check manifests/pods/logs
	Secrets in Environment Variables
5.3.2.7.16

	TC_CNF_NO_SECRETS_IN_IMAGE_LAYERS
	Ensure no embedded keys/passwords in layers/history or they are used in a secure way (e.g., encrypted); use SBOM
	Secrets in Image Layers
5.3.2.7.17

	TC_CNF_POD_SECURITY_ENFORCEMENT 
	Admission/Pod Security must enforce non-root, read-only FS, no privileged, minimal caps, no hostPath/hostNetwork unless justified (covers Elevation of Privileges threats).
	Privilege Escalation via Orchestration Misconfiguration
5.3.2.9.2;
Running as Root inside Containers
5.3.2.9.3;
Use of Privileged Containers
5.3.2.9.4

	TC_CNF_RESOURCE_QUOTAS_AND_LIMITS
	Quotas/limits/rate-limits to block Resource Starvation and Container Spawn Storm
	Resource Starvation via Orchestration
5.3.2.8.1;
Container Spawn Storm
5.3.2.8.2

	TC_CNF_LOG_VOLUME_GUARDRAILS
	Rate-limit & rotate logs; alert on spikes to mitigate DoS via Log Volume
	DoS via Log Volume
5.3.2.8.3

	TC_CNF_ORCHESTRATOR_AUDIT_LOGGING
	kube-audit enabled, retained, and secured (authZ changes, pod/role/secret ops, pulls, admission). Complements but goes beyond “security event logging.”
	Orchestrator Audit Logs Disabled
5.3.2.6.3

	TC_CNF_CENTRAL_USER_AUTH
	Test CNF’s ability to integrate with external auth (RADIUS, TACACS+, LDAP)
	Service Account Token Abuse
5.3.2.4.8





[bookmark: _Toc39138089][bookmark: _Toc101360626][bookmark: _Toc162509853][bookmark: _Toc215154003][bookmark: _Toc513475456][bookmark: _Toc48930874][bookmark: _Toc49376123][bookmark: _Toc56501637][bookmark: _Toc95076621][bookmark: _Toc106618440]7	Conclusions
Editor's Note: This clause contains the agreed conclusions that will form the basis for any normative work.
The analysis in this document shows that some assets and threats in TR 33.926 [2] and test cases in TS 33.117[4] are not relevant to GCNP. Some assets, threats and test cases need adaptation. Few new test cases are needed for GCNP. There are some critical assets and security threats specific to generic containerized network products identified in the present document, which can serve as the basis for the SCAS of specific containerized network products. To continue the work, the following way forward is proposed: 
-	for critical assets and threats: it is proposed to capture the threats and critical assets as described in clauses 5.2 and 5.3 specific to containerized network product class in a new 9-series document (to pair with TR 33.926 [2]). 
-	for security requirements and test cases, it is proposed to capture the requirements and corresponding test cases for GCNP as described in clause 6.1 and clause 6.2 in a new document (to pair with TS 33.117 [4]).
Editor’s Note: Conclusions to be revisited and further conclusion is FFS.

[bookmark: _Toc215154004]
Annex A:
Change history
	[bookmark: historyclause]Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2025-08
	SA3#123
	
	
	
	
	TR skeleton
	0.0.0

	2025-08
	SA3#123
	S3-253038
	
	
	
	Incorporating skeleton (S3-252890) and scope (S3-252710)
	0.1.0

	2025-10
	SA3#124
	S3-253722
	
	
	
	Incorporating S3‑253147, S3‑253148, S3‑253149, S3‑253719, S3‑253720 and S3‑253721 
	0.2.0

	2025-11
	SA3#125
	S3-254539
	
	
	
	Incorporating S3-254097
	0.3.0

	2025-12
	SA#110
	SP-251519
	
	
	
	Presented for information
	1.0.0

	2026-02
	SA3#126
	S3-261003
	
	
	
	Incorporating S3-261000, S3-260996, S3-260659, S3-260987, S3-260988, S3-260989, S3-260663 and S3-260990
	1.1.0


 

3GPP
image1.emf
 


oleObject1.bin
[image: image1.png]~

5G







image2.emf
 


oleObject2.bin
[image: image1.png]=

A GLOBAL INITIATIVE







image3.emf
GCNP for bare metal

Container Infrastructure Service

Functions 

defined by 

3GPP

Other 

functions

OAM 

functions

Hardware

Virtualization Layer (Hypervisor)

Hardware

3GPP-defined interfaces

ETSI-defined interfaces

(e.g. Ve-Vnfm)

Remote management

Container Infrastructure Service

GCNP in virtual machine

Functions 

defined by 

3GPP

Other 

functions

OAM 

functions

3GPP-defined interfaces

ETSI-defined interfaces

(e.g. Ve-Vnfm)

Remote management


Microsoft_Visio_Drawing.vsdx
GCNP for bare metal
Container Infrastructure Service
Functions defined by 3GPP
Other functions
OAM functions
Hardware
Virtualization Layer (Hypervisor)
Hardware
3GPP-defined interfaces
ETSI-defined interfaces
(e.g. Ve-Vnfm)
Remote management
Container Infrastructure Service
GCNP in virtual machine
Functions defined by 3GPP
Other functions
OAM functions
3GPP-defined interfaces
ETSI-defined interfaces
(e.g. Ve-Vnfm)
Remote management



