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The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall	indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should	indicates a recommendation to do something
should not	indicates a recommendation not to do something
may	indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can	indicates that something is possible
cannot	indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
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1	Scope
The present document studies the complexities involved with the introduction of standalone and/or hybrid Post Quantum Cryptography (PQC) algorithms in existing security protocols used by 5G specifications. These security protocols and their associated algorithms have been listed in TR 33.938 [2] “3GPP Cryptographic Inventory”. Specifically, 
· Studies principles and attributes of PQC relevant to use in 3GPP procedures.
-	Studies the impact of using hybrid and standalone PQC algorithms in 3GPP procedures
-	Impact to 3GPP procedures due to larger length of PQC key, signature, and message compared to the length of those in traditional cryptography. 
-	Determines security levels (I-V) required to align with existing 3GPP procedures level of assurance.
-	Studies the suitability of classes of post-quantum signature algorithms (e.g., lattice-based, hash-based) to 3GPP procedures.
· Identifies the protocols with asymmetric cryptography listed in TR 33.938 [2] that are not expected to be updated by other Standards Development Organizations (SDOs) in a near future to use PQC, e.g., MIKEY-SAKKE and SUCI calculation
· Studies security threats and alternative solutions for the 3GPP procedures if they are not updated to use PQC.
· Documents the expected timeline for when security protocols defined by other SDOs will include PQC algorithms and be available for inclusion into 3GPP procedures. The timeline includes the availability of stable protocols.
· Studies solutions to update 3GPP defined security protocols (for example SUCI calculation) to use the appropriate PQC algorithm, if those protocols are not expected to be updated by other SDOs to use PQC algorithms.
The present document is Generation agnostic. 
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[bookmark: definitions][bookmark: _Toc211892371][bookmark: _Toc211951666][bookmark: _Toc215135026]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc211892372][bookmark: _Toc211951667][bookmark: _Toc215135027]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc211892373][bookmark: _Toc211951668][bookmark: _Toc215135028]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc211892374][bookmark: _Toc211951669][bookmark: _Toc215135029]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
AE			Authenticated (Symmetric) Encryption
AEAD			Authenticated Encryption with Associated Data
ANSSI			Agence Nationale de la Sécurité des Systèmes d'Information
CA			Certification Authority 
CBOR			Concise Binary Object Representation
COSE			CBOR Object Signing and Encryption
CRL			Certificate Revocation Lists
CRQC			Cryptographically Relevant Quantum Computer
DSA			Digital Signature Algorithm
ECC			Elliptic Curve Cryptography
ECDH			Elliptic Curve Diffie–Hellman key Exchange
ECIES			Elliptic Curve Integrated Encryption Scheme
ECKEM			Elliptic Curve Key Encryption Mechanism
FN-DSA			Fast-Fourier Transform over NTRU-Lattice-Based DSA
GCI			Global Cable Identifier
GLI			Global Line Identifier
HBS			Hash-Based Signature
HN			Home Network
HQC			Hamming Quasi-Cyclic
HSS			Hierarchical Signature System
IKEv2			Internet Key Exchange Protocol Version 2
IMSI			International Mobile Subscriber Identifier
IND-CCA2			Indistinguishability under Adaptive Chosen Ciphertext Attack
JOSE			Javascript Object Signing and Encryption
JSON			JavaScript Object Notation
JWE			JSON Web Encryption
JWS			JSON Web Signature
KCF			Key Combiner Function
KDF			Key Derivation Function
KEM			Key Encapsulation Mechanism
MAC			Message Authentication Code
MCC			Mobile Country Code
LTS			Long Term Stable
MIKEY-SAKKE			Multimedia Internet KEYing – Sakai-Kasahara Key Encryption
ML-DSA			Module-Lattice-Based DSA
ML-KEM			Module Lattice-Based Key-Encapsulation Mechanism
MNC			Mobile Network Code
NAI			Network Access Identifier
NCSC 			National Cyber Security Centre
NSA			National Security Agency
NSI			Network Specific Identifier
NSM			National Security Memorandum
NTRU			Nth-degree Truncated Polynomial Ring Units
OCSP			Online Certificate Status Protocol
PKI			Public Key Infrastructure
PKIX			Public Key Infrastructure X.509
PLMN			Public Land Mobile Network
PQC			Post-Quantum Cryptography
PRNG			Pseudo Random Number Generator
SA			Security Association
SDO			Standards Development Organizations
SECG			Security Engineering & Consulting Group
SLH-DSA			Stateless Hash-Based DSA
SUCI			Subscription Concealed Identifier
SUPI			Subscription Permanent Identifier
TLS 1.2			Transport Layer Security Version 1.2
TLS 1.3			Transport Layer Security Version 1.3
UDM			Unified Data Management
UE			User Equipment
XMSS			eXtended Merkle Signature Scheme
[bookmark: clause4][bookmark: startOfAnnexes][bookmark: _Toc107819038][bookmark: _Toc157853535][bookmark: _Toc211892375][bookmark: _Toc211951670][bookmark: _Toc215135030]4	Overview
[bookmark: _Toc157853536]
[bookmark: _Toc211892376][bookmark: _Toc211951671][bookmark: _Toc215135031]4.1	Background Information	
[bookmark: _Toc211951672][bookmark: _Toc215135032]4.1.1	General
The security protocols that use symmetric and/or asymmetric cryptography in 3GPP systems are listed in TR 33.938 [2]. Particularly, 3GPP heavily depends on IETF standards for the usages of public-key cryptography. All the security protocols using traditional asymmetric cryptography are vulnerable to attacks using a Cryptographically Relevant Quantum Computer (CRQC). 
Given the wide variation in requirements, specifications, technical capabilities, and implementation maturity across protocols, this study is organized by security protocols. Each major protocol (such as COSE, IKEv2, JWE, JWS, MIKEY-SAKKE, SUCI, TLS 1.2, TLS 1.3) is covered in a separate clause.
This study does not focus on any particular generation of mobile networks and analyses various aspects that will be useful for PQC migration.
[bookmark: _Toc211892377][bookmark: _Toc211951673][bookmark: _Toc215135033]4.1.2	Transition Timeline
Editor’s Note: More timeline information from other organizations is ffs.
Countries and agencies around the world are generally aligned on the need to migrate to Post-Quantum Cryptography (PQC). The common recommendation is to complete migration for high priority systems by around 2030 and for all systems by approximately 2035. Examples of government-issued PQC migration timelines can be found in [8, 11–19].  Whether a system is high priority or not is determined by a variety of factors such as how long the data needs to remain confidentiality protected and what level of risk is the data owner willing to bear. Some parts of telecommunications systems may be assessed by the network operator to be of high priority. 
Although the migration of signature-based authentication in protocols such as TLS and IPsec is typically not prioritized for transition until 2035, transitioning Public Key Infrastructures (PKI), which are necessary to support signature-based authentication, often takes a decade or more, making it critical to begin their transition almost immediately.
Furthermore, it is important to note that the above timelines apply to deployments. For full PQC adoption in deployed systems, it is essential that standards are updated, and stable implementations are made available well in advance of those deployment milestones. The timelines for different stakeholders in the ecosystem, such as standards development organizations (SDO), equipment vendors, and operators deploying the systems are inherently different. Standards bodies need to finalize specifications early, vendors need sufficient lead time to implement, test, and certify solutions, and only then can large-scale deployments take place. 
3GPP Rel-20 specification is expected to be frozen in the mid-2027 [20]. Rel-21 specification can be expected to be completed in the beginning of 2029 at the earliest. It should be considered that some vendors and operators require to meet the 2030 migration timeline for high priority systems.
[bookmark: _Toc215135034][bookmark: _Toc211892378][bookmark: _Toc211951674]4.1.3	PQ and PQT Algorithm Standards
There are three principal alternatives to traditional asymmetric cryptographic algorithms which have progressed furthest in relevant standards bodies. These are ML-KEM (FIPS 203) for key encapsulation, and ML-DSA (FIPS 204) and SLH-DSA (FIPS 205) for digital signature [21–23]. These are standards designed by cryptographers from all over the world, and they form the basis for recommendations from a number of agencies. These recommendations vary between organisations and include both standalone and hybrid transition paths. 
Most governments require use of standardized PQC algorithms, such as the already standardized ML-KEM (FIPS 203), ML-DSA (FIPS 204), and SLH-DSA (FIPS 205) [21–23]. With the publication of ML-KEM, ML-DSA, and SLH-DSA, Post-Quantum Cryptography (PQC) has quickly moved from research to implementation and deployment. Some agencies recommend standalone ML-KEM and ML-DSA [13, 27], while others recommend that lattice-based algorithms (ML-KEM and ML-DSA) be hybridized [26, 28] with, for example, elliptic curve-based algorithms (ECDHE and ECDSA). The hash-based algorithm (SLH-DSA) doesn’t need to be hybridized as hash algorithms are better understood by the cryptographic research community and have also been cryptanalyzed far longer than lattices, and governments currently do not recommend SLH-DSA to be hybridized [28, 29].
ML-KEM is an algorithm for key encapsulation. It is a replacement for ECDH(E) key exchanges (note that RSA key encipherment has largely been deprecated). Both standalone and hybrid versions have relatively mature implementations available (e.g. OpenSSL 3.5 LTS) and are progressing through other SDOs (e.g. the TLS WG in IETF), with the hybrid version receiving more attention. In TLS, X25519MLKEM has already seen massive implementation support. It has been reported [25] that over 40% of all HTTPS client requests use PQC. OpenSSL 3.5 LTS supports ML-KEM, ML-DSA, and SLH-DSA. OpenSSH is now using mlkem768x25519-sha256 as the default key exchange [24]. Many IKEv2 implementations support ML-KEM. See clause 6 for further details broken down by protocol.
ML-DSA is an algorithm for digital signature. While the IETF and real-world deployments have embraced hybrid KEMs, hybrid signatures have not seen similar adoption. SLH-DSA is a special purpose digital signature algorithm, owing to its significantly large key sizes and slow operation times — making it unsuitable for general use cases like short-lived certificates or high-throughput applications, but excellent for specific tasks such as firmware signing and code signing where long signing times and large signature sizes are not prohibitive. Implementations of standalone versions of both ML-DSA and SLH-DSA are also available (e.g. OpenSSL 3.5 LTS). There is more progress to date integrating standalone ML-DSA into protocols than either hybrid ML-DSA or standalone SLH-DSA. See clause 6 for further details broken down by protocol.
[bookmark: _Toc215135035]4.1.4	Summary of cybersecurity organisations’ recommendations
NOTE:	Details of the meanings of Level 3 and Level 5 are found in clause 5.1.
Advice and recommendations for parameter choices is provided in e.g. NIST [21], NCSC [27], BSI [79], NSA [13], ANSSI [28], and AIVD [19] which is summarised below:
1. Level 3 is accepted for general use (i.e. situations where AES-128 is currently used). This is a strict minimum for BSI.
2. NIST only provides recommendations on security levels for ML-KEM
3. NCSC does not consider SLH-DSA appropriate for general use and makes no recommendations for parameter choices.
4. BSI specifically recommends the "hedged" variants of ML-DSA and SLH-DSA to mitigate risks from poor entropy sources.
5. Level 5 is required by NSA for National Security Systems (NSS) and recommended for Department of Defense (DoD), Defense Industrial Base (DIB), and those interacting with these systems.
[bookmark: _Toc211892380][bookmark: _Toc211951675][bookmark: _Toc215135036]4.2	General Assumptions
In the present document, PQC is referred to as cryptographic algorithms that are deemed to be secure against attacks from both classical and quantum computing. 
All traditional public key cryptographic algorithms used in 3GPP systems need to be migrated to PQC algorithms. If suitable PQC options are not available, then an alternative path needs to be provided and justified, e.g., deprecation, mitigation, and re-architecting. 
The PQC options are to be drawn from well-studied standardised primitives and protocols. 
Both hybrid and standalone KEM are in the scope of this study. Standalone and hybrid signatures are also in the scope of this study.
Editor’s Note: Further general assumptions are FFS.
[bookmark: _Toc211892381][bookmark: _Toc211951676][bookmark: _Toc215135037]5		Principles and attributes of PQC to use in 3GPP procedures
Editor’s Note: This clause contains impact of using hybrid and standalone PQC algorithms in 3GPP procedures, impact to 3GPP procedures due to larger length of PQC key, signature, and message compared to the length of those in traditional cryptography, security levels (I-V) required to align with existing 3GPP procedures level of assurance, suitability of classes of post-quantum signature algorithms (e.g., lattice-based, hash-based) to 3GPP procedures. 
[bookmark: _Toc211892382][bookmark: _Toc211951677][bookmark: _Toc215135038]5.1	PQC security level
The NIST use the concept of security levels/security strength categories to group algorithms, keys, and protocols related to PQC [37]. Security is defined as a function of resources comparable to or greater than those required to break AES and SHA2/SHA3 algorithms, i.e., key search on block cipher for AES and collision search on a 256-bit hash function for SHA2/SHA3. The security strength is broadly grouped into the following 5 levels [8] and to each of the PQ security levels, the corresponding traditional and post-quantum algorithm can be mapped: 
Level 1: At least as hard as breaking AES-128 (key search on block cipher) , PQC-Algorithm: ML-KEM-512 [21], FN-DSA-512 [36], SLH-DSA-SHA2/SHAKE-128f/s [23]
Level 2: At least as hard as breaking SHA-256/SHA3-256 (collision search on a 256-bit hash function), PQC-Algorithm: ML-DSA-44 [22]
Level 3: At least as hard as breaking AES-192 (key search on block cipher), PQC-Algorithm: ML-KEM-768 [21], ML-DSA-65 [22], SLH-DSA-SHA2/SHAKE-192f/s [23]
Level 4: At least as hard as breaking SHA-384/SHA3-384 (collision search on a 384-bit hash function), PQC-Algorithm: No algorithm tested at this level
Level 5: At least as hard as breaking AES-256 (key search on block cipher), PQC-Algorithm: ML-KEM-1024 [21], FN-DSA-1024 [36], ML-DSA-87 [22], SLH-DSA-SHA2/SHAKE-256f/s [23]
[bookmark: _Toc211892383][bookmark: _Toc211951678][bookmark: _Toc215135039]5.2	Hybrid and standalone schemes
Post-Quantum Traditional (PQT) hybrid scheme as defined in RFC 9794 [7] is a multi-algorithm scheme where at least one component algorithm is a post-quantum algorithm and at least one is a traditional algorithm. Both the PQT hybrid scheme and the standalone PQC scheme are considered in the present document.
[bookmark: _Toc211892385][bookmark: _Toc211951679][bookmark: _Toc215135040]5.3	Cryptographic agility 
Cryptographic agility [40, 41] refers to the capabilities needed to replace and adapt cryptographic algorithms while preserving security and ongoing operations. The 3GPP systems need to consider cryptographic agility.
[bookmark: _Toc211892384][bookmark: _Toc211951680][bookmark: _Toc215135041]5.4	PQC algorithm types and cryptographic diversity
PQC algorithms can be categorized based on different mathematical foundations. The following are a few typical types of PQC algorithms [38, 5]: Lattice-based cryptography, Hash-based cryptography, Multivariate cryptography, Code-based cryptography, and Isogeny-based cryptography.
NOTE: The types for NIST selected algorithms are as follows: ML-KEM for key encapsulation, and ML-DSA and FN-DSA for digital signature are all Lattice-based algorithms; SLH-DSA for digital signature is a Hash-based algorithm; and HQC-KEM for key encapsulation is a Code-based algorithm. 
Cryptographic diversity is the practice of having different types of PQC algorithms available. This provides resilience against future attacks in case that a weakness or vulnerability is discovered in one type of algorithm, when other types of algorithms will remain unaffected. For example, NIST has chosen SLH-DSA as a backup algorithm for ML-DSA and HQC algorithm as a backup for ML-KEM [39]. A key enabler for this is cryptographic agility so that if an algorithm is broken it can be removed and replaced with an alternative without undue disruption.
[bookmark: _Toc211892386][bookmark: _Toc211951681][bookmark: _Toc215135042]6		Protocols expected to be updated for PQC by other SDOs
Editor’s Note: This clause contains the expected timeline for when security protocols defined by other SDOs will include PQC algorithms and be available for inclusion into 3GPP procedures. The timeline includes the availability of stable protocols. 
[bookmark: _Toc211892387][bookmark: _Toc211951682][bookmark: _Toc215135043]6.1	General

According to the inventory in TR 33.938 [2], many security protocols and algorithms used in 3GPP (e.g. (D)TLS, IKEv2, JWE, JWS, etc.) are specified in other standard organizations (e.g. IETF). They are expected to be updated using PQC in the corresponding organizations. 
In this clause, the progress of the post-quantum migration of these protocols are reported. Mature specifications developed by related SDOs will be given priority consideration.  In addition, whether the relevant solutions can be directly applied to specific 3GPP scenarios will be evaluated. 
The present document discusses several IETF documents that are at different levels of maturity in the overall IETF standardization process [42], and categorizes them as follows:
· IETF Individual Draft: A document that has been submitted to IETF and has not been adopted by one of the working groups in IETF. On the IETF Datatracker website, such documents have type “Active Internet-Draft (individual)”.
· IETF WG Draft: A document that has been reviewed and adopted by one of the working groups in IETF. On the IETF Datatracker website, such documents have type “Active Internet-Draft (xyz WG)”, where xyz is the name of the working group that adopted the document, e.g., tls.
· IETF RFC: A document that has gone through the whole IETF standardization process.
[bookmark: _Toc211892388][bookmark: _Toc211951683][bookmark: _Toc215135044]6.2	COSE
[bookmark: _Toc211892389][bookmark: _Toc211951684][bookmark: _Toc215135045]6.2.1	General
[bookmark: _Toc211892390][bookmark: _Toc211951685][bookmark: _Toc215135046]6.2.2	Current Work in IETF
[bookmark: _Toc211892391][bookmark: _Toc211951686][bookmark: _Toc215135047]6.2.2.1	IETF RFCs
No RFCs for the usage of PQC algorithms in COSE are published yet.
[bookmark: _Toc211892392][bookmark: _Toc211951687][bookmark: _Toc215135048]6.2.2.2	IETF Adopted Drafts
The IETF is developing support for PQC algorithms in COSE. The following drafts are relevant:
-	IETF Draft draft-ietf-jose-pqc-kem-03, "Post-Quantum Key Encapsulation Mechanisms (PQ KEMs) for JOSE and COSE" [67], describes the conventions for using Post-Quantum Key Encapsulation Mechanisms (PQ-KEMs) within JOSE and COSE.
-	IETF Draft draft-ietf-cose-dilithium-08, "ML-DSA for JOSE and COSE" [68], describes JSON Object Signing and Encryption (JOSE) and CBOR Object Signing and Encryption (COSE) serializations for Module-Lattice-Based Digital Signature Standard (ML-DSA).
-	IETF Draft draft-ietf-cose-sphincs-plus-05: "SLH-DSA for JOSE and COSE" [69], describes JOSE and COSE serializations for SLH-DSA.
-	IETF Draft draft-ietf-cose-falcon-01, "JOSE and COSE Encoding for Falcon" [70], describes JSON and CBOR serializations.
-	IETF Draft draft-ietf-cose-hpke-16, "Use of Hybrid Public-Key Encryption (HPKE) with CBOR Object Signing and Encryption (COSE)" [72] defines a Hybrid Public Key Encryption (HPKE) for use with JOSE utilizing an asymmetric Key Encapsulation Mechanism (KEM), a Key Derivation Function (KDF), and an Authenticated Encryption with Associated Data (AEAD) algorithm.
-	IETF Draft draft-ietf-jose-pq-composite-sigs-00, "PQ/T Hybrid Composite Signatures for JOSE and COSE" [87], describes JSON and COSE serializations for PQT hybrid composite signatures.  The composite algorithms    combine ML-DSA as the post-quantum component and either ECDSA or EdDSA as the traditional component.
However, no IETF work on hybrid signature schemes for COSE has been adopted. 
[bookmark: _Toc211892393][bookmark: _Toc211951688][bookmark: _Toc215135049]6.2.3		3GPP Considerations
Editor’s Note: This clause does not include any conclusions.
See clause 6.8.  

[bookmark: _Toc211892394][bookmark: _Toc211951689][bookmark: _Toc215135050]6.3	IKEv2

[bookmark: _Toc211892395][bookmark: _Toc211951690][bookmark: _Toc215135051]6.3.1	General
IKEv2 specified in IETF RFC 7296 [80] provides mutual authentication and establishes Security Associations (SA) for IPsec tunnels. The IKEv2 is also used by MOBIKE specified in IETF RFC 4555 [81].
The IETF IPSECME group has introduced multiple RFCs and Drafts to enable a smooth PQC transition for the Internet Key Exchange Protocol Version 2 (IKEv2) protocol. They cover both key exchange and authentication.
[bookmark: _Toc211892396][bookmark: _Toc211951691][bookmark: _Toc215135052]6.3.2	Current Work in IETF
[bookmark: _Toc211892398][bookmark: _Toc211951692][bookmark: _Toc215135053]6.3.2.1	IETF RFCs
[bookmark: _Toc211892399][bookmark: _Toc211951693][bookmark: _Toc215135054]6.3.2.1.1	Key Exchange
KEM-based Key Exchange
· IETF RFC 9242 [43] introduces a new exchange, called "Intermediate Exchange" for IKEv2 to avoid IP fragmentation of large IKE messages and enable transferring large amounts of data during Security Association (SA) establishment expected for some PQC key exchanges.
· IETF RFC 9370 [44] describes a method to perform multiple successive key exchanges in IKEv2. It allows integration of PQC in IKEv2 and the negotiation of one or more PQC algorithms, in addition to the existing (EC)DH key exchange data that provides backward compatibility.
· IETF RFC 7383, "Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation" [49] describes a way to avoid IP fragmentation of large Internet Key Exchange Protocol version 2 (IKEv2) messages, which is necessary when using ML-KEM-1024, ML-DSA, or SLH-DSA. 
PSK-based Key Exchange
-	IETF RFC 8784 [47] describes an extension of IKEv2 resistant to quantum computers using pre-shared keys.
-	IETF RFC 9867 [88] defines an alternative way to provide protection against quantum computers, which is similar to the solution defined in RFC 8784 [47], but also protects the initial IKEv2 SA.
[bookmark: _Toc211892400][bookmark: _Toc211951694][bookmark: _Toc215135055]6.3.2.1.2	Authentication and Signature
-	IETF RFC 9593 [46] defines a mechanism that allows implementations of IKEv2 to indicate the list of supported authentication methods to their peers while establishing IKEv2 SAs. This mechanism improves interoperability when IKEv2 partners are configured with multiple credentials of different types (for example, ECC-based certificate and PQC-based certificate) for authenticating each other.
[bookmark: _Toc211892401][bookmark: _Toc211951695][bookmark: _Toc215135056]6.3.2.2	IETF Adopted Drafts
[bookmark: _Toc211892402][bookmark: _Toc211951696][bookmark: _Toc215135057]6.3.2.2.1	Key Exchange
KEM-based Key Exchange
· IETF Draft draft-ietf-ipsecme-ikev2-mlkem-03, "Post-quantum Hybrid Key Exchange with ML-KEM in the Internet Key Exchange Protocol Version 2 (IKEv2)" [45] proposes to use the ML-KEM [21] as an additional key exchange in IKEv2 along with traditional key exchanges.
· IETF Draft draft-ietf-ipsecme-ikev2-pqc-auth-04, "Signature Authentication in the Internet Key Exchange Version 2 (IKEv2) using PQC" [69], specifies a generic mechanism for integrating post-quantum cryptographic (PQC) digital signature algorithms into the IKEv2 protocol.
PSK-based Key Exchange
-	IETF Draft draft-ietf-ipsecme-ikev2-qr-alt-10, "Mixing Preshared Keys in the IKE_INTERMEDIATE and in the CREATE_CHILD_SA Exchanges of IKEv2 for Post-quantum Security" [78] defines an alternative way to provide protection against quantum computers, which is similar to the solution defined in RFC 8784 [47], but also protects the initial IKEv2 SA.
[bookmark: _Toc211892403][bookmark: _Toc211951697][bookmark: _Toc215135058]6.3.2.2.2	Authentication and Signatures
-	IETF Draft draft-ietf-ipsecme-ikev2-pqc-auth-04, "Signature Authentication in the Internet Key Exchange Version 2 (IKEv2) using PQC" [48] outlines how Module-Lattice-Based Digital Signatures (ML-DSA) [22] and Stateless Hash-Based Digital Signatures (SLH-DSA) [23], can be employed as authentication methods within the IKEv2.
[bookmark: _Toc211892404][bookmark: _Toc211951698][bookmark: _Toc215135059]6.3.3		3GPP Considerations
Editor’s Note: This clause does not include any conclusions.
See clause 6.8.  

[bookmark: _Toc211892405][bookmark: _Toc211951699][bookmark: _Toc215135060]6.4	 JOSE
[bookmark: _Toc211892406][bookmark: _Toc211951700][bookmark: _Toc215135061]6.4.1	General
The IETF JOSE Working Group has specified the JSON Web Signatures (JWS) [83] and JSON Web Encryption (JWE) [84] that are being used in OAuth 2.0 and other procedures in 3GPP systems. For PQC migration, a few Working Group Adopted Drafts are being developed, as described below.
[bookmark: _Toc211892407][bookmark: _Toc211951701][bookmark: _Toc215135062]6.4.2	Current Work in IETF
[bookmark: _Toc211892408][bookmark: _Toc211951702][bookmark: _Toc215135063]6.4.2.1	IETF RFCs
No RFCs for the usage of PQC algorithms in JWE or JWS are published yet.
[bookmark: _Toc211892409][bookmark: _Toc211951703][bookmark: _Toc215135064]6.4.2.2	IETF Adopted Drafts
The IETF is developing support for PQC algorithms in JOSE. The following drafts are relevant:
-	IETF Draft draft-ietf-jose-pqc-kem-03, "Post-Quantum Key Encapsulation Mechanisms (PQ KEMs) for JOSE and COSE" [67], describes the conventions for using Post-Quantum Key Encapsulation Mechanisms (PQ-KEMs) within JOSE and COSE.
-	IETF Draft draft-ietf-cose-dilithium-08, "ML-DSA for JOSE and COSE" [68], describes JSON Object Signing and Encryption (JOSE) and CBOR Object Signing and Encryption (COSE) serializations for Module-Lattice-Based Digital Signature Standard (ML-DSA).
-	IETF Draft draft-ietf-cose-sphincs-plus-05: "SLH-DSA for JOSE and COSE" [69], describes JOSE and COSE serializations for SLH-DSA.
-	IETF Draft draft-ietf-cose-falcon-01, "JOSE and COSE Encoding for Falcon" [70], describes JSON and CBOR serializations.
-	IETF Draft draft-ietf-jose-hpke-encrypt-12, "Use of Hybrid Public Key Encryption (HPKE) with JSON Object Signing and Encryption (JOSE)" [71] defines a Hybrid Public Key Encryption (HPKE) for use with JOSE utilizing an asymmetric Key Encapsulation Mechanism (KEM), a Key Derivation Function (KDF), and an Authenticated Encryption with Associated Data (AEAD) algorithm.
-	IETF Draft draft-ietf-jose-pq-composite-sigs-00, "PQ/T Hybrid Composite Signatures for JOSE and COSE" [87], describes JSON and COSE serializations for PQT hybrid composite signatures.  The composite algorithms    combine ML-DSA as the post-quantum component and either ECDSA or EdDSA as the traditional component.
However, no IETF work on hybrid signature schemes for JOSE has been adopted. 
[bookmark: _Toc211892410][bookmark: _Toc211951704][bookmark: _Toc215135065]6.4.3		3GPP Considerations
Editor’s Note: This clause does not include any conclusions. 
See clause 6.8.  

[bookmark: _Toc211892411][bookmark: _Toc211951705][bookmark: _Toc215135066]6.5	PKI certificate
[bookmark: _Toc211892412][bookmark: _Toc211951706][bookmark: _Toc215135067]6.5.1	General
The Internet X.509 (PKIX) Certificate is being used in 3GPP PKI systems [82] and the OCSP protocol listed in the TR 33.938 [2]. The IETF LAMPS Working Group has introduced multiple RFCs and Drafts to enable a smooth transition to PQC in PKIX to provide quantum-resistant security for PKIX. 
[bookmark: _Toc211892413][bookmark: _Toc211951707][bookmark: _Toc215135068]6.5.2		Current Work in IETF
[bookmark: _Toc211892414][bookmark: _Toc211951708][bookmark: _Toc215135069]6.5.2.1	IETF RFCs
· IETF RFC 9802 [51] has specified algorithm identifiers and ASN.1 encoding format for several stateful Hash-Based Signature (HBS) schemes: Hierarchical Signature System (HSS), eXtended Merkle Signature Scheme (XMSS), and a multi-tree variant of XMSS, XMSS^MT. These schemes are applicable to the Internet X.509 Public Key Infrastructure (PKI) when digital signatures are used to sign certificates and certificate revocation lists (CRLs).
-	IETF RFC 9763 [50] defines a method for requesting and issuing two X.509 end-entity certificates for the same entity, in order to perform two authentications using the two certificates where each certificate corresponds to a distinct digital signature.
-	IETF RFC 9881 [54] specifies the conventions for using FIPS 204 (ML-DSA) [22] in the Internet X.509 certificates and CRLs, including the conventions for the associated signatures, subject public keys, and private key as well.
-	IETF RFC 9909 [53] specifies the conventions for using FIPS 205 (SLH-DSA) [23] in the Internet X.509 certificates and CRLs, including the conventions for the associated signatures, subject public keys, and private keys as well.
[bookmark: _Toc211892415][bookmark: _Toc211951709][bookmark: _Toc215135070]6.5.2.2	IETF Adopted Drafts
· IETF Draft draft-ietf-lamps-kyber-certificates-11 "Internet X.509 Public Key Infrastructure - Algorithm Identifiers for the Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM)" [52] specifies the conventions for using the ML-KEM [21] in X.509 Public Key Infrastructure.  
· IETF Draft draft-ietf-lamps-x509-slhdsa-09, "Internet X.509 Public Key Infrastructure: Algorithm Identifiers for SLH-DSA" [53] specifies to the conventions for using the SLH-DSA [23] in X.509 Public Key Infrastructure. 
· IETF Draft draft-ietf-lamps-dilithium-certificates-13, "Internet X.509 Public Key Infrastructure - Algorithm Identifiers for the Module-Lattice-Based Digital Signature Algorithm (ML-DSA)" [54] specifies the conventions for using the ML-DSA [22] in X.509 Public Key Infrastructure.
· IETF Draft draft-ietf-lamps-pq-composite-kem-08 "Composite ML-KEM for use in X.509 Public Key Infrastructure" [55] defines a specific instantiation of the PQT Hybrid paradigm called "composite" where multiple cryptographic algorithms (i.e. ML-KEM [21] in hybrid with traditional algorithms RSA-OAEP, ECDH, X25519, and X448) are combined to form a single key encapsulation mechanism (KEM) presenting a single public key and ciphertext such that it can be treated as a single atomic algorithm at the protocol level.
· IETF Draft draft-ietf-lamps-pq-composite-sigs-13 "Composite ML-DSA for use in X.509 Public Key Infrastructure" [x3] defines the composite ML-DSA, i.e., combinations of ML-DSA [22], in hybrid with traditional algorithms RSASSA-PKCS1-v1.5, RSASSA-PSS, ECDSA, Ed25519, and Ed448, to form a single signature algorithm presenting a single public key and signature value such that it can be treated as a single atomic algorithm at the protocol level.
-	IETF Draft draft-ietf-lamps-certdiscovery-01, "A Mechanism for X.509 Certificate Discovery" [56] specifies a method to discover a secondary X.509 certificate associated with an X.509 certificate to enable efficient multi-certificate handling in protocols.
[bookmark: _Toc211892416][bookmark: _Toc211951710][bookmark: _Toc215135071]6.5.3		3GPP Considerations
See clause 6.8.  

[bookmark: _Toc211892417][bookmark: _Toc211951711][bookmark: _Toc215135072]6.6	TLS 1.2
[bookmark: _Toc211892418][bookmark: _Toc211951712][bookmark: _Toc215135073]6.6.1	General
The TLS 1.2 handshake in IETF RFC 5246 [57] is used in TLS 1.2, DTLS 1.2, EAP-TLS 1.2, EAP-TTLS, and OAuth 2.0. The DTLS handshake is also applied in DTLS over SCTP and can be used in DTLS-SRTP.
The 3GPP TLS profile is defined in clause 6.2 of 3GPP TS 33.210 [59]. Since Release 15, TLS 1.3 has been mandatory for all 3GPP core network nodes, and from Release 16 onward, it is mandatory for all nodes. Because TLS always negotiates the highest mutually supported version, any use of TLS 1.2 in a 3GPP system from Rel-16 onward implies that at least one node is non-compliant with 3GPP specifications.
While a fully updated TLS 1.2 implementation could theoretically provide strong security against classical adversaries in scenarios where identity protection is not required, in practice, TLS 1.2 is only negotiated by outdated implementations. These often suffer from one or more known vulnerabilities.
Therefore, TLS 1.2 is expected to already have been fully phased out in 5G systems.
[bookmark: _Toc211892419][bookmark: _Toc211951713][bookmark: _Toc215135074]6.6.2	Current Work in IETF
TLS 1.2 has been obsoleted since 2018, as superseded by TLS 1.3 in IETF RFC 8446 [58]. The IETF will no longer approve any additions or updates to TLS 1.2, including PQC support (IETF draft-ietf-tls-tls12-frozen-08 [60]).
[bookmark: _Toc211892420][bookmark: _Toc211951714][bookmark: _Toc215135075]6.6.3		3GPP Considerations
Since TLS 1.2 will not be updated any further, 3GPP will consider phasing out the use of TLS 1.2.
Further 3GPP considerations for TLS 1.2 are in Clause 6.7.3 of the present document.
[bookmark: _Toc211892421][bookmark: _Toc211951715][bookmark: _Toc215135076]6.7	TLS 1.3
[bookmark: _Toc211892422][bookmark: _Toc211951716][bookmark: _Toc215135077]6.7.1	General
The TLS 1.3 handshake protocol as defined in clause 4 of IETF RFC 8446 [58] is used in TLS 1.3, EAP-TLS 1.3, EAP-TTLS 1.3, OAuth 2.0, DTLS 1.3, and QUIC, and it can also be used in DTLS-SRTP. Since Release 15, TLS 1.3 has been mandatory to implement for the core network (cf. Annex E in TS 33.310 v15.0.0), and starting in Release 16, it has been mandatory to implement also for the ME (cf. Annex E in TS 33.310 v16.0.0).
IETF is in general recommending hybridization of KEMs and the hybrid KEM X25519MLKEM768 [65] has already received widespread implementation support and is the default in OpenSSL. It has been reported [25] that over 40% of all HTTPS client requests now use X25519MLKEM768. Standalone ML-KEM [64], ML-DSA [66] have seen more limited implementation but are supported in OpenSSL 3.5 LTS.
[bookmark: _Toc211892423][bookmark: _Toc211951717][bookmark: _Toc215135078]6.7.2	Current Work in IETF
The IETF has prioritized post-quantum migration in TLS as follows [61]:
•	Now (Hybrid + Pure ML-KEM)
•	Later (signatures)
•	Much later (dual certificates/composite signatures)
The IETF TLS Working Group has planned not to adopt work on hybrid signatures until "much later" [61].
The IETF TLS Working Group has introduced multiple drafts to enable a smooth transition to PQC in TLS 1.3. These proposals address both key exchange and authentication. These mechanisms collectively aim to maintain interoperability, minimize latency, and provide quantum-resistant security during and after the PQC transition.
In an LS to GSMA [62], the IETF TLS Working Group stated that they believe the IETF Adopted Draft "Post-quantum hybrid ECDHE-MLKEM Key Agreement for TLSv1.3" [65] is stable enough to be used as normative reference, and that referencing an adopted draft normatively is a practice that other organizations follow as well.
[bookmark: _Toc211892424][bookmark: _Toc211951718][bookmark: _Toc215135079]6.7.2.1	IETF RFCs
No RFCs for the usage of PQC algorithms in TLS 1.3 are published yet.
Editor's Note: several of the adopted drafts are in the final stages and may be published before this document is finalised.
[bookmark: _Toc211892425][bookmark: _Toc211951719][bookmark: _Toc215135080]6.7.2.2	IETF Adopted Drafts
-	draft-ietf-tls-hybrid-design-16, "Hybrid key exchange in TLS 1.3" [63], specifies combining multiple key exchange algorithms (e.g., classical ECDHE with a PQ KEM) so that session security holds if at least one component remains secure. 
-	draft-ietf-tls-mlkem-04, "ML-KEM Post-Quantum Key Agreement for TLS 1.3" [64], proposes to use the NIST specified ML-KEM [21] in TLS 1.3.
-	draft-ietf-tls-mldsa-00, "Use of ML-DSA in TLS 1.3" [66], proposes to use the NIST specified ML-DSA [22] in TLS 1.3.
-	draft-ietf-tls-ecdhe-mlkem-00, "Post-quantum hybrid ECDHE-MLKEM Key Agreement for TLSv1.3" [65], defines three hybrid key agreements for TLS 1.3: X25519MLKEM768, SecP256r1MLKEM768, and SecP384r1MLKEM1024.
[bookmark: _Toc211892426][bookmark: _Toc211951720][bookmark: _Toc215135081]6.7.3		3GPP Considerations
Editor’s Note: This clause does not include any conclusions. 
See clause 6.8.  
Clause 6.6.3 in the present document calls for the 3GPP to consider phasing out the use of TLS 1.2. An approach to phasing out TLS 1.2 needs to take into account current 3GPP mandatory requirements for support of both TLS 1.3 and TLS 1.2 in network elements as described in Clause 6.2.1 of TS 33.210 [59].
The end goal for mitigating the CRQC threat to TLS would be to only allow TLS 1.3 in all usage of TLS. This end goal can be accomplished for all network elements by requiring TLS 1.3 clients and servers to disable fallback/downgrade to TLS 1.2 and disabling all TLS 1.2 clients and TLS 1.2 servers.
The approach to reach this end goal is to only allow TLS 1.3 by configuring the "supported_versions" extension in the TLS 1.3 client hello, and for TLS 1.3 servers to be configured to disable TLS1.2.
A phased approach would allow a network element to negotiate TLS 1.2 for some uses while preserving TLS 1.3 for other uses. It would be up to the operator to determine whether a network element is allowed to negotiate TLS 1.2.
This phased approach could be addressed through requirements to allow the operator in certain TLS uses to configure the "supported_versions" extension to allow TLS 1.2 in the client hello, and for servers to be configured to enable TLS1.2.
[bookmark: _Toc215135082]6.8		3GPP Considerations
All the RFCs and adopted drafts mentioned in clauses 6.2, 6.3, 6.4, 6.5, and 6.7 are stable and ready for use in 3GPP systems, except the following two adopted drafts:
· IETF Draft draft-ietf-jose-pqc-kem-03, "Post-Quantum Key Encapsulation Mechanisms (PQ KEMs) for JOSE and COSE" [67]
· IETF Draft draft-ietf-lamps-certdiscovery-01, "A Mechanism for X.509 Certificate Discovery" [56]
3GPP will consider the lifecycle management of long-lived PKIs, especially the lifespan of certificates.
3GPP will consider choosing at least two suitable standardized algorithms, if available, for the same purpose (e.g., key exchange and authentication) with different constructions so that cryptanalytic breakthroughs against one algorithm does not directly apply against the other algorithm(s).
Editor’s Note: Further 3GPP considerations are FFS. 
Editor’s Note: This clause does not include any conclusions.
[bookmark: _Toc211892427][bookmark: _Toc211951721][bookmark: _Toc215135083]7		Protocols expected to be updated for PQC by 3GPP
[bookmark: _Toc145061648][bookmark: _Toc145061445][bookmark: _Toc145074667][bookmark: _Toc145074909][bookmark: _Toc145075113][bookmark: _Toc187324512]Editor’s Note: This clause contains identification of the protocols with asymmetric cryptography listed in TR 33.938 that are not expected to be updated by other SDOs in a near future to use PQC, e.g., MIKEY-SAKKE and SUCI calculation, security threats and alternative solutions for the 3GPP procedures if they are not updated to use PQC. 
[bookmark: _Toc211892428][bookmark: _Toc211951722][bookmark: _Toc215135084]7.1	Threats
[bookmark: _Toc211892429][bookmark: _Toc211951723][bookmark: _Toc215135085]7.1.1	General
Most of security protocols used in 3GPP systems are specified in other standards development organizations (SDOs). In case that these protocols are not updated to use PQC in other SDOs, the 3GPP system may be vulnerable to attacks based on quantum computation. The clauses 7.1.2, 7.1.3, and 7.2 contain all of these protocols identified and potential solutions to address the issues.
[bookmark: _Toc211892430][bookmark: _Toc211951724][bookmark: _Toc215135086][bookmark: _Toc145061446][bookmark: _Toc145061649][bookmark: _Toc145074668][bookmark: _Toc145074910][bookmark: _Toc145075114][bookmark: _Toc187324513]7.1.2	SUCI calculation
Editor’s Note: If only SUCI calculation is considered, this subclause may be removed. If other protocol, e.g. MIKEY-SAKKE is studied, this subclause is used for each of such protocol identified.
As per TS 33.501 [4] and Table 4.3.2-1 of 3GPP Cryptographic inventory 3GPP TR 33.938 [2], the SUCI calculation is done based on ECIES scheme. The ECIES is specified in the SECG version 2 [9] and [10]. 
Since ECIES will not be updated by SECG with PQC algorithms, 3GPP should study alternative solutions for SUCI calculation due to post-quantum threats to existing ECIES scheme, e.g. supporting new profiles/algorithms with PQC for SUCI calculations.
[bookmark: _Toc211892431][bookmark: _Toc211951725][bookmark: _Toc215135087]7.1.3	MIKEY-SAKKE key exchange
MIKEY-SAKKE is a key exchange method specified in the IETF RFC 6509 [6]. As described in TR 33.938 [2], it is used in the 3GPP system to securely transport cryptographic keys for Mission Critical Services [3]. It employs asymmetric cryptography for key distribution. 
Assuming MIKEY-SAKKE will not be updated by IETF with PQC algorithms, alternative solutions should be studied for MIKEY-SAKKE due to post-quantum threats to existing signature schemes.
[bookmark: _Toc211892432][bookmark: _Toc211951726][bookmark: _Toc215135088]7.2	Solutions
Editor’s Note: This clause contains solutions to update 3GPP defined security protocols (for example SUCI calculation) to use the appropriate PQC algorithm, if those protocols are not expected to be updated by other SDOs to use PQC algorithms. 
[bookmark: _Toc211892433][bookmark: _Toc211951727][bookmark: _Toc215135089]7.2.1	Solutions to SUCI calculation
Editor’s Note: If only SUCI calculation is considered, this subclause may be removed. If other protocol, e.g. MIKEY-SAKKE is studied, this subclause is used for each of such protocol identified. 
[bookmark: _Toc211892434][bookmark: _Toc211951728][bookmark: _Toc215135090][bookmark: _Toc145061650][bookmark: _Toc145061447][bookmark: _Toc145074669][bookmark: _Toc145074911][bookmark: _Toc145075115][bookmark: _Toc187324514]7.2.1.1	Solution #1 to SUCI calculation: SUCI calculation with PQC enhancement
[bookmark: _Toc211892435][bookmark: _Toc211951729][bookmark: _Toc215135091]7.2.1.1.1	Introduction
It is proposed to introduce new SUCI calculation mechanism. The solution is applicable for SUCI calculation in ME.
Preassumption:
If a ME/Network supports PQC algorithms:
· USIM indicates the SUCI calculation is done in the ME
· USIM contains new public key for calculating SUCI with PQC

If a ME does not support PQC algorithm(s), the ME will use a legacy algorithm for SUCI calculation.
[bookmark: _Toc211892436][bookmark: _Toc211951730][bookmark: _Toc215135092]7.2.1.1.2	Solution details
If a ME supports PQC algorithms, the indication in USIM is the SUCI calculation should be done in the ME, and the operator’s decision is to use PQC to calculate the SUCI, then the public key for calculating SUCI using PQC shall be available in USIM. The ME reads the SUPI, the SUPI Type, the Routing Indicator, the Home Network Public Key Identifier for PQC, the Home Network Public Key for PQC, and the list of protection scheme identifiers. The ME shall select the protection scheme from its supported schemes that has the highest priority in the list are obtained from the USIM.
The alternative method is, there is no list of protection scheme identifiers, but only one identifier indicating UE to use PQC algorithm to calculate SUCI. UE will decide with algorithm to be used and attach it to the SUCI output. Network side will choose the same algorithm as the indication in SUCI and decode SUCI.
When there are multiple SUCI profiles, the list of the protection scheme indicates the order of the preference. If there is no list provisioned in USIM, ME shall decide which profile to be used for SUCI calculation. ME decides with algorithm to be used based on the local policy and attaches it to the SUCI output. Network side will chose the same algorithm as the indication in SUCI, and decode SUCI.
The candidate new profiles for SUCI may include below:
· ML-KEM [21]
Editor’s Note: Further details are FFS.
[bookmark: _Toc211892437][bookmark: _Toc211951731][bookmark: _Toc215135093]7.2.1.1.3	Evaluation
TBD
[bookmark: _Hlk219711516]This solution is not a cryptographic solution as it only discusses the interaction between the USIM and the ME and the way to proceed in case several schemes are defined. 
This solution does not cover the scenario where the SUCI is calculated by the USIM. 
[bookmark: _Hlk213346011]Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc211892438][bookmark: _Toc211951732][bookmark: _Toc215135094]7.2.1.2	Solution #2 to SUCI calculation: Solution on pure PQC for SUCI protection
[bookmark: _Toc211892439][bookmark: _Toc211951733][bookmark: _Toc215135095]7.2.1.2.1	Introduction
The ECIES procedure as depicted by the 5G system architecture [21] is the basis for the development of the PQC solution.
This solution proposal refers to a pure PQC implementation. Therefore, fFor the transition to PQC the relevant functional blocks will have to replace the existing/corresponding ECIES functional blocks, because of the fact that all these functions like the creation of the Ephemeral key pair (see 1>), the key agreement (see 2>), and the key derivation function (see 3>), according the SECG SEC1 specifications are all making use of classic cryptography.
This solution proposal refers to a pure PQC implementation.
The following Figure depicts the Encryption based on ECIES at the UE side.
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Figure 7.2.1.2.1-1: Encryption based on ECIES at the UE

The following Figure depicts the Decryption based on ECIES at the home network side.
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Figure 7.2.1.2.1-2: Decryption based on ECIES at the Home Network

[bookmark: _Toc211892440][bookmark: _Toc211951734][bookmark: _Toc215135096]7.2.1.2.2	Solution details
Editor’s Note: Details on the KDF are FFS
Editor’s Note: Details on how this solution could be used for hybrid PQC are FFS
Editor’s Note: Why is MAC verification after decryption is FFS.
Editor’s Note: Whether and how to support hybrid scheme is FFS.
Editor’s Note: Why relevant functional blocks have to replace existing/corresponding ECIES functional blocks is FFS.

The solution is replacing the ECIES functional blocks with corresponding/related PQC related functional blocks.
The following Figure depicts the PQC concept at the UE side. The functions which must be modified for the support of PQC are with green coloured background.  



Figure 7.2.1.2.2-1: SUCI protection based on PQC algorithms at the UE side
At UE: PQC KEM public key of HN is used in Key encapsulation mechanism to generate ciphertext and shared secret. This shared secret is used as an input to Key Derivation Function (KDF) to generate the Encryption key to generate cipher text of SUPI and MAC value.
The following is applicable:
This step 1, as shown by the Figure 7.2.x.y.1-1, is for the transition to PQC not required, i.e., there is no creation of Ephemeral Keys needed in this concept.
2> The Kem Encapsulation Function will get the public key (pk) as input and is providing the cipher text (ct) and the shared secret (ss). The (ct) will be have to be send back to the network, whereas the (ss) will be used as input to the key derivation function.
3> The key derivation function is receiving the shared secret (ss) and is calculating the encryption key. There will be created a single key that is to be used for encryption and integrity protection. For the KDF, the hash functions of the SHA-3 family are considered quantum-resistant, i.e., digests (hash values) that are 128, 224, 256, 384 or 512 bits, are candidates for use in the KDF.
4> The encryption is used for the computation of the encrypted plaintext block, i.e., ciphertext value.
5> The encryption is used for the computation of the MAC-I, i.e., MAC-tag value.
Both the ciphertext and the MAC-tag value will be included into the SUCI framework (see Figure 7.2.x.y.2-3) and will be sent to the Network for further treatment.

At Network side: The received PQC KEM cipher text is used along with the PQC KEM Secret key of HN (corresponding to received PQC KEM public key Id) to decapsulate and generate the shared secret. This shared secret is used as an input to KDF to generate the decryption key to decipher the cipher text and verify the MAC.

The following Figure depicts the PQC concept at the Network side.
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Figure 7.2.1.2.2-2: SUCI protection based on PQC algorithms at the Home Network side
The following is applicable:
1> The Network side is retrieving the cipher text (ct) from the SUCI framework. The secret key (sk) is local stored and corresponds to the public key (pk) which has been share with UE. Both, the (ct) and the (sk) will be given as input to the Key Decapsulation function and the outcome is the shared secret (ss). The (ss) will be used as input to the key derivation.
2> The key derivation function is receiving the shared secret (ss) as input and is computing the decryption key. There will be created a single decrypt key that is to be used for decryption and integrity verification. For the KDF, the hash functions of the SHA-3 family are considered quantum-resistant, i.e., digests (hash values) that are 128, 224, 256, 384 or 512 bits, are candidates for use in the KDF.
4> The decryption key is used for the computation of the MAC-I verification.
3> The decryption key is used for the computation of the Plaintext block. The decryption will be performed only after successful MAC-I verification.

4> The decryption key is used for the computation of the MAC-I verification.

If we apply this solution concept, then the SUCI framework is as depicted by below Figure.
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Figure 7.2.x.y.2-3: SUCI framework for PQC
Home Network Public Key Identifier (PQC KEM) represents a public key provisioned by the HPLMN or SNPN and it is used to identify the key used for SUPI protection. Example of the PQC KEM Public key is Kyber (selected by NIST standards).
PQC KEM ciphertext: Post Quantum Cryptography Key encapsulation mechanism uses the PQC KEM public key of Home Network to generate the ciphertext.

[bookmark: _Toc211892441][bookmark: _Toc211951735][bookmark: _Toc215135097]7.2.1.2.3	Evaluation
TBD
EN#1:  Evaluation on impact of initial access due to increased length of SUCI is ffs.
EN#2:  Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
EN#3: Whether the solution work for case that user does not update USIM card is ffs.
[bookmark: _Toc211892442][bookmark: _Toc211951736][bookmark: _Toc215135098]7.2.1.3	Solution #3 to SUCI calculation: SUCI calculation with hybrid KEMs
[bookmark: _Toc211892443][bookmark: _Toc211951737][bookmark: _Toc215135099]7.2.1.3.1	Introduction
This solution proposes a hybrid encryption approach with both PQC and traditional cryptography for SUCI calculation. The proposed solution uses two different KEM algorithms for key derivation. The hybrid solution can provide higher security protection as long as either the classical algorithm or the PQC algorithm succeeds. 
[bookmark: _Toc211892444][bookmark: _Toc211951738][bookmark: _Toc215135100]7.2.1.3.2	Solution details
Editor’s Note: What is the advantage for presenting classical algorithm ECDH-KEM is ffs.
Editor’s Note: it is ffs whether there is no freshness aspect anymore as the stored key will be reused.
Editor’s Note: it is ffs how will the HN identify which key is used if there is no identifier.
Editor’s Note: it is ffs, for the MAC creation, there is no key used, this is just a hashing, not a keyed-hash.
Editor’s Note: SUCI size is ffs since with the c1c2 cipher text, new MAC, still SUCI size will be more than existing SUCI in 5G apart from the PQC addition. 
Editor’s note: Details on how the MAC computation is performed are FFS.
Editor’s note: it is ffs the security issue introduced by using a non-keyed hash over part of the message.
Editor’s note: Why MAC on c1 and c2 is required is FFS.
The proposed solution is illustrated below. Figure 7.2.1.Y-1 shows the SUCI calculation at the UE. Figure 7.2.1.Y-2 shows the scheme output that the UE sends to the HN. Figure 7.2.1.Y-3 is the HN decryption of the SUCI from the UE. 
 [image: A diagram of a flowchart
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Figure 7.2.1.3-1 SUCI calculation using hybrid KEM schemes at UE

1a. UE generates a shared key k1 and the corresponding ciphertext c1 based on the key encapsulation algorithm 1 (KEM1). The KEM1 uses ECDH-KEM with traditional cryptography as specified in NIST.SP.800-227 [73].
1b. UE generates a shared key k2 and the corresponding ciphertext c2 based on the key encapsulation algorithm 2 (KEM2). The KEM2 is PQC secure, and uses the ML-KEM-768 as specified in NIST FIPS 203 [21].
NOTE1: In Step 1a or 1b, freshness of generating k1, k2 is ensured by the randomnesss in the KEM algorithm. 
2a. UE generates a hybrid shared key (k) using KDF as specified in TS 33.501 [4], where k1||k2 is one of k1, c1, k2, and c2 are the inputs of the KDF (as recommended by NIST SP 800-227[73])..
NOTE2: An approved key combiner recommended in NIST SP 800-227 [73] is used, e.g. KDF (k1, k2, c1, c2, other parameters if needed) to preserve IND-CCA security.  
2b. UE generates a MAC value 11 by hashing c1 and c2, e.g., MAC value -1 = SHA256 (c1||c2). The MAC-1 is primarily used to allow the network to verify the correctness before performing hybrid de-KEM, considering the time consumption for executing de-KEM.
The MAC value -1 is used for the HN to verify correctness of c1 and c2 before performing the computation intensive cryptographic steps (e.g., steps 3-6 in Figure 7.2.1.Y-3). 
3-5: UE continue with steps similar to the steps 3 -5 specified in clause C.3.2 in TS 33.501 [4]. 
The SUCI format generated by UE is as specified in TS 23.003 [74] and the Scheme Output as shown below includes the concatenation of the ciphertext c1||c2, MAC value -1, ciphertext c3 and MAC tag. Before or after generating the scheme output, the terminal verifies the key and the corresponding key ID that are used, and sends the key ID along with the SUCI to the network when sending the SUCI. The key ID can be part of the SUCI.
[image: ] [image: ]
Figure 7.2.1.Y3-2 The Scheme Output generated at the UE side

The processing of the received packet at the HN is shown in Figure 7.2.1.Y-3 with details as follows:
  [image: A diagram of a block diagram
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Figure 7.2.1.3-3 Decryption of SUCI at HN 

1. HN verifies the received MAC value -1 of UE. If it succeeds, HN continues to perform the decapsulation of the shared key.
2a. HN decapsulates the shared key k1 based on the key encapsulation algorithm 1 (KEM1), the private key 1 of HN, and the received ciphertext c1 from UE. In the case of KEM1 = ECDH-KEM, ciphertext c1 is used as the ephemeral public key of the UE [75].
2b. HN decapsulates the shared key k2 based on the key encapsulation algorithm 2 (KEM2), the private key 2 of HN, and the received ciphertext c2 from the UE.
3. HN generates the shared key k in the same way at the UE side.
4-6: HN follows the steps 2-4 specified in clause C.3.3 of TS 33.501 [4].
[bookmark: _Toc205541849][bookmark: _Toc211892445][bookmark: _Toc211951739][bookmark: _Toc215135101]7.2.1.3.3	Evaluation
Editor’s note: Evaluation is FFS.
This solution addresses SUCI calculation. This solution follows a hybrid approach and combines a traditional KEM and a PQC KEM to protect against both existing threats and future quantum computer threats. 
The MAC-1 computed on c1 and c2 is a hash function evaluation. It is primarily used to allow the network to verify the correctness before performing hybrid de-KEM, considering the time consumption for executing de-KEM. 
The key combiner uses not only k1, k2 but also c1, c2 as inputs, which helps achieve IND-CCA security.
Assuming ML-KEM-768 (recommended in FIPS 203 [21]) is used for the PQC KEM, the hybrid scheme will increase the SUCI length by 1120 bytes, where the MAC-1 increases the length by 32 bytes.

Editor’s Note: Justification of need and overhead added by MAC-1 is FFS.
Editor’s Note: Further evaluation is FFS.
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is FFS.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is FFS.
Editor’s Note: Whether the solution work for case that user does not update USIM card is FFS.

[bookmark: _Toc211892446][bookmark: _Toc211951740][bookmark: _Toc215135102]7.2.1.4	Solution #4 to SUCI calculation: SUPI Pseudonym
[bookmark: _Toc211892447][bookmark: _Toc211951741][bookmark: _Toc215135103]7.2.1.4.1	Introduction
This contribution proposes SUPI concealment using pseudonym instead of asymmetric encryption for SUPI.
[bookmark: _Toc211892448][bookmark: _Toc211951742][bookmark: _Toc215135104]7.2.1.4.2	Solution details
The Figure 7.2.1.4.2-1 illustrates the procedure:
[image: C:\Users\g00805487\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\8133EA04.tmp][image: C:\Users\g00805487\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\6C3EEB94.tmp]
Figure 7.2.1.4.2-1 procedure of using random number to do SUPI concealment 
0. The UE and the UDM areis pre-configured with the UE’s SUPI, a random value RAND generated by the network and a routing indicator binding to the UDM instance storing the UE’s subscription data.  The UDM instance is pre-configured with the UE’s SUPI, the random value RAND and a pseudonym=H (K, RAND), i.e., a random value RAND the UDM can also pre-compute several pseudonyms H (K, RAND, COUNT) using different COUNT values (e.g. 0,1,2, etc.), where K is UE’s long-term key and “H” refers to HMAC, a quantum-resistant hash-based message authentication code. 
1. During registration, the UE calculates pseudonym=H (K, RAND) usesing the pre-configured pseudonym RAND, and sends pseudonym and the routing indicator as the UE's SUCI sent over the air interface.
2-3. The network routes the message to the corresponding UDM instance according to the routing indicator, UDM /AUSF maps the pseudonym RAND to SUPI and complete the authentication using the SUPI. The RAND can also be reused as the RAND random value used in the primary authentication. 
4-5. After authentication, the UDM instance assigns a new pseudonym RAND' for the SUPI UE, update the pseudonyms with H (K, RAND), H (K, RAND, COUNT) using different COUNT values (e.g. 0,1,2, etc.) and sends it the new RAND to the UE. UE responses to network after receiving the new RAND value. If network did not receive the response from the UE, UDM will also keep the pseudonyms calculated using the previous RAND value.
6. The UE uses the newly assigned pseudonym RAND' to calculate the pseudonym and the SUCI at UE in the subsequent procedure.
After sending the pseudonym, the UE may receive a rejection message or may not receive any response after a timeout. The UE will re-calculate the value of pseudonym. i.e. H (K, RAND, COUNT) with the COUNT value is incremented by one each time a duplicate RAND value is used. 
In order to address the traceability issue, a COUNT with initial values setting to 0 is introduced in the computation of pseudonym. Specifically, the UE and network compute H (K, RAND, COUNT) as the pseudonym. If the authentication is failed, the value of COUNT will increase from UE side. The UDM can pre-compute several pseudonyms using different COUNT values (e.g. 0,1,2, etc.) and compare the value to the receiving pseudonym in order to resolve SUPI.

Editor’s Note: it is ffs that RAND without binding to any UE specific key or encryption or MAC value will result in the attacker is just sending and RAND number blocking the genuine UE.
Editor’s Note: it is ffs that just the RAND can’t be used for routing of the information.
Editor’s Note: How does pre-configured pseudonym prevent traceability is FFS.

[bookmark: _Toc211892449][bookmark: _Toc211951743][bookmark: _Toc215135105]7.2.1.4.3	Evaluation
TBD
This solution addresses the key issue about PQC migration for SUCI calculation. 
This solution relies on a one-time pseudonym RAND that will serve as the SUCI value. This pseudonym is known to the UDM that can then identify the corresponding UE. After each authentication, a new pseudonym RAND’ is generated by the UDM and transmitted to the UE. This requires synchronisation between the UE and the UDM. In case a UE is desynchronized, the UE uses a COUNT value to re-calculate the pseudonym (as in the steps 1 and 6) to address the trackability issue.
Recovery procedure of pseudonym using COUNT may add additional complexity.  
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc206426559][bookmark: _Toc211892450][bookmark: _Toc211951744][bookmark: _Toc215135106]7.2.1.5	Solution #5 to SUCI calculation: Enhancement on SUCI calculations using quantum key
[bookmark: _Toc206426560][bookmark: _Toc211892451][bookmark: _Toc211951745][bookmark: _Toc215135107]7.2.1.5.1	Introduction
This solution provides enhancement for SUCI calculations to resolve post-quantum threats to existing ECIES scheme.
[bookmark: _Toc206426561][bookmark: _Toc211892452][bookmark: _Toc211951746][bookmark: _Toc215135108]7.2.1.5.2	Solution details
This solution describes SUCI calculations using Quantum Channel. The UE can provision Public key of HN and Quantum Public Key. Based on ECIES scheme, the ephemeral public key, cipher text, and MAC tag can be generated as an output. Additionally, using the Quantum Public Key, the cipher text can be encapsulated. The encapsulated cipher text is delivered to the Home Network via Quantum Channel. The Home Network decapsulates it with Quantum private key, then deciphers ciphered text and verifies MAC.
[bookmark: _Toc211892453][bookmark: _Toc211951747][bookmark: _Toc215135109]7.2.1.5.2.1	Processing on UE side
The steps shown Figure 7.2.X.Y.2.1 are described as below:
0. As a prerequisite, the UE provisions both Public key of HN and Quantum Public key.
1. The UE generates Ephemeral key pair consisting of Ephemeral Public Key and Ephemeral Private Key.
2. Based on the generated Ephemeral Private Key and the Public key of Home Network, the UE generates Ephemeral Shared Key.
3. Using ECIES scheme, Ephemeral Encryption Key, ICB and Ephemeral MAC Key are generated.
4. Plaintext is ciphered using the Ephemeral Encryption Key.
5. The ciphered text and the Ephemeral MAC key are used to create MAC-tag value.
6. The ciphered text value is encapsuled using Quantum Public Key.


Figure 7.2.1.5.2.1: Encryption at UE
The final output shall be the concatenation of the ECC ephemeral public key, the Quantum encapsulated ciphertext value, the MAC tag value, and any other parameters, if applicable.
[bookmark: _Toc211892454][bookmark: _Toc211951748][bookmark: _Toc215135110]7.2.1.5.2.2	Processing on home network side
The steps shown Figure 7.2.1.5.2.2 are described as below:
1. By decapsulating the encapsulated cipher-text using Quantum Private Key, the Home Network generates the cipher-text.
2. Based on the received Ephemeral Public Key, the Home Network generates Ephemeral Shared Key.
3. Using ECIES scheme, Ephemeral Decryption Key, ICB and Ephemeral MAC Key are generated.
4. The ciphered text is deciphered using the Ephemeral Decryption Key.
5. The Home Network verifies received MAC.



Figure 7.2.1.5.2.2: Decryption at Home Network
Editor’s Note: Details on Step 6 at processing on UE side is FFS.
Editor’s Note: Details on Quantum Public key are FFS.
Editor’s Note: What is Quantum Channel is FFS.
Editor’s Note: Whether and how to support hybrid encryption.
Editor’s Note: Why SUCI should require a quantum channel into the HN is FFS.
Editor’s Note: What is a Quantum key and why it is required is FFS.
Editor's Note: The definition and usefulness of these terms for SUCI calculation are FFS: Post-quantum threat, Quantum channel, Quantum public key, Quantum-encapsulated, Quantum-encrypted, Quantum-ciphered, Quantum Private key.
Editor’s Note: How to use standardized algorithm is FFS.
[bookmark: _Toc206426562][bookmark: _Toc211892455][bookmark: _Toc211951749][bookmark: _Toc215135111]7.2.1.5.3	Evaluation
TBD
This solution is reminiscent of hybrid cryptography in that it relies on two different cryptographic components. However, the combination of these mechanisms is highly unconventional here because some keys, e.g. the MAC key, are derived from one component (namely the ECIES scheme) alone. It concretely means that it is sufficient to break one of these components to break the whole SUCI security. In particular, an adversary equipped with a quantum computer can break the ECIES scheme and thereby get the MAC key. With this key, it can forge new MACs, removing any integrity assurance. It therefore seems that the proposed solution does not comply with the general principle stating that a hybrid system should remain secure as long as one of its components is secure. Also, the solution at step 6 at UE side for encapsulation assumes the functionality of encryption or K-PKE. As per [21], the scheme K-PKE is not IND-CCA2-secure and shall not be used as a stand-alone scheme.
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc211892456][bookmark: _Toc211951750][bookmark: _Toc215135112]7.2.1.6	Solution #6 to SUCI calculation: Enhancement on SUCI calculations using quantum encapsulated key
[bookmark: _Toc211892457][bookmark: _Toc211951751][bookmark: _Toc215135113]7.2.1.6.1	Introduction
This solution provides enhancement for SUCI calculations to resolve post-quantum threats to existing ECIES scheme.
[bookmark: _Toc211892458][bookmark: _Toc211951752][bookmark: _Toc215135114]7.2.1.6.2	Solution details
This solution describes SUCI calculations using Quantum Channel. The UE can provision Public key of HN and Quantum Public Key. Based on ECIES scheme, the ephemeral public key and MAC tag can be generated as a part of output. To cipher plain text, The Ephemeral Encryption key is encapsulated using Quantum Public Key. Using the Quantum-encapsulated Ephemeral Encryption key, the Plaintext is quantum-encrypted. The cipher text is delivered to the Home Network via Quantum Channel. The Home Network decapsulates the received quantum-ciphered text using HN-generated Ephemeral decryption key. By decrypting it using Quantum Private key, The Home Network obtains plain text. Then verifies received MAC.
[bookmark: _Toc211892459][bookmark: _Toc211951753][bookmark: _Toc215135115]7.2.1.6.2.1	Processing on UE side
The steps shown Figure 7.2.1.6.2.1 are described as below:
7. As a prerequisite, the UE provisions both Public key of HN and Quantum Public key.
8. The UE generates Ephemeral key pair consisting of Ephemeral Public Key and Ephemeral Private Key.
9. Based on the generated Ephemeral Private Key and the Public key of Home Network, the UE generates Ephemeral Shared Key.
10. Using ECIES scheme, Ephemeral Encryption Key and Ephemeral MAC Key are generated.
11. The plain text and the Ephemeral MAC key are used to create MAC-tag value. 
12. The Ephemeral Encryption Key is encapsulated using Quantum Public Key.
13. The Plaintext Block is encrypted using the Quantum Encapsulated Ephemeral Encryption Key.

 
Figure 7.2.1.6.2.1: Encryption at UE
The final output shall be the concatenation of the ECC ephemeral public key, the Quantum ciphertext value, the MAC tag value, and any other parameters, if applicable.
[bookmark: _Toc211892460][bookmark: _Toc211951754][bookmark: _Toc215135116]7.2.1.6.2.2	Processing on home network side
The steps shown Figure 7.2.1.6.2.2 are described as below:
6. Based on the received Ephemeral Public Key, the Home Network generates Ephemeral Shared Key.
7. Using ECIES scheme, Ephemeral Decryption Key and Ephemeral MAC Key are generated.
8. The Home Network decapsulates the received Quantum-ciphered text using the Ephemeral Decryption Key.
9. The Home Network decrypts the decapsulated Quantum-ciphered text using the Quantum Private Key. Then the Home network obtains the plain text.
10. The Home Network verifies received MAC. For the verification, plaintext and Ephemeral MAC key are utilized.


  
Figure 7.2.1.6.2.2: Decryption at Home Network
Editor’s Note: Details on Step 5 at processing on UE side is FFS.
Editor’s Note: How to sync of usage of Quantum keys at UE and HN sides is FFS.
Editor’s Note: Details on Quantum Public key are FFS.
Editor’s Note: Details on Step 3 at processing on HN side is FFS.
Editor’s Note: Whether the plaint text is encrypted with quantum public key (the Encryption figure at UE) is FFS.
Editor’s Note: Why SUCI should require a quantum channel into the HN is FFS.
Editor’s Note: What is a Quantum key and why it is required is FFS.
Editor’s Note: How this solution is different from the solution in S3-253475 is FFS.
Editor's Note: The definition and usefulness of these terms for SUCI calculation are FFS: Post-quantum threat, Quantum channel, Quantum public key, Quantum-encapsulated, Quantum-encrypted, Quantum-ciphered, Quantum Private key.
Editor’s Note: How to use standardized algorithm is FFS
[bookmark: _Toc211892461][bookmark: _Toc211951755][bookmark: _Toc215135117]7.2.1.6.3	Evaluation
TBD
This solution is reminiscent of hybrid cryptography in that it relies on two different cryptographic components. However, the combination of these mechanisms is highly unconventional here because some keys, e.g. the MAC key, are derived from one component (namely the ECIES scheme) alone. It concretely means that it is sufficient to break one of these components to break the whole SUCI security. In particular, an adversary equipped with a quantum computer can break the ECIES scheme and thereby get the MAC key. With this key, it can forge new MACs, removing any integrity assurance.   It therefore seems that the proposed solution does not comply with the general principle stating that a hybrid system should remain secure as long as one of its components is secure. Also, the solution at step 5 at UE side for encapsulation assumes the functionality of encryption or K-PKE. As per [21], the scheme K-PKE is not IND-CCA2-secure and shall not be used as a stand-alone scheme.
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc211892462][bookmark: _Toc211951756][bookmark: _Toc215135118]7.2.1.7	Solution #7 to SUCI calculation: SUCI calculations using standalone and hybrid algorithms
[bookmark: _Toc211892463][bookmark: _Toc211951757][bookmark: _Toc215135119]7.2.1.7.1	Introduction
Annex C of TS 33.501 [4] specifies two protection schemes for concealing a SUPI into a SUCI. The protection schemes are called Profile A and Profile B. These two profiles use SECG ECIES [9], which is a so called KEM-DEM scheme — combining a Key Encapsulation Mechanism (KEM) and a Data Encapsulation Mechanism (DEM). SECG is unlikely to update its specifications. PQC migration of SUCI calculations does not require changing any protocols or architectures — it is sufficient to introduce new SUCI profiles. 
Editor’s note: It is FFS whether the additional optional inputs to Key Combine which are sent in cleat text over the air can enhance security.
Editor’s note: For easier understanding, further details on how to implement the solution (e.g., the schematic figures as in 33501 and call flows) is FFS.
Editor’s note: For easier understanding, further details on hybrid keys and how hybrid scheme is realized is FFS.
Editor’s Note 1: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note 2: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note 3: Whether the solution work for case that user does not update USIM card is ffs.
Editor's note: Justification for mixing different security levels, i.e., ML-KEM-768 with AES-256, is FFS.
[bookmark: _Toc211892464][bookmark: _Toc211951758][bookmark: _Toc215135120]7.2.1.7.2	Solution details
[bookmark: _Toc211892465][bookmark: _Toc211951759][bookmark: _Toc215135121]7.2.1.7.2.1	General
PQC migration for SUCI calculations can be done by introducing new SUCI profiles, and the new SUCI profiles can be created by extending the existing SUCI profiles with simple algorithm updates. Using such extensions is not a new thing to do. It was also the case when 5G was specified — following recommendations from ETSI SAGE, 3GPP not only profiled SECG ECIES, but also extended it to support Montgomery curves like Curve25519, along with HMAC-SHA-256 (with 64-bit long tag). 
Adding a PQC KEM (hybrid or standalone) is equally straightforward. Though the “EC” in ECIES gives the impression that it must use an elliptic curve, there are no technical obstacles to replacing the elliptic curve-based KEM in ECIES with either a standalone or a hybrid PQC KEM. It is similar to how TLS 1.3 continues to refer to KEM algorithms as the underlying algebraic groups and KEM encapsulations as KeyShares. 
The solution assumes that public key of the HN for the chosen PQC algorithm is provisioned to the USIM.
[bookmark: _Toc211892466][bookmark: _Toc211951760][bookmark: _Toc215135122]7.2.1.7.2.2	ML-KEM is the Most Suitable Option
ML-KEM is already standardized, and its implementations are widely available. During the specification of SUCI protection in 33.501 [4], SA3 had considered the future need for PQC and therefore specified a maximum SUCI length of 3000 bytes to allow the introduction of quantum-resistant protection schemes. NIST has now standardized the lattice-based ML-KEM in FIPS 203 [21] and, as it was expected, both standalone and hybridized ML-KEM-512, ML-KEM-768, and ML-KEM-1024 fit in 3000 bytes. 
Since Rel-15, IETF has specified HPKE — while ECIES is a pure KEM-DEM scheme, parts of HPKE requires Diffie-Hellman and cannot be implemented with a KEM. Besides, HPKE provides no clear benefits for SUCI calculations. In fact, for a fixed tag length, GCM provides worse integrity properties than HMAC-SHA2 and KMAC, which is the reason why ETSI SAGE has specified GCM-SST [76] for use in 6G. Using HPKE would also give up change control to the IETF.
[bookmark: _Toc211892467][bookmark: _Toc211951761][bookmark: _Toc215135123]7.2.1.7.2.3	Considerations for Hybrid KEM
When using a hybridized PQC KEM with ML-KEM, it is essential to use a standardized key combiner that preserves the IND-CCA2 security of ML-KEM, hybridization must not weaken the security properties. While ML-KEM is currently the only practical option, the key combiner should be designed in a general way so that the same construction can be reused in future profiles with other KEMs beyond ML-KEM. Additional KEMs may be introduced in proprietary profiles or standardized by 3GPP in the future. Two standardized and compatible IND-CCA2 key combiners are specified in Section 4.6 of SP 800-227 [73] and Section 8.2 of ETSI TS 103 744 [30]. Below is equation (9) from SP 800-227 [73], which focuses on the information elements:
K ← KeyCombine(K1, K2, c1, c2, ek1, ek2, p)
According to NIST SP 800-227 [73], a straightforward key combiner that uses, as inputs, only keys K1 and K2 (which are secrets that are not explicitly sent across between the two parties participating in the key exchange) from two KEMs does not have IND-CCA security when only one component KEM is IND-CCA. NIST SP 800-227 [73] presents the above as an example of an IND-CCA key combiner. It is noticeable that c1, c2, ek1, and ek2 are sent in clear text over the air. Therefore, it may appear that their use in the key combiner does not add any security value, but they are actually useful to be included as inputs because they help achieve IND-CCA security.  
To clarify the semantics of K1, K2, c1, c2, ek1, ek2, and p, let us assume that ML-KEM (let us consider it KEM1) is hybridized with X25519 (let us consider it KEM2). Then the followings apply:
-	 K1 and K2 are the shared secret keys established by ML-KEM and X25519 respectively, which are not sent over the air to the HN.
-	c1 is the ciphertext produced by the encapsulation function of ML-KEM on the UE side, which is sent to the HN.
-	c2 is the ephemeral public key of the UE generated by the X25519 function on the UE side and sent to the HN.
-	ek1 is the public key of the HN for ML-KEM, used by the UE for encapsulating shared key.
-	ek2 is the public key of the HN for X25519, used by the UE in X25519 function.
-	p is the domain separator that uniquely identify the composite scheme in use, e.g., KEM1, KEM2, order of composition, choice of parameter set, key combiner, KDF etc.
[bookmark: _Toc211892468][bookmark: _Toc211951762][bookmark: _Toc215135124]7.2.1.7.2.4	KDF, MAC, and Encryption
Any implementation of ML-KEM [21] already support of SHA3-256, SHA3-512, SHAKE128, and SHAKE256, which ML-KEM uses natively — therefore, using SHA-3 for key derivation and MAC in PQC SUCI is a natural choice. Also, SEC1 standard [9], specifying ECIES, published in 2009, says that future versions of the standard are likely to allow SHA3. Moreover, SHA-3 is theoretically (random oracle and no length extension attacks) and practically (strong side-channels resistance and simplicity) superior to SHA-2 [77]. Considering the ongoing work on 256-bit and AEAD study, all PQC SUCI profiles should use AES-256 for encryption.
[bookmark: _Toc211892469][bookmark: _Toc211951763][bookmark: _Toc215135125]7.2.1.7.2.5	New SUCI Profiles
This solution proposes that the 3GPP SUCI profiles in TS 33.501 [4] should be updated to include profiles for both standalone ML-KEM and ML-KEM hybridized with X25519 — both fit into the designed length limit (3000 bytes). These profiles should use algorithms from the SHA-3 family (e.g., SHA3-256, KMAC256) [31, 32], both for the MAC and in the KDF.
Below are two suggested profiles, with the formatting intentionally left out.
Standalone ML-KEM Profile:
The parameters for this profile shall be the following: 
-	KEM domain parameters		: ML-KEM-768 
-	KEM primitive					: ML-KEM-768 
-	point compression				: N/A 
-	KDF								: ANSI-X9.63-KDF [9] 
-	Hash								: SHA3-256 
-	SharedInfo1						: ML-KEM encapsulation (ciphertext) 
-	MAC								: KMAC256 
-	mackeylen						: 32 octets (256 bits) 
-	maclen							: 8 octets (64 bits) 
-	SharedInfo2						: the empty string 
-	ENC								: AES–256 in CTR mode 
-	enckeylen							: 32 octets (256 bits) 
-	icblen								: 16 octets (128 bits) 
-	backwards compatibility mode	: false 
Hybrid ML-KEM Profile:
The parameters for this profile shall be the following: 
-	KEM domain parameters		: ML-KEM-768 + X25519
-	KEM primitive					: ML-KEM-768 + X25519
-	point compression				: N/A 
-	KDF								: ANSI-X9.63-KDF [9] 
-	Hash								: SHA3-256
-	SharedInfo1						: Combine(c1, c2 = ephemeral public key generated by X25519, ek1, ek2, p)
-	MAC								: KMAC256 
-	mackeylen						: 32 octets (256 bits) 
-	maclen							: 8 octets (64 bits) 
-	SharedInfo2						: the empty string 
-	ENC								: AES–256 in CTR mode 
-	enckeylen							: 32 octets (256 bits) 
-	icblen								: 16 octets (128 bits) 
-	backwards compatibility mode	: false
It is worth explaining the reason for using algorithms of differing security levels in the profiles — ML-KEM-768 (security level 3), X25519 (128-bit security which is equivalent to security level 1), and AES-256 (security level 5). Mixing such differing security levels is useful for practical reasons and not unheard of. For example, NSA Cryptography Suite B Standard uses AES-256 in a cipher suite  that offers 192-bit security level. This makes sense because AES-192 is not widely used, and there are no security issues in mixing security levels. The final security level of the cipher suite is the minimum of the security levels provided by the algorithms used in the cipher suite. Similarly, mixing ML-KEM-768 (security level 3) and AES-256 (security level 5) in SUCI profiles is not a problem — the final security level will still be 3. In the case of hybrid ML-KEM profile, if ML-KEM is broken, then the security will completely rely on X25519, and therefore, the security level will fall down to 128-bit security (level 1) — this should not be seen as a reason for using AES-128 for encryption because using AES-128 for encryption will bring down the security level to 128-bit security (level 1) regardless of ML-KEM is broken or not.
7.2.1.7.2.5	Some details on how the profiles are used in an implementation
Standalone ML-KEM Profile:
According to this profile, the use of Elliptic curve is completely replaced by a ML-KEM-768. 
Processing on the UE Side: Unlike ECIES, the use of ML-KEM does not require the UE to generate any ephemeral public-private key pair. Instead, the UE uses the HN’s public key to encapsulate the ephemeral shared key. The encapsulation function produces two strings: (i) ephemeral shared key (ii) ciphertext. Unlike in SUCI profile A and B (where the UE sends the generated ephemeral public key to the HN), when the Standalone ML-KEM profile is used, the UE sends the ciphertext (outputted by the encapsulation function) to the HN. 


Figure 1: Use of Standalone ML-KEM on the UE side
Processing on the network side: the network decapsulates the ephemeral shared key from the ciphertext using the private key of the HN.


Figure 2: Use of Standalone ML-KEM on the HN side

Hybrid ML-KEM Profile:
The following two figures explain the hybridization process on the UE side and on the home network side. Existing EC-based cryptography remains in conjunction with newly introduced post-quantum cryptography.


Figure 3: Use of Hybrid ML-KEM on the UE side



Figure 4: Use of Hybrid ML-KEM on the HN side


[bookmark: _Toc211892470][bookmark: _Toc211951764][bookmark: _Toc215135126]7.2.1.7.3	Evaluation
The solution provides a mechanism for computing quantum-resistant SUCIs using standalone ML-KEM.
The solution provides a hybrid mechanism for computing quantum-resistant SUCIs by using ML-KEM-768 and X25519 in a fashion specified in NIST SP 800-227 [73].
The KEM combiner used in the hybrid solution is IND-CCA secure.
Both standalone and hybrid mechanisms work with minimal changes in the UE and HN.
Both the standalone and hybrid mechanisms are transparent to the SN, i.e., no changes required in SNs to deploy the solution
The solution requires the ML-KEM public key of the HN to be provisioned in the USIM. Therefore, the solution requires the USIM capable of storing ML-KEM public key.
According to the solution (both standalone and hybrid), there are no restrictions on where the SUCI calculation is done — it can be done either in the USIM or in the ME.
Editor’s Note: Further evaluation is FFS
[bookmark: _Toc211892471][bookmark: _Toc211951765][bookmark: _Toc215135127]7.2.1.8	Solution #8 to SUCI calculation: GSMA-based solution
[bookmark: _Toc211892472][bookmark: _Toc211951766][bookmark: _Toc215135128]7.2.1.8.1	Introduction
GSMA published guidelines "Post Quantum Cryptography – Guidelines for Telecom Use Cases – v2.0" [33] to support the planning, setup and execution of a quantum safe cryptography journey for telco industry. This GSMA report contains a detailed analysis of an initial set of Telcom use cases that are impacted by Post Quantum Cryptography. Concealment of the Subscriber Public Identifier is one of the analysed use cases.   
An additional security enhancement is proposed to the solution described in GSMA guidelines [33]. 
[bookmark: _Toc211892473][bookmark: _Toc211951767][bookmark: _Toc215135129]7.2.1.8.2	Solution details
The solution for concealment of the Subscriber Public Identifier is based on the hybridization between ML-KEM (Level 3) and classic ECC based key exchanged algorithms that is described in clause 5.8 of GSMA guidelines [33]. 
GSMA solution is enhanced thanks to the addition of Post QuantumKEM ciphertext as input to the Key Derivation Function in the Post Quantum Cryptography part, as recommended to obtain IND-CCA (indistinguishability under chosen-ciphertext attack) property for KEM. 
Processing on UE side:


Processing on home network side


NOTE: The ciphertext output from the PQC Key Encapsulation Mechanism is referred to as "KEM Ciphertext", while the result of the symmetric encryption of the SUPI is referred to as "Payload Ciphertext" to avoid confusion between the two components.


Profiles
[bookmark: _Toc19634958][bookmark: _Toc26876026][bookmark: _Toc35528794][bookmark: _Toc35533555][bookmark: _Toc45028937][bookmark: _Toc45274602][bookmark: _Toc45275189][bookmark: _Toc51168447][bookmark: _Toc202450276]The associated updated profiles are the following ones. In both cases, the Key Derivation Function (KDF) outputs a L-bytes string that must be parsed as Eph Encryption key || ICB || Eph. Mac Key, where Eph Encryption key is of size enkeylen, ICB is of size icblen, and Eph. Mac Key is of size mackeylen.
[bookmark: _Toc211892474][bookmark: _Toc211951768][bookmark: _Toc215135130]7.2.1.8.2.1	Profile A’ (update of Profile A to support PQC algorithm)
The ME and SIDF shall implement this profile. The parameters for this profile shall be the following:
-	KEM domain parameters						: ML-KEM-768 [21]
-	EC domain parameters							: Curve25519 
-	KEM primitive									: ML-KEM-768 [21]
-	EC Diffie-Hellman primitive					: X25519 
-	point compression								: N/A
-	KDF												: HMAC-based KDF RFC 5869 [34] (SHA-256)
-	Hash												: SHA-256
-	KDF inputs (see RFC 5869 [34] terminology):
		-salt 											: empty
		-IKM (input key material)					: Eph. shared key1 || Eph. shared key 2
		-Info											: Post-QuantumKEM Ciphertext || Eph. Public key 
		-L (output length in octets)					: 80
-	MAC												: HMAC–SHA-256
-	mackeylen										: 32 octets (256 bits)
-	maclen											: 16 octets (128 bits) 
-	SharedInfo2										: the empty string
-	ENC												: AES-256 in CTR mode 
-	enckeylen											: 32 octets (256 bits)  
-	icblen												: 16 octets (128 bits)
-	backwards compatibility mode					: false
[bookmark: _Toc211892475][bookmark: _Toc211951769][bookmark: _Toc215135131]7.2.1.8.2.2	Profile B’ (update of Profile B to support PQC algorithm)
The ME and SIDF shall implement this profile. The parameters for this profile shall be the following:
-	KEM domain parameters						: ML-KEM-768 [21]
-	EC domain parameters							: secp256r1 
-	KEM primitive									: ML-KEM-768 [21]
-	EC Diffie-Hellman primitive					: Elliptic Curve Cofactor Diffie-Hellman Primitive 
-	point compression								: true
-	KDF												: HMAC-based KDF RFC 5869 [34] (SHA-256)
-	Hash												: SHA-256
-	KDF inputs (see RFC 5869 [34] terminology):
		-salt 											: empty
		-IKM (input key material)					: Eph. shared key1 || Eph. shared key 2
		-Info											: Post-QuantumKEM Ciphertext || Eph. Public key 
		-L (output length)								: 80 
-	MAC												: HMAC–SHA-256
-	mackeylen										: 32 octets (256 bits)
-	maclen											: 16 octets (128 bits) 
-	SharedInfo2										: the empty string
-	ENC												: AES-256 in CTR mode
-	enckeylen											: 32 octets (256 bits)  
-	icblen												: 16 octets (128 bits)
-	backwards compatibility mode					: false

Editor’s Note: It is FFS whether the additional inputs to KDF which are sent in cleat text over the air can enhance security.
Editor’s Note: Reasons for using c1c2 as the input for the KDF are FFS.
Editor’s Note: Further evaluation on whether domain separation parameter needed to uniquely identify the composite/hybrid scheme in use is FFS.
[bookmark: _Toc211892476][bookmark: _Toc211951770][bookmark: _Toc215135132]7.2.1.8.3	Evaluation
TBD
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s Note: Whether IND-CCA2 security is considered is FFS.
Editor’s Note: Further evaluation if FFS.
[bookmark: _Toc205541846][bookmark: _Toc211892477][bookmark: _Toc211951771][bookmark: _Toc215135133]7.2.1.9	Solution #9 to SUCI calculation: SUPI Concealment using PQC Shared Key
[bookmark: _Toc205541847][bookmark: _Toc211892478][bookmark: _Toc211951772][bookmark: _Toc215135134]7.2.1.9.1	Introduction
[bookmark: _Toc205541848]To counter the threat of quantum computing to asymmetric cryptography used in ECIES scheme it is necessary to replace existing algorithms with new, quantum-resistant Post Quantum Cryptography (PQC) ML-KEM algorithms proposed by NIST [21].
[bookmark: _Toc211892479][bookmark: _Toc211951773][bookmark: _Toc215135135]7.2.1.9.2	Solution details
[bookmark: _Toc211892480][bookmark: _Toc211951774][bookmark: _Toc215135136]7.2.1.9.2.1	Processing on UE side
The PQC shared key generation scheme is implemented such that for computing a fresh SUCI, the UE uses the provisioned PQC-based public key of the home network, and PQC-based key encapsulation mechanism (KEM) according to the parameters provisioned by home network. The processing on UE side is done as mentioned below.
1. UE generates an ephemeral shared key and an encrypted PQC shared key based on a PQC-based public key associated with the home network.
2. UE generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and ephemeral shared key.
3,4. UE protects the plaintext block (i.e. SUPI or UE ID), using the encryption key and the MAC key. The final output is the concatenation of encrypted PQC shared key, the ciphertext (i.e., Enc(SUPI)) value, and MAC tag value.
The Figure 7.2.1.9.2-1 illustrates the UE's steps.


Figure 7.2.1.9.2-1: Encryption based on PQC shared key generation at UE
Finally, the proposed solution comprises transmitting the encrypted PQC shared key along with cipher-text value and MAC-tag value associated with the subscriber by the UE to a network entity for authenticating the subscriber. The scheme output as defined in TS 23.003 [74] to be updated to scheme output shown in Figure 7.2.1.9.2-2.



Figure 7.2.1.9.2-2: Scheme output based on SUPI concealment using PQC shared key
NOTE: Ciphertext output from PQC key encapsulation is referred to as encrypted PQC shared key as there is another ciphertext value from step 3 of symmetric encryption, to avoid confusion.
[bookmark: _Toc211892481][bookmark: _Toc211951775][bookmark: _Toc215135137]7.2.1.9.2.2	Processing on home network side
The PQC shared key generation scheme is implemented such that for deconcealing a SUCI, the home network  uses the received encrypted PQC shared key, and the PQC-based private key of the home network. 
1. Home network (HN) decapsulates the encrypted PQC shared key to derive the ephemeral shared key.
2. HN generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and derived ephemeral shared key.
3,4. HN verifies the MAC and decrypts the ciphertext to derive the plaintext block (i.e. SUPI or UE ID), using the MAC key and encryption key respectively.
Figure 7.2.1.9.2-3 illustrates the home network's steps.


Figure 7.2.1.9.2-3: Decryption based on PQC shared key generation at home network
NOTE: Ciphertext input to PQC key decapsulation is referred to as encrypted PQC shared key as there is another ciphertext value to step 3 of symmetric decryption, to avoid confusion.
[bookmark: _Toc211892482][bookmark: _Toc211951776][bookmark: _Toc215135138]7.2.1.9.2.2	Sample profile for SUCI Calculation
Profile C uses ML-KEM as defined in [21] to generate shared key Z1 integrated with AES encryption scheme.
[bookmark: _Toc211892483][bookmark: _Toc211951777][bookmark: _Toc215135139]7.2.1.9.2.2.1	Profile C (PQC only)
The ME and SIDF implement this profile. The parameters for this profile are the following:
- 	ML KEM parameters							: Level 3 (k, lattice dimension 3)
-	KDF												: ANSI-X9.63-KDF [9]
-	Hash												: SHA-256
- 	Shared secret key Z1								: Shared secret field from ML-KEM
-	MAC												: HMAC–SHA-256
-	mackeylen										: 32 octets (256 bits)
-	maclen											: 8 octets (64 bits)
-	SharedInfo1										: N/A
-	SharedInfo2										: the empty string
-	ENC												: AES–256 in CTR mode
-	enckeylen											: 32 octets (256 bits)
-	icblen												: 32 octets (256 bits)
[bookmark: _Toc211892484][bookmark: _Toc211951778][bookmark: _Toc215135140]7.2.1.9.3	Evaluation
TBD This solution is for direct replacement of asymmetric cryptography methods used in ECIES with PQC ML-KEM algorithms proposed by NIST.
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc211892485][bookmark: _Toc211951779][bookmark: _Toc215135141]7.2.1.10	Solution #10 to SUCI calculation: SUPI Concealment using Hybrid shared Key
Editor’s Note: Details on KDF inputs are FFS.
Editor's Note: The pros and cons (including security, complexity and efficiency) of combining traditional asymmetric cryptographic algorithms with post-quantum cryptographic algorithms for SUCI calculation is FFS.
Editor’s Note: Why to use an ad-hoc KEM combiner instead of adding a standard KEM combiner is FFS.
Editor’s Note:  Detailed profiles needs to update later including other options.
[bookmark: _Toc211892486][bookmark: _Toc211951780][bookmark: _Toc215135142]7.2.1.10.1	Introduction
Replacing classical cryptography with PQC algorithms at an early stage carries an inherent risk as a first time widespread deployment and more rigorous testing of PQC algorithms may be needed. So it will be beneficial to have it integrated with classical asymmetric cryptography based security mechanisms via a hybrid approach, where both classical asymmetric algorithms and post-quantum algorithms coexist. The main objective of a hybrid shared key generation mechanism is to enable the creation of a secure shared secret that remains protected as long as at least one of its underlying key exchange components remains uncompromised. In case vulnerabilities are found in either type of algorithm, the presence of both classical and post-quantum algorithms in a hybrid setup reduces the impact of potential breaches, providing additional resilience to the overall cryptography.
[bookmark: _Toc211892487][bookmark: _Toc211951781][bookmark: _Toc215135143]7.2.1.10.2	Solution details
[bookmark: _Toc211892488][bookmark: _Toc211951782][bookmark: _Toc215135144]7.2.1.10.2.1	Processing on UE side
The Hybrid shared key generation scheme is implemented such that for computing a fresh SUCI, the UE uses the provisioned EC based public key of the home network, provisioned PQC-based public key of the home network, freshly generated ECC (elliptic curve cryptography) ephemeral public/private key pair and PQC-based key encapsulation mechanism (KEM) according to the parameters provisioned by home network. The processing on UE side is done as mentioned below.
1. UE generates an ephemeral EC public key and an ephemeral EC private key at UE with Elliptical Curve (EC) key generation function.
2. UE generates a first ephemeral shared key (s1) based on the ephemeral EC private key of UE and an EC based home network public key.
3. UE generates a second ephemeral PQC shared key (s2) and an encrypted PQC shared key based on a PQC-based public key associated with the home network using ML-KEM [aa21].
4. UE generates an ephemeral hybrid shared key based on the first ephemeral shared key and the second ephemeral shared key using methods like concatenation.
5. UE generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and ephemeral hybrid shared key.
6. UE protects the plaintext block (i.e. SUPI or UE ID), using the encryption key and the MAC key. The final output is the concatenation of the ECC ephemeral public key, the encrypted PQC shared key, the ciphertext value, the MAC tag value.
Figure 7.2.1.10.2-1 illustrates the UE's steps.


Figure 7.2.1.10.2-1: Encryption based on Hybrid shared key generation at UE
Finally, the proposed solution comprises transmitting the encrypted PQC shared key along with the ephemeral public key of UE, the encrypted PQC shared key, the cipher-text value, and the MAC-tag value associated with the subscriber by the UE to a network entity for authenticating the subscriber. The scheme output as defined in TS 23.003 [74] to be updated to scheme output shown in Figure 7.2.X.Y.2-2.


Figure 7.2.1.10.2-2: Scheme output based on Hybrid PQC-based SUPI concealment
NOTE: Ciphertext output from PQC key encapsulation is referred to as encrypted PQC shared key as there is another ciphertext value from step 3 of symmetric encryption, to avoid confusion.
[bookmark: _Toc211892489][bookmark: _Toc211951783][bookmark: _Toc215135145]7.2.1.10.2.2	Processing on home network side
The Hybrid shared key generation scheme is implemented such that for deconcealing a SUCI, the home network uses the received ECC ephemeral public key of the UE, encrypted PQC shared key, EC based private key of the home network and the PQC-based private key of the home network. 
1. Home network (HN) generates a first ephemeral shared key (s1) based on the ephemeral EC public key, received from UE, and an EC based home network private key.
2. HN decapsulates the encrypted PQC shared key, received from UE, to derive the second ephemeral shared key (s2) using ML-KEM [aa21].
3. HN generates an ephemeral hybrid shared key based on the first ephemeral shared key (s1) and the second ephemeral shared key (s2) using methods like concatenation.
4. HN generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and ephemeral hybrid shared key.
5. HN verifies the MAC and decrypts the ciphertext to derive the plaintext block (i.e. SUPI or UE ID), using the MAC key and encryption key respectively.
Figure 7.2.1.10.2-3 illustrates the home network's steps.


Figure 7.2.1.10.2-3: Decryption based on Hybrid shared key generation at home network
NOTE: Ciphertext input to PQC key decapsulation is referred to as encrypted PQC shared key as there is another ciphertext value to step 3 of symmetric decryption, to avoid confusion.
[bookmark: _Toc205541840][bookmark: _Toc211892490][bookmark: _Toc211951784][bookmark: _Toc215135146]7.2.1.10.2.3	Sample Profiles for SUCI calculation
Profile C uses Post-Quantum Traditional (PQ/T) hybrid scheme as defined in RFC 9794 [7] which is a multi-algorithm scheme where at least one component algorithm is a post-quantum algorithm and at least one is a traditional algorithm. The traditional algorithm component uses its own standardized processing for key generation (section 6 of RFC 7748 [35]) and shared secret calculation (section 5 of RFC 7748 [35]). The Diffie-Hellman primitive X25519 (section 5 of RFC 7748 [35]) takes two random octet strings as input, decodes them as scalar and coordinate, performs multiplication, and encodes the result as an octet string. The shared secret output octet string from X25519 is used as the input Z in the ECIES KDF (section 3.6.1 of [9]). The post-quantum algorithm component of PQ/T scheme uses ML-KEM as defined in [aa21]. Final shared secret key Z1	is derived from combining Z and shared secret generated from ML-KEM [aa21]. Use the key derivation function KDF to generate keying data K of length enckeylen + icblen + mackeylen octets from Z1 and [SharedInfo1]. As the point compression is not applied for profile C, the prefix rule for compression type defined in [9] section 5.1.3 is not be used in profile C, i.e., there is no prefix for the ephemeral public key of Profile C. 
Profile D uses Post-Quantum Traditional (PQ/T) hybrid scheme as defined in RFC 9794 [7] which is a multi-algorithm scheme where at least one component algorithm is a post-quantum algorithm and at least one is a traditional algorithm. The traditional algorithm component uses point compression to save overhead and use the Elliptic Curve Cofactor Diffie-Hellman Primitive (section 3.3.2 of [9]) to enable future addition of profiles with cofactor h ≠ 1. For curves with cofactor h = 1 the two primitives (section 3.3.1 and 3.3.2 of [9]) are equal. The post-quantum algorithm component of PQ/T scheme uses ML-KEM as defined in [aa21]. Final shared secret key Z1 is derived from combining Z and shared secret generated from ML-KEM [aa21]. Use the key derivation function KDF to generate keying data K of length enckeylen + icblen + mackeylen octets from Z1 and [SharedInfo1].
[bookmark: _Toc211892491][bookmark: _Toc211951785][bookmark: _Toc215135147]7.2.1.10.2.3.1	Profile C (Hybrid 1)
The ME and SIDF implement this profile. The parameters for this profile are the following:
	- 	Identifier											: X25519MLKEM768 (Combining X25519 ECDH with ML-KEM-768)
-	EC domain parameters							: Curve25519 [35]
-	EC Diffie-Hellman primitive					: X25519 [35]
-	point compression								: N/A
- 	ML-KEM parameters							: Level 3 (k, lattice dimension 3)
-	KDF												: ANSI-X9.63-KDF [9]
-	Hash												: SHA-256
-	SharedInfo1										:  (the ephemeral public key octet string – see [9] section 5.1.3) 
- 	Shared secret key Z1								:  Z (see [9] section 5.1.3) || Shared secret field from ML-KEM
-	MAC												: HMAC–SHA-256
-	mackeylen										: 32 octets (256 bits)
-	maclen											: 8 octets (64 bits)
-	SharedInfo2										: the empty string
-	ENC												: AES–256 in CTR mode
-	enckeylen											: 32 octets (256 bits)
-	icblen												: 32 octets (256 bits)
[bookmark: _Toc19634959][bookmark: _Toc26876027][bookmark: _Toc35528795][bookmark: _Toc35533556][bookmark: _Toc45028938][bookmark: _Toc45274603][bookmark: _Toc45275190][bookmark: _Toc51168448][bookmark: _Toc202450277][bookmark: _Toc211892492][bookmark: _Toc211951786][bookmark: _Toc215135148]7.2.1.10.2.3.2	Profile D (Hybrid 2)
The ME and SIDF implement this profile. The parameters for this profile are the following:
	- 	Identifier											: SecP256r1MLKEM768 (Combining secp256r1 ECDH with ML-KEM-768)
-	EC domain parameters							: secp256r1 [10]
-	EC Diffie-Hellman primitive					: Elliptic Curve Cofactor Diffie-Hellman Primitive [9]
-	point compression								: true
- 	ML-KEM parameters							: Level 3 (k, lattice dimension 3)
-	KDF												: ANSI-X9.63-KDF [9]
-	Hash												: SHA-256
-	SharedInfo1										:  (the ephemeral public key octet string– see [9] section 5.1.3) 
- 	Shared secret key Z1								:  Z (see [9] section 5.1.3) || Shared secret field from ML-KEM
-	MAC												: HMAC–SHA-256
-	mackeylen										: 32 octets (256 bits)
-	maclen											: 8 octets (64 bits)
-	SharedInfo2										: the empty string
-	ENC												: AES–256 in CTR mode
-	enckeylen											: 32 octets (256 bits)
-	icblen												: 32 octets (256 bits)

[bookmark: _Toc211892493][bookmark: _Toc211951787][bookmark: _Toc215135149]7.2.1.10.3	Evaluation
TBD
The proposed solution is a hybrid approach of combining legacy elliptical cryptography with PQC KEM. It satisfies IND-CPA security (i.e., security against passive eavesdropping attacks) but not IND-CCA2 security (i.e., security against active attacks) as per clause 4.6.3 of SP 800-227 [73].
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s Note: Whether IND-CCA2 security is considered is FFS.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc211892494][bookmark: _Toc211951788][bookmark: _Toc215135150]7.2.1.11	Solution #11 to SUCI calculation: SUPI Concealment using hybrid method
Editor’s Note: Performances due to PQC operations performed after ECIES operations are FFS.
Editor’s Note: The pros and cons (including security, complexity and efficiency) of combining traditional asymmetric cryptographic algorithms with post-quantum cryptographic algorithms for SUCI calculation is FFS.
[bookmark: _Toc211892495][bookmark: _Toc211951789][bookmark: _Toc215135151]7.2.1.11.1	Introduction
Replacing classical cryptography with PQC algorithms at an early stage carries an inherent risk as a first time widespread deployment and more rigorous testing of PQC algorithms may be needed. So it will be beneficial to have it integrated with classical asymmetric cryptography based security mechanisms via a hybrid approach, where both classical asymmetric algorithms and post-quantum algorithms coexist. In case vulnerabilities are found in either type of algorithm, the presence of both classical and post-quantum algorithms in a hybrid setup reduces the impact of potential breaches, providing additional resilience to the overall cryptography. The hybrid method described here is applying PQC-based key encapsulation mechanism (KEM) to protect final output which is generated via ECIES.
[bookmark: _Toc211892496][bookmark: _Toc211951790][bookmark: _Toc215135152]7.2.1.11.2	Solution details
[bookmark: _Toc211892497][bookmark: _Toc211951791][bookmark: _Toc215135153]7.2.1.11.2.1	Processing on UE side
The processing on UE side is done as follows.


Figure 7.2.1.11.2.1-1: SUCI generation using hybrid method at UE
1. UE generates a final output_ECC using ECIES as described in Annex C.3.2 in TS 33.501 [4], where the final output_ECC is Eph. EC public key||ciphertext||MAC tag.
2. UE generates an ephemeral shared key (KPQC) and an encrypted PQC shared key based on a PQC-based public key associated with the home network.
3. UE generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and KPQC.
4. UE protects the final output_ECC using the encryption key and the MAC key. The final output is the concatenation of encrypted PQC shared key, ciphertext (i.e., Enc(Eph EC public key||ciphertext||MAC)), and MAC tag value.
Figure 7.2.1.11.2.1-1 defines the scheme output (i.e., the final output in step 4) as a result of the above steps, as defined in TS 23.003 [74].


Figure 7.2.1.11.2.1-2: Scheme output based on hybrid method
NOTE: Ciphertext output from PQC key encapsulation is referred to as encrypted PQC shared key as there is another ciphertext value from step 3 of symmetric encryption, to avoid confusion.
[bookmark: _Toc211892498][bookmark: _Toc211951792][bookmark: _Toc215135154]7.2.1.11.2.2	Processing on home network side
The processing on home network (HN) side is done as follows.


Figure 7.2.1.11.2-3: Decryption based on hybrid method at home network
1. Home network (HN) decapsulates the encrypted PQC shared key to derive the ephemeral shared key (KPQC).
2. HN generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and KPQC.
3. HN verifies the MAC and decrypts the ciphertext to derive the final output_ECC, using the MAC key and encryption key respectively.
4. HN obtain the plaintext block (i.e., UE ID) using ECIES as described in Annex C.3.3 in TS 33.501 [4].
NOTE: Ciphertext input to PQC key decapsulation is referred to as encrypted PQC shared key as there is another ciphertext value from step 3 of symmetric decryption, to avoid confusion.
[bookmark: _Toc211892499][bookmark: _Toc211951793][bookmark: _Toc215135155]7.2.1.11.3	Evaluation
TBD
Proposed solution encrypts the final scheme output from ECIES using symmetric key derived from PQC based KEM. 

Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s note: Further evaluation is FFS.
The solution does not preserve IND-CCA2 security if the outer encryption using PQ-KEM breaks. 
Editor's Note: Further evaluation is FFS.

[bookmark: _Toc215135156]7.2.1.12	Solution #12 to SUCI calculation: Hybrid SUCI calculation
[bookmark: _Toc211866807][bookmark: _Toc211867887][bookmark: _Toc215135157]7.2.1.12.1	 Introduction
This solution addresses the key issue#1.
[bookmark: _Toc211866808][bookmark: _Toc211867888][bookmark: _Toc215135158]7.2.1.12.2 	Solution details
EN#1: The details of the Combiner Function (3>) is FFS.

SUPI and SUCI type
[image: A close-up of a document
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The SUPI is a globally unique 5G Subscription Permanent Identifier allocated to each subscriber in the 5G System. It is defined in clause 5.9.2 of 3GPP TS 23.501 [85].
The SUPI is defined as:
-	a SUPI type: in this release of the specification, it may indicate an IMSI, a Network Specific Identifier (NSI), a Global Line Identifier (GLI) or a Global Cable Identifier (GCI); and
-	dependent on the value of the SUPI type:
-	an IMSI as defined in clause 2.1 of TS 23.003 [74];
-	a Network Specific Identifier (NSI), taking the form of a Network Access Identifier (NAI) as defined in clause 28.7.2 of TS 23.003 [74];
-	a Global Cable Identifier (GCI) taking the form of a NAI as defined in clause 28.15.2 of TS 23.003 [74];
-	a Global Line Identifier (GLI) taking the form of an NAI as defined in clause 28.16.2 of TS 23.003 [74].
NOTE:	Depending on the protocol used to convey the SUPI, the SUPI type can take different formats.

The SUCI is a privacy preserving identifier containing the concealed SUPI. It is defined in clause 6.12.2 of 3GPP TS 33.501 [4].
The SUCI is composed of the following parts:
1)	SUPI Type, consisting in a value in the range 0 to 7. It identifies the type of the SUPI concealed in the SUCI. The following values are defined:
-	0: IMSI
-	1: Network Specific Identifier (NSI)
-	2: Global Line Identifier (GLI)
-	3: Global Cable Identifier (GCI)
-	4 to 7: spare values for future use.
2)	Home Network Identifier, identifying the home network of the subscriber.
When the SUPI Type is an IMSI, the Home Network Identifier is composed of two parts:
-	Mobile Country Code (MCC), consisting of three decimal digits. The MCC identifies uniquely the country of domicile of the mobile subscription.
-	Mobile Network Code (MNC), consisting of two or three decimal digits. The MNC identifies the home PLMN or SNPN of the mobile subscription.
When the SUPI type is a Network Specific Identifier (NSI), a GLI or a GCI, the Home Network Identifier consists of a string of characters with a variable length representing a domain name as specified in clause 2.2 of IETF RFC 7542. For a GLI or a GCI, the domain name shall correspond to the realm part specified in the NAI format for SUPI in clauses 28.15.2 and 28.16.2.
3)	Routing Indicator, consisting of 1 to 4 decimal digits assigned by the home network operator and provisioned in the USIM, that allow together with the Home Network Identifier to route network signalling with SUCI to AUSF and UDM instances capable to serve the subscriber.
	Each decimal digit present in the Routing Indicator shall be regarded as meaningful (e.g., value "012" is not the same as value "12"). If no Routing Indicator is configured on the USIM, this data field shall be set to the value 0 (i.e., only consist of one decimal digit of "0").
4)	Protection Scheme Identifier, consisting in a value in the range of 0 to 15 (see Annex C.1 of 3GPP TS 33.501 [4]). It represents the null scheme, or a non-null scheme specified in Annex C of 3GPP TS 33.501 [4], or a protection scheme specified by the HPLMN; the null scheme shall be used if the SUPI type is a GLI or GCI.
5)	Home Network Public Key Identifier (traditional), consisting in a value in the range 0 to 255. It represents a public key provisioned by the HPLMN or SNPN and it is used to identify the key used for SUPI protection. This data field shall be set to the value 0 if and only if null protection scheme is used.
6)	Home Network Public Key Identifier (PQC KEM), consisting in a value in the range 0 to 255. It represents a public key provisioned by the HPLMN or SNPN and it is used to identify the key used for SUPI protection apart from traditional HN public key. Example of the PQC KEM Public key is ML-KEM [21] (selected by NIST standards). 
Note: If the above 6 needs to be avoided, then it could be merged with 5 and sent as a bitmap, where the bits are set for those traditional and PQC identifiers (known at USIM and UDM). Example: 01 for traditional alone, 10 for PQC alone and 11 for both traditional and PQC. 
So, the bitmap and public keys ID (traditional& PQC) needs to fit into 5). 
Moreover this 6) is optional and present only when hybrid key exchange is available.
7)	Scheme Output, consisting of a string of characters with a variable length or hexadecimal digits, dependent on the used protection scheme, as defined below. It represents the output of a public key protection scheme specified in Annex C of 3GPP TS 33.501 [4] or the output of a protection scheme specified by the HPLMN.
PQC KEM ciphertext: Post Quantum Cryptography Key encapsulation mechanism uses the PQC KEM public key of Home Network to generate the ciphertext.
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At UE, generate key pair (Ephemeral public key and private key) using key pair generation primitive. Based on the Diffie-Hellman primitive, a shared secret key element is derived (from public key of HN and generated ephemeral private key). PQC KEM ciphertext(ct) is generated using the Key encapsulation mechanism (asymmetric cryptographic scheme) where PK is PQC KEM public key of HN (PQC KEM public key is identified by PQC KEM public key ID and UDM/USIM has list of PQC KEM public keys). A PQC shared secret (ss) is also generated which is used as an input to a Key Derivation Function (KDF) to derive the final PQC shared secret.
Followed by that, key combiner function(Note1) is used to combine the traditional shared key and newly generated final PQC shared secret (from the KDF function) to generate AEAD key K. With the derived key, symmetric encryption (AEAD) is performed to encrypt the plaintext block (SUPI) to generate the ciphered text and the MAC key.
[image: A diagram of a flowchart

AI-generated content may be incorrect.]
This hybrid PQC solution is making use of two separate HN identifiers, one for the classic (traditional) and yet another for the hybrid PQC. Consequently, at SIDF, the received UE ephemeral public key and stored private key of home network (Traditional HN public key ID is used to fetch the corresponding HN private key) is used to generate the ephemeral shared key. PQC KEM ciphertext(ct) is used along with the PQC KEM secret key of HN– SK (PQC Public key ID received from UE is used to fetch the Secret Key SK in HN), in Key decapsulation mechanism (asymmetric cryptographic scheme) to generate the shared secret. The newly generated shared secret is used along with the traditional ephemeral shared key as inputs to the key combiner function(Note1) functions to generate AEAD Key. The generated AEAD Key is used to de-cipher the cipher text using symmetric decryption (AEAD). The expected MAC is compared against the received MAC, and with this comparison the integrity of the SUCI is verified.
NOTE 1: The key combiner is a KDF function that securely merges classical and post-quantum key material so that the final key remains secure as long as at least one of the input keys remain secure. This combiner is first mentioned in the draft-ietf-tls-hybrid-design document [63].
[bookmark: _Toc211866809][bookmark: _Toc211867889][bookmark: _Toc215135159]7.2.1.12.3 	Evaluation
TBD
Editor’s Note: Further evaluation to be added.


This hybrid solution is considering the classic/traditional cryptographic algorithms as well as the quantum safe cryptographic algorithms. The classic/traditional procedure is making reuse of the existing in 5G, while for the post-quantum a standard key-encapsulation method will be used.
The combiner function is taking the classic/traditional and the quantum safe key as input and is computing a single secure key, that could be used further for encryption and integrity protection of the SUPI.
The specialty of this solution is that an algorithm with combined mode support could be used, such as the AEAD, and with that one key is used for cipher and integrity protection and the ciphertext and authentication tag will be provided at once, i.e., by using a single procedure call.
This solution satisfies IND-CPA security (i.e., security against passive eavesdropping attacks) but not IND-CCA2 security (i.e., security against active attacks) as per clause 4.6.3 of SP 800-227 [73].
Editor’s Note: Whether IND-CCA2 security is considered is FFS.
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc215135160]7.2.1.13	Solution #13 to SUCI calculation: Symmetric crypto based SUCI 
Overview: The UDM is creating a collection of relevant SUPI values. The UDM is encrypting by using symmetric crypto each of SUPI values from the list and is sending these to the UE. The UE is appending the selected encrypted SUPI and is hashing the encrypted SUPI together with the concatenated hashed Key KSUPI. The UDM can verify the authenticity of the SUPI. The UDM can verify the authenticity of the UE, and in successful case the UDM-UE auth can be processed.
[bookmark: _Toc215135161]7.2.1.13.1	Introduction
This solution addresses the key issue#1.
[bookmark: _Toc215135162]7.2.1.13.2	Solution details
Editor’s Note: The description of a resynchronisation procedure is FFS.
Editor’s Note: It is FFS about the first registration procedure. 
Editor’s Note: It is FFS How are new encrypted SUPIs provisioned to UEs.
Editor’s Note: It is FFS How does the UDM regenerate the new symmetric keys for Pseudonyms.
Editor’s Note: Resynchronization of desynchronized RANDs is FFS.
Editor’s Note: Impact on fulfilling LI requirements is FFS.
Editor’s note: The elaboration for why the SUCI has to be encrypted is FFS.


Overview of Encrypted SUCI in UDM:


Figure 7.2.1.13.2-1: Encrypted SUCI in UDM (overview)

In the above Figure 7.2.1.13.2-1 the list of Encrypted SUCI is generated in UDM is shown. The UDM will first generate the key KSUPI using hash of SUPI, long term credentials of Subscriber K, RANDSUPI. Also, in parallel there will be list of Random numbers (RANDSUCI#1, RANDSUCI#2, etc) are generated using PRNG (Pseudo Random Number Generator). Use the newly generated key KSUPI to encrypt all the RANDSUCI#1, RANDSUCI#2, etc, to generate Enc(RANDSUCI#1), Enc(RANDSUCI#2), etc.
NOTE 1: The SUPI is a permanent identifier and is used by the network functions and during key derivation. It is not normally sent in the clear-/ciphertext on the radio interface except in very restricted cases. One case that requires a SUPI transfer would be to assign extended and new functionalities, specifically for legacy equipment. Let’s assume there is a mandatory need for SUPI transfer, then this must be performed by authenticated and authorized means.
NOTE 2: The enc(RANDSUCI) is basically acting as a keystream, i.e., is hiding the Key KSUPI. The confidentiality of the SUCI is not required, as this represents basically a concealment (i.e., is a ciphertext on its own).
NOTE 3: The first resynchronization procedure is according to 6G AKA.
NOTE 4: The first registration procedure is according to 6G AKA. The RAND SUCI is expected to be pre-configured in USIM like initial SUPI configuration.
NOTE 5: Both, the long-term subscriber key and the SUPI are always remaining inside UDM and UE/USIM. The UDM is generating symmetric keys by running key-derivation function.
NOTE 6: A bookkeeping will be handled/maintained for the RAND values/list. The algorithm for selecting a RAND value could be either the initiating entity is rotating, or the receiving side ramains at the next unused RAND value, while the initiating entity is rotating. Most probably, the desynchronisation issue might not happen because the deletion of the RAND SUCI happens only after success authentication. Otherwise, it is not deleted.
NOTE 7: There is no specific impact due to introduction of the symmetric SUCI concealment.

Overview of Temporary SUCI:


Figure 7.2.1.13.2-2: Temporary SUPI (overview)

The following steps are applicable:
Pre-configuration Phase
1.) The UDM is creating the list of SUCI values and is encrypting these by using symmetric cryptography. (Rationale: Actually, symmetric cryptography is assumed to be quantum safe.) The UDM is creating a Key KSUPI for the SUPI encryption and must store this key, because this key is later used for the decryption.
The SUCI values will be computed as shown by Figure 7.2.1.13.2-1. The SUCI values will be encrypted to provide privacy during transition phase.
The KSUPI is the hashed output value of input parameters/values (i.e., long-term key K, RANDSUPI, and hash value of SUPI). For the KDF, the hash functions of the SHA-3 family are considered quantum-resistant, i.e., digests (hash values) that are 128, 224, 256, 384 or 512 bits, are candidates for use in the KDF. It can be assumed, that the UDM has sufficient processing capacity to run the KDF for KSUPI computation.
2.) The list of encrypted SUCI’s is sent to the UE along with RANDSUPI. This RANDSUPI is used by UDM to generate the Key KSUPI (reference “Overview of Encrypted SUCI in UDM” of this document).
The RANDSUPI is a random value with predefined length and is used for freshness purposes. For random number generation the NIST Special Publication 800-90A [86] is to be used as reference. The RANDSUPI is not encrypted, which is similar to the RAND from the AV in EAP-AKA (refer to TS 33.501 [4]). The privacy of the UE can NOT be compromised by disclosing the RANDSUPI, because the RANDSUPI can NOT be used for identification of the subscriber.
3.) The UE is storing the received list of encrypted SUCI’s. USIM/ ME will also use RANDSUPI to generate Key KSUPI.
The storage place of the SUCI should non-volatile memory. RANDSUCI values have been used should be moved into volatile memory. The KSUPI must be processed, because this is providing a binding to the specific long-term key, basically, this is providing a proof-of-possession, i.e., the encrypted RANDSUCI, which will be sent to the Network includes the long-term key K.

Registration Phase
4.) The UE is now selecting one encrypted SUCI.
5.)  The UE is sending the registration request to the UDM and is added new processed values into this message. The following needs to be processed by the UE: The root key is the Key K which is stored inside the USIM of that UE. The UE is creating a hash of that Key KSUPI. Furthermore, the UE is concatenating the Encrypted SUCI and is hashing both, the Encrypted SUCI together with the hashed Key KSUPI. The rationale for creating this concatenation is the following: The Encrypted SUCI is used by the UDM to verify the authentication of the SUCI value, while the hashed key KSUPI is used by the UDM to verify the authenticity of the UE (could also be called, the legitimacy of the UE for sending these information elements).
6.) The UDM is receiving the Registration Request message and is first using the Encrypted SUCI value for the look-up on which key is needed for the decryption. Now since the UDM knows which key is to be used and since it knows the UE, the UDM is taking the fetching the computed key KSUPI, is hashing this, and is fetching the encrypted SUCI from the local stored memory and is hashing the concatenated encrypted SUCI and the hashed key KSUPI. The outcome of this hashing (refers to the expected hash) will be compared with the received hash value.
7.) This refers to the registration and auth execution and completion. Rationale: The execution steps above refer basically to the auth of the encrypted SUCI and the authentication (legitimacy) of the UE. After this the normal Auth needs to be processed.
8.) After successful encrypted SUCI usage, both UE and UDM deletes this value from the list and same UE can’t use the same for further communications.
9.)10.)11.) This refers to the renewing and deployment of new list of encrypted SUCI values. UDM could use old RANDSUPI and continue to use the KSUPI for encryptions, but also UDM could decide to refresh this key KSUPI by creating new RANDSUPI and pass it to UE.
[bookmark: _Toc215135163]7.2.1.13.3	Evaluation
TBD
Editor’s Note: Further evaluation to be added.
This design does not require the generation of keys for symmetric cryptography.
Standard key-derivation functions are being used for key stream generation, and with this the long-term key and the SUPI are bound to a session between UE and UDM without revealing the user.
The re-/synchronization can be handled in context with 6G AKA.
The PQC upgrade is not needed, as there are no use of asymmetric keys and the size of PQC SUCI is typically huge, which is avoided by this solution.
This solution can cause synchronization issue of encrypted random number list between UE and Core network. When network send list of encrypted random number list to UE, if there is issue in downlink than UE does not receive the list causing synchronization issue. Recovery procedure of encrypted random number list may further add complexity to the procedure.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc207827760][bookmark: _Toc215135164]7.2.1.14	Solution #14 to SUCI Calculation: Symmetric solution on SUCI protection
[bookmark: _Toc207827761][bookmark: _Toc215135165]7.2.1.14.1	Introduction
Editor’s Note: Analysis on the probability of desynchronization of eSUCIs is FFS.
Editor’s Note: Resynchronization of desynchronized eSUCIs is FFS.
Editor’s Note: The benefit of this solution is FFS.
The following are principles of the solution:
-	UE is able to be provisioned with an enhanced SUCI (eSUCI) by UDM, or by pre-configuration, which is calculated with quantum resistant symmetric algorithm, symmetric home network key, and SUPI.
-	If eSUCI is available, UE uses the eSUCI for initial Registration procedure.
-	UDM calculates new eSUCI and updates towards UE after initial Registration procedure, UE does not calculate the eSUCI.
The following figure depicts the Encryption based on quantum resistant symmetric algorithm and symmetric key at the home network side.


Figure 7.2.1.14.1-1: Encryption based on symmetric key and algorithm at the Home Network
The following figure depicts the Decryption based on quantum resistant symmetric algorithm and symmetric key at the home network side.


Figure 7.2.1.14.1-2: Decryption based on symmetric key and algorithm at the Home Network
[bookmark: _Toc207827762]The Symmetric Key of Home Network, which is not a per UE key, is resident in SIDF/UDM and NOT shared with UE.
[bookmark: _Toc215135166]7.2.1.14.2	Solution details
7.2.1.14.2.1	Procedure
The following figure depicts the initial Registration procedure using eSUCI, which is calculated with quantum resistant symmetric algorithm, symmetric home network key, and SUPI.


Figure 7.2.1.14.2.1-1: Initial Registration with eSUCI
1.	If an enhanced SUCI (eSUCI), which is generated as described in clause 7.2.1.14.1, is provisioned during previous initial Registration procedure or pre-configured in UE (e.g., in NVM of ME or in USIM), the UE sends initial Registration Request (eSUCI) message to AMF/SEAF. If eSUCI is not available in UE, the UE uses asymmetric method (e.g. legacy or enhanced) to calculate a SUCI as an eSUCI for the initial Registration procedure.
Editor’s Note: Format of eSUCI is FFS.
Editor’s Note: Clarification on step 1 is ffs, e.g. proof-of-possession, exception case.
NOTE:	The eSUCI can be replayed by malicious UE, where UDM obtain LTK based on eSUCI and perform authentication with the UE, and the primary authentication fails i.e., the malicious UE is not able to make the authentication succeed.
2.	AMF/SEAF invokes Nausf_UEAuthentication_Authenticate Request (eSUCI) towards AUSF.
3.	AUSF invokes Nudm_UEAuthentication_Get Request (eSUCI) towards SIDF/UDM.
4.	SIDF decodes the eSUCI to get SUPI as described in clause 7.2.1.14.1 or using asymmetric method.
5.	The UDM, AUSF, AMF/SEAF, and UE performs authentication procedure based on the SUPI decoded from the eSUCI.
6.	If the authentication succeeds, SIDF/UDM calculates a new eSUCI as described in clause 7.2.1.14.1.
7.	SIDF/UDM returns the calculated eSUCI to AUSF.
8.	AUSF responds to AMF/SEAF with the new eSUCI.
9.	AMF sends Registration Response (new eSUCI) to UE.
10.	UE stores the new eSUCI, e.g. in the NVM of ME or in USIM, which will be used for successive initial Registration procedure.
7.2.1.14.2.2	Format of eSUCI
The following figure shows the format of the eSUCI:


Figure 7.2.1.14.2.2-1: Structure of eSUCI
The structure of eSUCI is aligned with SUCI, and when Protection Scheme ID indicates symmetric scheme, the Home Network Symmetric Key ID is used instead of Home Network Public Key ID, the 128-bit NONCENW is generated by UDM for calculating the eSUCI.
7.2.1.14.2.3	Consideration of desynchronization
The update of eSUCI can be achieved through reliable exchange of NAS messages. Specifically, the UE shall send a NAS Registration Complete message to the AMF upon receiving and storing a new eSUCI. If the NAS Registration Complete message is not received (e.g., due to a radio link issue), the AMF is required to retransmit the NAS Registration Accept message, now including the new eSUCI. This process mirrors the method used for updating GUTI.
Even if the eSUCI update fails, the eSUCI stored in the UE (whether new or old) remains decryptable by the UDM to obtain the SUPI.
Consequently, no synchronization mechanism is needed for this solution.
[bookmark: _Toc207827763][bookmark: _Toc215135167]7.2.1.14.3	Evaluation
TBD This solution for SUCI calculation has the following benefits:
a.	Compared to SUCI calculation using the KEM algorithms, eSUCI is shorter in length. This reduction in size benefits air interface transmission, particularly in initial access scenarios where the message containing the UE ID typically has very limited capacity. Extending the message size significantly poses a substantial challenge to the RAN.
b.	Compared to SUCI calculation using KEM algorithms, which demands UE’s substantial computing resources and results significant delay for registering into network, the UE can obtain eSUCI with significantly simpler processing requirements and very quick. This approach enables support across diverse UE types, including IoT devices.
c.	Compared to SUCI calculation using KEM algorithms, the decryption of eSUCI relies on a symmetric algorithm, demanding less computing resources and time. This approach significantly reduces the processing burden on the UDM and helps mitigate SUCI decryption-related DoS attack risks significantly.
d.	If the UE is equipped with a USIM pre-configured with eSUCI, the SUPI can be securely concealed over the air throughout the entire lifetime of the UE. This approach is particularly well-suited for new UEs, such as IoT devices, to ensure long-term privacy protection.
e.	As support for SUCI is a mandated capability for 5G UEs, this solution remains applicable even when the UE (e.g., an eMBB device) is paired with a legacy USIM that the user may not upgrade. The mechanism functions by updating only the ME and CN. On one hand, the legacy SUCI protection can provide basic protection for the SUPI. On the other hand, once the ME receives an eSUCI from the CN after first registration, it will forgo the use of legacy SUCI, thereby decreasing the risk of SUPI exposure.
Editor’s Note: Evaluation on the tracking issue due to the reuse of the static eSUCI by the UE until a new eSUCI is successfully provisioned is FFS.
Editor’s Note: Operational feasibility of securely provisioning operator-controlled eSUCI into the ME prior to the first network attachment is FFS.
Editor’s Note: If UE is not provisioned with eSUCI, how to resist against post quantum attack is FFS.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc215135168]7.2.1.15	Solution #15 to SUCI calculation: SUCI calculation with symmetric key
[bookmark: _Toc215135169]7.2.1.15.1	Introduction
This solution derives the encryption key EK, ICB and MAC key MK from the root key K. The encryption key length and MAC key length are increased to 256 Bbit and AES-256-CTR is used for encrypting the SUPI. 
For Key Identification of the Root Key K, the UE and the home network are preconfigured with a Default Key ID for the first time use, i.e. the first initial registration request. At this point in time, the home network generates a Key Identification NonceKID and generates a Key ID Hash Chain of an operator preconfigured fixed Length L from the NonceKID. The network provides the NonceKID to the UE in a protected NAS message after successful authentication. The UE then will create the same Hash Chain of the same Length L similar to the network. The UE will start using the Key IDs in the hash chain in the revers order (last created one first) to avoid the prediction of the next value. When receiving a symmetric SUCI with the Key ID, the network fetches the Root Key K based on the Key ID. The network can update the NonceKID at any authentication procedure to refresh the Hash Chain in the network and UE, in order to avoid that the UE reaches the beginning of the Hash Chain, i.e. the UE would run out of Key IDs. 

[bookmark: _Toc215135170]7.2.1.15.2	Solution details
[bookmark: _Toc215135171]7.2.1.15.2.1	Processing on UE side
The UE generates a 256 Bbit Nonce#1 and similar to MILENAGE, the UE creates two additional Nonces by using a 64 Bbit rotate operation. The Nonce#2 is created by rotating/shifting 64 Bbits to the left of Nonce#1 and Nonce#3 by rotating/shifting 64 Bbits to the left of Nonce#2. 


Figure 7.2.1.15.2.1-1: Key Derivation
The 256 Bbit Encryption key EK is derived using a HMAC–SHA-256 with the root key K and the Nonce#1 as input.
The 128 Bbit ICB is derived using a HMAC–SHA-256 with the root key K and the Nonce#2 as input with the output hash truncated to the 128 most significant bits.
The 256 Bbit MAC key MK is derived using a HMAC–SHA-256 with the root key K and the Nonce#3 as input.
The EK and ICB are input to the AES-256-CTR, the output is a 256 Bbit ciphertext of the encrypted SUPI.


Figure 7.2.1.15.2.1-2: Encryption at the UE
The MK is used with the Nonce and the Ciphertext as input to a HMAC-SHA-256 function to generate a 256 Bbit long MAC. 
Since the computation is different, a 6G SUCI indication is required that the SUCI is differently concealed as in 5G.
The UE selects the next Key ID in the Hash Chain.
The full SUCI has then the format as shown below with SUCI = 6G SUCI Indication || Key ID || Nonce#1  || Ciphertext || MAC.
[bookmark: _Toc215135172]7.2.1.15.2.2	Processing on home network side
The home network detects the new SUCI format based on the 6G SUCI indication and fetches the Root Key K based on the Key ID. 
The home network creates based on the received Nonce#1 the two additional nonces Nonce#2 and Nonce#3.
The home network derives the 256 Bbit Encryption key EK, 128 Bbit ICB and 256 Bbit MAC key MK in the same way as in the UE, using the Nonce#1, Nonce#2 and Nonce#3 respectively.
The home network verifies the MAC and decryptes the SUCI to SUPI. 


Figure 7.2.1.15.2.2-1: Decryption at the Home Network
Editor’s Note: For easier understanding of the solution described, further details on how to implement the solution (e.g., the schematic figures as in TS 33501 and call flows) is FFS.
Editor’s Notes: it is FFS how the network identifies which K to be used to derive the EK.
Editor’s Note: Details about the management of the root key, including generation, agreement, storage, revocation, etc. are FFS.
[bookmark: _Toc215135173]7.2.1.15.3	Evaluation
The UE and the network need to support the following additional functionalities:
· UE and network need to be preconfigured with the Default Key ID and Hash Chain Length.
· The UE and the network need to compute a Key ID Hash Chain of Length L based on a NonceKID (generated in the network)
· The network needs to fetch the Root Key K based on the Key ID.
· The UE and the network need to compute EK, ICB and MK based on a UE generated Nonce
· Encryption is performed with 256 bit EK and 128 bit ICB using AES-256-CTR.
· Integrity protection is performed with 256 bit MAC key MK and HMAC-SHA-256 function over the ciphertext and Nonce.
Editor’s Notes: Further evaluation is TBD
[bookmark: _Toc215135174]7.2.1.16	Solution #16 to SUCI calculation: Solution for PQC based SUCI Computation
[bookmark: _Toc528155245][bookmark: _Toc102752619][bookmark: _Toc205553957][bookmark: _Toc211870274][bookmark: _Toc215135175]7.2.1.16.1	Introduction
This solution address PQC algorithm based SUCI calculations.
[bookmark: _Toc528155246][bookmark: _Toc102752620][bookmark: _Toc205553958][bookmark: _Toc211870275][bookmark: _Toc215135176]7.2.1.16.2	Solution details
Processing on UE side:


Figure 1a: Encryption based on PQC shared key generation at UE
The UE computes a fresh SUCI, using the provisioned PQC-based public key of the home network (HN), and PQC-based key encapsulation mechanism (KEM) according to the parameters provisioned by home network as follows:
1. UE generates an ephemeral shared key and an encrypted PQC shared key based on a PQC-based public key associated with the home network. The PQC-based home network public key is identified using a HN PQC Public key ID or an existing HN Public key ID can indicate the HN PQC Public key with a related value.
2. 	UE generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and ephemeral shared key along with input parameters such as Freshness parameter i.e., timestamp and SUCI Protection Profile ID. 
3,4. UE protects the plaintext block (i.e. SUPI or UE ID), using the encryption key and the MAC key. The final output is the concatenation of Freshness Parameter, SUCI Protection Profile ID, encrypted PQC shared key and the ciphertext.
The final output i.e., scheme output coding is upto stage 3 similar to TS 23.003 [74]. The computed SUCI along with scheme output is sent from UE to network for authenticating the subscriber. 
Processing on home network side


Figure 1b: Decryption based on PQC shared key generation at home network
For deconcealing the SUCI, the home network uses the received encrypted PQC shared key, and the PQC-based private key of the home network along with other parameters as described in the steps below: 
1. Home network (HN) decapsulates the encrypted PQC shared key to derive the ephemeral shared key.
2. HN generates ephemeral symmetric (de)encryption key and ephemeral MAC key using a KDF function and derived ephemeral shared key along with input parameters such as such as Freshness parameter i.e., a combination composed of Nonce, timestamp (for key confirmation purposes which can be implemented as recommended by NIST SP 800-227 for Key-Encapsulation Mechanisms [73]) and SUCI Protection Profile ID.
3,4. HN verifies the MAC and decrypts the ciphertext to derive the plaintext block (i.e. SUPI or UE ID), using the MAC key and (de)encryption key respectively.
Example profile for SUCI Calculation: Profile C (PQC only): Profile C uses ML-KEM as defined in [21] to generate shared key Z1 integrated with AES encryption scheme.
The ME and SIDF implement this profile. The parameters for this profile are the following:
- 	ML KEM parameters	: Level 3 (k, lattice dimension 3)
-	KDF						: ANSI-X9.63-KDF [9]
-	Hash						: SHA-256
- 	Shared secret key Z1		: Shared secret field from ML-KEM
-	MAC						: HMAC–SHA-256
-	mackeylen				: 32 octets (256 bits)
-	maclen					: 8 octets (64 bits)
-	SharedInfo1				: N/A
-	SharedInfo2				: the empty string
-	ENC						: AES–256 in CTR mode
-	enckeylen					: 32 octets (256 bits)
-	icblen						: 32 octets (256 bits)
[bookmark: _Toc528155247][bookmark: _Toc102752621][bookmark: _Toc205553959][bookmark: _Toc211870276][bookmark: _Toc215135177]7.2.1.16.3	Evaluation
The solution has the following impacts:
New PQC algorithms and related profiles need to be supported by the UE and Network. 
The UE generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and ephemeral shared key along with input parameters such as Freshness parameter i.e., combination composed of Nonce, timestamp (for key confirmation purposes which can be implemented as recommended by NIST SP 800-227 for Key-Encapsulation Mechanisms [73]) and SUCI Protection Profile ID. HN generates ephemeral symmetric (de)encryption key and ephemeral MAC key using a KDF function and derived ephemeral shared key along with input parameters such as such as Freshness parameter i.e., timestamp and SUCI Protection Profile ID. The use of freshness parametertimestamp and profile information as input allows key confirmation, replay protection for the SUCI and binds to the profile being used among multiple profiles respectively. 
Editor’s Note 1: How the addition of freshness parameter is useful against an attack using CRQC is FFS.
7.2.1.17	Solution #17: Solution for Hybrid PQC based SUCI Computation
7.2.1.17.1	Introduction
This solution address Hybrid PQC algorithm SUCI calculations. The solution uses GSMA described solution [33] as base but proposes updates to use SUPI for SUCI computation along with the clarifications on key generation for the Hybrid PQC scenario.
7.2.1.17.2	Solution details
PQC key encapsulation is performed and hybridization with ECC based key exchange is performed through Key Derivation Function (KDF). Security enhancement could be done by using input parameters such as Freshness parameter i.e., timestamp, SUCI Protection Profile ID, Hybrid PQC Code, and other information e.g. cipher texts from PQC KEM, classic Key agreement as inputs to KDF. For computing a fresh SUCI, the UE uses the provisioned ECIES parameters (such as Public key of HN, newly generated Ephemeral public private key pair and the newly generated ECIES ephemeral shared secret key generated from the Ephemeral private key and the HN public key), PQC-based public key of the home network, and PQC-based key encapsulation mechanism (KEM) according to the parameters provisioned by home network (HN). The processing on UE side is done as mentioned below.


7.2.1.17.2-1: Processing on UE side
1. UE generates an ephemeral shared key and an encrypted PQC shared key (called as Post Quantum ciphertext) based on a PQC-based public key associated with the home network. The PQC-based HN public key is identified using a HN PQC Public key ID or an existing HN Public key ID can indicate the HN PQC Public key with a related value.
2. UE generates ephemeral symmetric encryption key and ephemeral MAC key using a KDF function and ECC based ephemeral shared key, PQC based ephemeral shared key along with input parameters such as Freshness parameter i.e., a combination composed of Nonce, Timestamp (for key confirmation purposes which can be implemented as recommended by NIST SP 800-227 for Key-Encapsulation Mechanisms [73], SUCI Protection Profile ID, Hybrid PQC Code, and other info e.g., ECC ephemeral public key, PQ Cipher text.
3,4. UE protects the plaintext block (i.e. SUPI or UE ID), using the encryption key and the MAC key. The final output is the concatenation of Freshness Parameter, SUCI Protection Profile ID, encrypted PQC shared key, the ciphertext (i.e., Enc(SUPI)) value, and MAC tag value.



7.2.1.17.2-2: Processing on Network side
For deconcealing a SUCI, the home network uses the received encrypted PQC shared key, and the PQC-based private key of the home network along with the other parameters as described below. 
1. HN decapsulates the encrypted PQC shared key to derive the PQ ephemeral shared key 1. HN derives the ECC based ephemeral shared key using the HN private key and the received Ephemeral public key of UE.
2. HN generates ephemeral symmetric (de)encryption key and ephemeral MAC key using a KDF function and derived PQC ephemeral shared key, ECC based ephemeral shared key along with input parameters such as Freshness parameter i.e., a combination composed of Nonce, timestamp, SUCI Protection Profile ID, Hybrid PQC Code, other info e.g ECC ephemeral public key, PQ Cipher text.
3,4. HN verifies the MAC and decrypts the ciphertext to derive the plaintext block (i.e. SUPI or UE ID), using the MAC key and (de)encryption key respectively.
Profile examples can be same as other hybrid PQC examples in the present document.
Editor’s Note 1: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note 2: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note 3: Whether the solution work for case that user does not update USIM card is ffs.
7.2.1.17.3	Evaluation
TBD
7.2.1.18 Solution #18 for SUCI calculation: SUPI Concealment using hybrid method
7.2.1.18.1 Introduction
This solution leverages both classical cryptography and PQC algorithms while applying them sequentially to calculate SUCI. In addition, PQC Digital Signature Algorithm (DSA) is also proposed as an option to protect the integrity and non-repudiation properties of SUCI.
7.2.1.18.2 Solution details
7.2.1.18.2.1 Processing on UE side
The processing on UE side includes the following: 


Figure-7.2.1.18.2.1-1: SUCI calculation using hybrid method at UE

1. The UE uses ECIES-based approach to generate an Intermediate SUCI. The input to the ECIES-based approach includes SUPI, UE’s Non-PQC Private Key (e.g., ephemeral private key used in ECIES), HN’s Non-PQC Public Key (e.g., public key of HN used in ECIES). 
2. The UE uses a PQC-based scheme (e.g., PQC-based solutions described in clause 7.2) to encrypt the Intermediate SUCI and generate Final SUCI. 
3. The UE performs a MAC function and/or an optional PQC DSA algorithm on the Final SUCI to generate a MAC-Tag and/or a PQC signature.
4. The UE transmits a set of parameters to the home network, which may include: the final SUCI, the MAC-Tag and/or the PQC Signature, the UE’s Non-PQC Public Key, and the UE’s PQC Public Key. 

7.2.1.18.2.2 Processing on home network side
The processing on UE side includes the following: 


Figure-7.2.1.18.2.2-1: SUPI calculation using hybrid method at home network
1. The home network receives a set of parameters from the UE, which may include: the final SUCI, the MAC-Tag and/or the PQC Signature, the UE’s Non-PQC Public Key, and the UE’s PQC Public Key. 
2. The home network performs a MAC function and/or an optional PQC DSA algorithm to verify the integrity of the Final SUCI.
3. The home performs a PQC-based scheme (e.g., PQC-based solutions described in clause 7.2) to decrypt the Final SUCI to recover the Intermediate SUCI. 
4. The home network performs ECIES-based approach to receive SUPI from the Intermediate SUCI. 

Editor's Note: Evaluation of the impact of initial access due to increased length of SUCI is ffs. 
Editor's Note: Evaluation of the computing overhead of SUCI calculation on both the UE and network side is ffs.
Editor's Note: Whether the solution works for the case where the user does not update the USIM is ffs.
Editor's Note: Details of the PKI required to issue clients with public keys or certificates are FFS.
Editor's Note: Whether the UE must decrypt the SUCI before validating the signature is FFS.

7.2.1.18.3	Evaluation
TBD
[bookmark: _Toc211859914]7.2.1.19	Solution #19 to SUCI calculation: Hybrid PQC SUCI Calculation with AEAD
7.2.1.19.1	Introduction
This solution proposes a hybrid PQC based SUCI calculation mechanism. The ECIES scheme and the PQC ML-KEM are used together to generate AEAD keys, and AEAD algorithm is used to provide encryption and integrity protection for SUPI.
7.2.1.19.2	Solution details
7.2.1.19.2.1 Processing on UE side
The proposed scheme is implemented such that for computing a fresh SUCI, the UE uses the provisioned ECC public key of the home network, provisioned PQC public key of the home network, freshly generated ECC ephemeral public/private key pair, and PQC ML-KEM. The UE’s step is illustrated in Figure 7.2.1.19-1.


Figure 7.2.1.19-1: Encryption based on hybrid PQC at UE
1. UE generates ECC Eph. public key c2 and ECC Eph.private key.
2a. UE generates shared key k1 and PQC ciphertext c1 by PQC ML-KEM [21] using the PQC public key of HN as input.
2b. UE generates shared key k2 using ephemeral private key of UE and public key of HN.
3. UE generates hybrid shared key K using shared key k1 and k2.
4. UE generates AEAD key and IV by KDF using hybrid shared key K as input. Specifically, KDF
- generates a output of length aeadkeylen + ivlen;
- parses the leftmost aeadkeylen octets of the output as an AEAD key Kaead, and the rightmost ivlen octets of the output as IV.
5. UE protects the plaintext block by AEAD algorithm using AEAD keys. The PQC ciphertext c1 and Eph. public key c2 are integrity protected as AAD.
Finally, the SUCI format generated by UE is shown as in Figure 7.2.1.X-2. The SUPI Type, Home Network Identifier and Routing indicator are same as described in TS 23.003 [74]. The Protection Scheme Id is an indicator representing the used mechanism. The Home Network Public Key Id represents the HN key bundle, including a ECC public key of HN and a PQC pubic key of HN.

Figure 7.2.1.19-2: Structure of SUCI
7.2.1.19.2.2 Processing on home network side
The proposed scheme implemented such that for deconcealing a SUCI, the home network uses the received ECC ephemeral public key of the UE, the received PQC ciphertext, the ECC private key of the home network, and the PQC private key of the home network. The HN’s step is illustrated in Figure 7.2.1.19-3.


Figure 7.2.1.19-3: Decryption based on hybrid PQC at HN
1a. HN decapsulates the shared key k1 using PQC private key of HN and PQC ciphertext c1 received from UE.
1b. HN generates shared key k2 using ECC private key of HN and Eph. Public key c2 received from UE.
2. HN generates hybrid shared key K using shared key k1 and k2.
3. HN generates AEAD key and IV by KDF using hybrid shared key K as input.
4. HN verifies the integrity of the SUCI and decipher the ciphertext using AEAD algorithm.
Editor’s Note: Whether AEAD1 or AEAD2 is used is FFS
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is ffs.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is ffs.
Editor’s Note: Whether the solution work for case that user does not update USIM card is ffs.
7.2.1.19.3	Evaluation
Editor’s note: Evaluation is FFS.
7.2.1.20	Solution #20 to SUCI calculation: ECIES-MLKEM Hybrid SUCI Calculation 
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is FFS.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is FFS.
Editor’s Note: Whether the solution work for case that user does not update USIM card is FFS.
Editor’s Note: Whether this solution meets IND-CCA-1 security and IND-CCA-2 security is FFS.
7.2.1.20.1 	Introduction
This is a hybrid solution for SUCI calculation that combines Elliptic Curve Integrated Encryption Scheme (ECIES) with Module Lattice-Based Key-Encapsulation Mechanism (ML-KEM). This solution also uses an Authenticated (Symmetric) Encryption (AE). If vulnerabilities are found in ML-KEM, which is quite possible (more likely in the implementation than in the design) given that ML-KEM is relatively new and hasn’t received the kind of widespread scrutiny by the cryptanalysis community that ECIES has, this hybrid solution is expected to remain secure until the advent of CRQC.
One of the key benefits of using this hybrid solution is that there is no need for any Key Derivation Function (KDF) or Key Combiner Function (KCF) in this construction. 
7.2.1.20.2 	Solution details
As is currently done in TS 33.501, the public key of the Home Network (HN) is securely provisioned to the User Equipment (UE). Since this hybrid solution combines ECIES with ML-KEM, the public key of HN denoted as ekH which is used for encrypting Subscription Permanent Identifier (SUPI), consists of two keys: ECIES public key denoted as ekE and ML-KEM encapsulation key denoted as ekM. Similarly, the private key of HN denoted as dkH which is used for decrypting Subscription Concealed Identifier (SUCI), consists of two keys: ECIES private key denoted as dkE and ML-KEM decapsulation key denoted as dkM. 
Note: To keep the presentation simple, here and in the rest of this solution SUPI is used to mean the subscription identifier part of the SUPI, what is referred in Annex C of TS 33.501 as the scheme-input. Similarly, SUCI refers to the part of SUCI that is cryptographically computed, what is referred in Annex C of TS 33.501 as the scheme-output.
7.2.1.20.2.1 	Processing on UE Side
The processing at UE is illustrated in Figure 7.2.1.20.2.1-1. 
Input consists of SUPI denoted as m, the public key of HN denoted as ekH = (ekE, ekM).
Output is a ciphertext c that has three components c1, c2, c3, i.e., c = (c1, c2, c3), where:
- 	An ECIES ephemeral key pair (ekep, dkep) is generated:
-	The ephemeral public key ekep is the first component of the ciphertext, i.e., c1  ekep.
- 	The ephemeral private key dkep and the ECIES public key ekE are used in the ECIES key agreement to generate the ephemeral secret shared key k1., i.e., k1  Key Agreement (dkep, ekE). 
-	The ML-KEM encapsulation key ekM is used in the ML-KEM encapsulation algorithm to generate a symmetric key denoted as k0 and the encapsulation of k0 denoted as c0, i.e., (k0, c0)  ML-KEM Encapsulation (ekM).
-	The ephemeral secret shared key k1 generated above is used in the AE encryption algorithm to encrypt the encapsulated symmetric key c0 to obtain the second component of the ciphertext, i.e., c2  AE Encryption (k1, c0).
-	The ML-KEM symmetric key k0 generated above is used in the AE encryption algorithm to encrypt SUPI denoted as m to obtain the third component of the ciphertext, i.e., c3  AE Encryption (k0, m).


[bookmark: _Ref220328425]Figure 7.2.1.20.2.1-1: SUPI encryption
7.2.1.20.2.2 	Processing on HN Side 
The processing at HN is illustrated in Figure 7.2.1.20.2.1-2. 
Input consists of the ciphertext SUCI denoted as c = (c1, c2, c3), the private key of HN denoted as dkH = (dkE, dkM)
Output is the SUPI denoted as m, where:
- 	The first component of the ciphertext c1 (i.e., the ephemeral public key ekep) and the ECIES private key dkE are used in the ECIES key agreement to generate the ephemeral secret shared key k1., i.e., k1  Key Agreement (ekep, dkE). 
-	The ephemeral secret shared key k1 generated above is then used in the AE decryption algorithm to decrypt the second component of the ciphertext c2 to obtain the encapsulated symmetric key c0, i.e., c0  AE Decryption (k1, c2).
- 	The ML-KEM decapsulation key dkM is then used in the ML-KEM decapsulation algorithm to decapsulate the encapsulated symmetric key c0 generated above to obtain the symmetric key k0, i.e., k0  ML-KEM Decapsulation (dkM, c0).
-	Finally, the symmetric key k0 generated above is used in the AE decryption algorithm to decrypt the third component of the ciphertext c3 to obtain SUPI denoted as m, i.e., m  AE Decryption (k0, c3).


[bookmark: _Ref220330371]Figure 7.2.1.20.2.2-1: SUCI decryption
7.2.1.20.3	Evaluation
7.2.1.21	Solution #21 to SUCI calculation: ECKEM-MLKEM Hybrid SUCI Calculation 
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is FFS.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is FFS.
Editor’s Note: Whether the solution work for case that user does not update USIM card is FFS.
Editor’s Note: Whether this solution meets IND-CCA-1 security and IND-CCA-2 security is FFS.
7.2.1.21.1 	Introduction
This is a hybrid solution for SUCI calculation that combines Elliptic Curve Key Encapsulation Mechanism (EC-KEM) with Module Lattice-Based Key-Encapsulation Mechanism (ML-KEM). This solution also uses an Authenticated (Symmetric) Encryption (AE). If vulnerabilities are found in ML-KEM, which is quite possible (more likely in the implementation than in the design) given that ML-KEM is relatively new and hasn’t received the kind of widespread scrutiny by the cryptanalysis community that EC-KEM has, this hybrid solution is expected to remain secure until the advent of CRQC.
One of the key benefits of using this hybrid solution is that there is no need for any Key Derivation Function (KDF) or Key Combiner Function (KCF) in our construction. 
7.2.1.21.2 	Solution details
As is currently done in TS 33.501, the public key of the Home Network (HN) is securely provisioned to the User Equipment (UE). Since this hybrid solution combines EC-KEM with ML-KEM, the public key of HN denoted as ekH which is used for encrypting Subscription Permanent Identifier (SUPI), consists of two keys: EC-KEM encapsulation key denoted as ekE and ML-KEM encapsulation key denoted as ekM. Similarly, the private key of HN denoted as dkH which is used for decrypting Subscription Concealed Identifier (SUCI), consists of two keys: EC-KEM decapsulation key denoted as dkE and ML-KEM decapsulation key denoted as dkM. 
Note: To keep the presentation simple, here and in the rest of this solution SUPI is used to mean the subscription identifier part of the SUPI, what is referred in Annex C of TS 33.501 as the scheme-input. Similarly, SUCI refers to the part of SUCI that is cryptographically computed, what is referred in Annex C of TS 33.501 as the scheme-output.
7.2.1.21.2.1 	Processing on UE Side
The processing at UE is illustrated in Figure 7.2.1.21.2.1-1. 
Input consists of SUPI denoted as m, the public key of HN denoted as ekH = (ekE, ekM).
Output is a ciphertext c that has three components c1, c2, c3, i.e., c = (c1, c2, c3), where:
-	The EC-KEM encapsulation key ekE is used in the EC-KEM encapsulation algorithm to generate a symmetric key denoted as k1 and the encapsulation of k1 denoted as c1, i.e., (k1, c1)  EC-KEM Encapsulation (ekE).
-	The ML-KEM encapsulation key ekM is used in the ML-KEM encapsulation algorithm to generate a symmetric key denoted as k0 and the encapsulation of k0 denoted as c0, i.e., (k0, c0)  ML-KEM Encapsulation (ekM).
-	The EC-KEM symmetric key k1 generated above is used in the AE encryption algorithm to encrypt the ML-KEM encapsulated symmetric key c0 to obtain the second component of the ciphertext, i.e., c2  AE Encryption (k1, c0).
-	The ML-KEM symmetric key k0 generated above is used in the AE encryption algorithm to encrypt SUPI denoted as m to obtain the third component of the ciphertext, i.e., c3  AE Encryption (k0, m).


Figure 7.2.1.21.2.1-1: SUPI encryption
7.2.1.21.2.2 	Processing on HN Side 
The processing at HN is illustrated in Figure 7.2.1.21.2.1-2. 
Input consists of the ciphertext SUCI denoted as c = (c1, c2, c3), the private key of HN denoted as dkH = (dkE, dkM)
Output is the SUPI denoted as m, where:
-	The EC-KEM decapsulation key dkE and the first component of the ciphertext c1 are used in the EC-KEM decapsulation algorithm to decapsulate c1 to obtain the symmetric key k1, i.e., k1  EC-KEM Decapsulation (dkE, c1).
-	The symmetric key k1 generated above is then used in the AE decryption algorithm to decrypt the second component of the ciphertext c2 to obtain the encapsulated symmetric key c0, i.e., c0  AE Decryption (k1, c2).
- 	The ML-KEM decapsulation key dkM is then used in the ML-KEM decapsulation algorithm to decapsulate the encapsulated symmetric key c0 generated above to obtain the symmetric key k0, i.e., k0  ML-KEM Decapsulation (dkM, c0).
-	Finally, the symmetric key k0 generated above is used in the AE decryption algorithm to decrypt the third component of the ciphertext c3 to obtain SUPI denoted as m, i.e., m  AE Decryption (k0, c3).


Figure 7.2.1.21.2.2-1: SUCI decryption
7.2.1.21.3	Evaluation
7.2.1.22	Solution #22 to SUCI calculation: Backward Compatible Hybrid SUCI Calculation 
Editor’s Note: Evaluation on impact of initial access due to increased length of SUCI is FFS.
Editor’s Note: Evaluation on computing overhead of SUCI calculation on both UE and network side is FFS.
Editor’s Note: Whether the solution work for case that user does not update USIM card is FFS.
Editor’s Note: Whether this solution meets IND-CCA-1 security and IND-CCA-2 security is FFS.
7.2.1.22.1 	Introduction
This is a hybrid solution for SUCI calculation that combines the current Elliptic Curve Integrated Encryption Scheme (ECIES) based design with Module Lattice-Based Key-Encapsulation Mechanism (ML-KEM). This solution also uses an Authenticated (Symmetric) Encryption (AE). This solution is backward compatible and has a modular design such that once Cryptographically Relevant Quantum Computer (CRQC) becomes readily available the ECIES parts can be simply discarded without any major design/implementation changes. This solution doesn’t suffer from the Indistinguishability under Adaptive Chosen Ciphertext Attack (IND-CCA2) [89] security weakness that other solution(s) may have. More specifically, this solution is:
-	IND-CCA2 secure against an adversary with access to CRQC if the PQC algorithm used doesn’t have any known vulnerability.
-	IND-CCA2 secure against a regular adversary (without access to CRQC) if the PQC algorithm used has some vulnerabilities, i.e., on par with the current SUCI calculation.
7.2.1.22.2 	Solution details
As is currently done in TS 33.501, the public key of the Home Network (HN) is securely provisioned to the User Equipment (UE). Since this hybrid solution combines ECIES with ML-KEM, the public key of HN in this solution which is used for encrypting Subscription Permanent Identifier (SUPI), consists of two keys: ECIES public key shown in the figures as “Public key of HN” and ML-KEM encapsulation key denoted as ekM. Similarly, the private key of HN in this solution which is used for decrypting Subscription Concealed Identifier (SUCI), consists of two keys: ECIES private key shown in the figures as “Private key of HN” and ML-KEM decapsulation key denoted as dkM. 
Note: To keep the presentation simple, here and in the rest of this solution SUPI is used to mean the subscription identifier part of the SUPI, what is referred in Annex C of TS 33.501 as the scheme-input. Similarly, SUCI refers to the part of SUCI that is cryptographically computed, what is referred in Annex C of TS 33.501 as the scheme-output. 
7.2.1.22.2.1 	Processing on UE Side
The processing at UE is illustrated in Figure 7.2.1.22.2.1-1. 
For the first part (PQC part) of this solution the inputs are: ML-KEM encapsulation key ekM and SUPI as the message m. For the second part (3GPP TS 33.501) of this solution, everything is exactly as per Annex C.3.2 of 3GPP TS 33.501 except the Plaintext block, where SUPI is replaced with the two ciphertexts obtained in the PQC part: encrypted symmetric key c1 and encrypted SUPI c2. The final output of the second part is also the final output of this solution, i.e., the receiver (i.e., HN) in this solution doesn’t receive (c1, c2).
Input consists of SUPI denoted as m, the “Public key of HN”, and the ML-KEM encapsulation key ekM.
Output is SUCI, the final output of the second part (3GPP TS 33.501), where: 
-	The ML-KEM encapsulation key ekM is used in the ML-KEM encapsulation algorithm to generate a symmetric key denoted as sk and the encapsulation of sk denoted as c1, i.e., (sk, c1)  ML-KEM Encapsulation (ekM).
-	The ML-KEM symmetric key sk generated above is used in the AE encryption algorithm to encrypt SUPI to obtain an intermediate ciphertext denoted as c2, i.e., c2  AE Encryption (sk, m).
-	The ML-KEM encapsulated symmetric key c1 and the intermediate ciphertext c2 generated above are used as the Plaintext block for the second part of this solution to obtain SUCI.


Figure 7.2.1.22.2.1-1: SUPI encryption
7.2.1.22.2.2 	Processing on HN Side 
The processing at HN is illustrated in Figure 7.2.1.22.2.1-2. 
For the decryption in this solution, first SUCI is decrypted as per Annex C.3.3 of 3GPP TS 33.501 to obtain two ciphertexts: encrypted symmetric key c1 and intermediate ciphertext (encrypted SUPI) c2. For the PQC part of this solution, the decryption key is the ML-KEM decapsulation key, dkM.
Input consists of the ciphertext SUCI, the “Private key of HN”, and the ML-KEM decapsulation key dkM
Output is the SUPI denoted as m, where:
- 	The “Private key of HN” is used to decrypt SUCI as per Annex C.3.3 of 3GPP TS 33.501 to obtain (c1, c2). 
- 	The ML-KEM decapsulation key dkM is then used in the ML-KEM decapsulation algorithm to decapsulate the encapsulated symmetric key c1 generated above to obtain the symmetric key sk, i.e., sk  ML-KEM Decapsulation (dkM, c1).
-	Finally, the symmetric key sk generated above is used in the AE decryption algorithm to decrypt the intermediate ciphertext c2 generated above to obtain SUPI denoted as m, i.e., m  AE Decryption (sk, c2).


Figure 7.2.1.22.2.1-2: SUCI decryption
7.2.1.22.3	Evaluation
7.2.1.23		Solution #23 to SUCI calculation: A hybrid scheme for SUPI protection
7.2.1.23.1	Introduction
A hybrid scheme used to protect SUPI is proposed, which combines ECIES and PQC KEM scheme to calculate SUCI. Consequently, the quantum-computing attacks on the ECIES can be mitigated.
Preassumption: UEs are provisioned with both ECC public key and PQC public key of  HN (Home Network ).

7.2.1.23.2		Solution details
The basic idea is to maintain the basic process of ECIES without any modifications except that only one step on the UE side is added, where the ephemeral public key generated by the UE based on ECC is encrypted by using the PQC KEM algorithm (e.g. Crystals-Kyber). The SUCI generated by the UE does not contain the ephemeral public key, but rather the encrypted ephemeral public key. In this way, attackers with quantum computer cannot obtain the ephemeral public key, and consequently cannot obtain the ephemeral shared key that encrypts subscription identifier (e.g. MSIN). The advantage of this scheme is that it has well compatibility with the ECIES scheme, and its security relies not only on the ECC algorithm but also on the PQC algorithm.
7.2.1.23.2.1	Processing on UE side		
 The UE  generates SUCI using a hybrid scheme, whose process is shown in the following figure:


Figure 7.2.1.23.2.1: Encryption at UE
 The detailed steps for encryption are as follows:
1. UE generates an ECC ephemeral public/private key pair;
2. Generate an ephemeral shared key by using the  ephemeral private key and the provisioned ECC public key of HN;
3. Derive an ephemeral encryption key and an ephemeral MAC key based on the ephemeral shared key;
4. Encrypt the plaintext by using an ephemeral encryption key to generate the ciphertext;
5. Use an ephemeral MAC key to perform integrity protection on the ciphertext and generate a MAC (Message Authentication Code) tag;
6. Based on the PQC-based key encapsulation mechanism, the ephemeral public key is encrypted by using the provisioned  PQC public key of HN.
The output of the scheme is: encrypted ephemeral public key || ciphertext || MAC tag
NOTE: Steps 1-5 mentioned above are the encryption steps specified in TS33.501, while Step 6 is newly added.
 The SUCI format of this scheme is as follows:


Figure 7.2.1.23.2.2: SUCI Format
7.2.1.23.2.2	Processing on home network side
After receiving SUCI, the home network finds the corresponding ECC private key and PQC private key based on the home network ECC public key identifier and home network PQC public key identifier in SUCI. The home network then uses these two private keys to process SUCI to obtain SUPI. The process is shown in the following figure:


Figure 7.2.1.23.2.3: Decryption at UE
 The detailed steps for decryption are as follows:
1. The network uses its PQC private key to decrypt the encrypted ephemeral public key based on the PQC key decapsulation mechanism;
2. Generate the ephemeral shared key by using the ECC private key of HN and ephemeral public key;
3. Derive the ephemeral decryption key and the MAC key based on the ephemeral shared key;
4. Apply the ephemeral decryption key to decrypt the ciphertext to obtain the plaintext;
5. Perform integrity verification on the ciphertext by using the ephemeral MAC key and MAC function;
Note: Steps 2-5 mentioned above are the decryption steps in TS33.501, while Step 1 is newly added.
Editor’s note: Evaluation on impact of initial access due to increased length of SUCI is FFS.
Editor’s note: Evaluation on computing overhead of SUCI calculation on both UE and network side is FFS.
Editor’s note: Whether the solution works for case that user does not update USIM card is FFS.
Editor’s note: Whether this solution meets IND-CCA-1 security and IND-CCA-2 security is FFS.
Editor’s note: Whether PQC based KEM scheme could be used for encryption of Eph. public key is FFS. 

7.2.1.23.3	Evaluation
Editor’s note: Evaluation is FFS.

[bookmark: _Toc215135178]7.2.2	Solutions to MIKEY-SAKKE key exchange
[bookmark: _Toc215135179]7.2.2.1	Solution #1 to MIKEY-SAKKE key exchange: mitigate
[bookmark: _Toc215135180]7.2.2.1.1	Introduction
There are a number of existing mitigations built into the Mission Critical system. Pending development of a post-quantum replacement for MIKEY-SAKKE it is possible these offer sufficient mitigation for threats, in particular harvest-now-decrypt-later. This is not proposed as a long term migration plan. That will require either a PQ identity based encryption scheme standard or a re-architecting the Mission Critical system.
[bookmark: _Toc215135181]7.2.2.1.2	Solution Details
In the on-network case, MIKEY-SAKKE key exchanges are protected by one or more layers of additional cryptographic protections as specified by clauses 5 and 6 in TS 33.180 [3]. Assuming these protocols, e.g. IPsec, are migrated to quantum-safe alternatives, this mitigates the risk of a passive attacker being able to harvest keys from the UE-to-MCX server interface. 
There are further built-in protections for on-network access such as secure authentication to the network which further limit what an adversary can do with a forged signature on an I_MESSAGE.
Internal MCX interfaces over which I_MESSAGEs may be transferred may be protected by mTLS. This is currently optional but could be made mandatory.
It is also possible to re-use a security context established on-network when communicating off-network. Deployments could consider prohibiting off-network exchanges as one mitigation without further changes to the protocol.
All of the above is either within the standard already, or a configuration/policy for the UE. Further mitigations could be developed either as part of the standards or as informative text. There is a gap in the off-network case however this is currently out of scope.
Editor’s Note: Whether further mitigations for the off-network case can be considered is FFS.
[bookmark: _Toc215135182]7.2.2.1.3		Evaluation
Editor’s Note: This clause is FFS.
This solution demonstrates some mitigations are likely to be available to address the risk from the fact that traditional Identity-Based Encryption (e.g. MIKEY-SAKKE) cannot meet PQC requirements for security and implementation and has no solution nor roadmap to do so.  Note that identity-based encryption is not applicable to the core cellular network and therefore this shortcoming has no impact to the PQC needs of the core network.
It does however specifically impact the security of the mission critical application.  With this in mind, a separate and detailed analysis of a suitable replacement and improvements to this mitigation strategy for MIKEY-SAKKE for the mission critical application is recommended.  The analysis should take into account the mission critical security architecture and its related security requirements, KPIs, QoS requirements, interfaces, services, and supporting confidentiality protection mechanisms.
[bookmark: _Toc211952268][bookmark: _Toc211952211][bookmark: _Toc211952253]7.3	Overall Evaluation
Editor’s Note: This clause contains evaluation of all solutions. 
[bookmark: _Toc50473330][bookmark: _Toc50539651][bookmark: _Toc54638284][bookmark: _Toc54638778][bookmark: _Toc54639660][bookmark: _Toc57131729][bookmark: _Toc66304861][bookmark: _Toc68084423][bookmark: _Toc211952241]7.3.1	Evaluation of solutions for SUCI calculation
7.3.1.1	Grouping of solutions 
The solutions for SUCI calculation can be grouped as follows, based on underlying principles and cryptographic algorithms used: 
· Group A - Standalone PQC: Sol#2, Sol#7, Sol#9, Sol#16
· Group B - Hybrid PQC: Sol#3, Sol#8, Sol#7, Sol#10, Sol#12, Sol#17, Sol#18, Sol#19,
· Group C: Hybrid Nested PQC: Sol#11, Sol#20, Sol#21, Sol#22, Sol#23
· Group D: Symmetric Cryptography: Sol#4, Sol#13, Sol#14, Sol#15
· Group E: Quantum Channel: Sol#5, Sol#6
· Group F: Profile Selection: Sol#1
· 
Editor’s Note: More description is FFS, if needed. 
Group A: Standalone PQC Scheme
· Methodology: The solutions replace the ECDH function in the ECIES scheme with a PQ KEM (e.g. ML-KEM).
Group B: Hybrid PQC Scheme
· Methodology: The solutions use a KEM combiner to combine a PQ KEM (e.g. ML-KEM) and a traditional key agreement scheme (e.g., based on ECDH). The shared secret for encrypting the SUPI is derived from the output of the KEM combiner.
Group C: Hybrid Nested PQC Scheme
· Methodology: The solutions use nested encryptions. The order of encryption varies. One solution first encrypts parts of a SUPI using ECIES. Then it re-encrypts the final output of the ECIES scheme using a key derived with a PQ KEM. Other solutions first encrypt parts of a SUPI using a key derived with a PQ KEM and then re-encrypt the encrypted SUPI using the ECIES scheme.
Group D: Symmetric Cryptography Scheme
· Methodology: The solutions avoid asymmetric cryptography and use pre-shared secret keys. 
Group E: Quantum Channel Scheme
· Methodology: it relies on "Quantum Channels" and "Quantum Public Keys" to protect the ciphertext. 
Group F: Profile Selection scheme
· Methodology: Solutions which are not part of SUCI calculation solution.

Editor’s Note: regrouping is FFS based on evaluation criteria. 

[bookmark: _Toc157853547][bookmark: _Toc211892505][bookmark: _Toc211951799][bookmark: _Toc215135183]8	Conclusions
Editor’s Note: This clause contains agreed conclusions and any normative work is recommended.
It is agreed to consider the following principles for the normative work:
-	The KEM-based key exchange related protocols for IKEv2 on transitioning PQC in  RFC 9370 [44], RFC 9242[43], and RFC 7383[49] can be specified.
Editor’s Note: Further conclusion is FFS.
It is concluded that PQC transition issue for MIKEY-SAKKE key exchange will not be addressed in the present document.
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