3GPP TR 33.714 V0.32.0 (20252026-0211)
14
Release 20

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 33.714 V0.32.0 (20252026-0211)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on Security Aspect of Support for Ambient Power-Enabled Internet of Things Phase 2
[bookmark: specRelease] (Release 20)

		

	

	

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

[bookmark: _MON_1684549432]
	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
https://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2025, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	5
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.3	Abbreviations	8
4	Key issues	8
4.1	Key Issue #1: Authorization of intermediate UE for 5G Ambient IoT services	8
4.1.1	Key issue details	8
4.1.2	Security threats	9
4.1.3	Potential security requirements	9
4.2	Key Issue #2: Authentication for AIoT devices	9
4.2.1	Key issue details	9
4.2.2	Security threats	9
4.2.3	Potential security requirements	9
4.3	Key Issue #3: Protection of information to support DO-A Capable AIoT Devices during AIoT service communication	9
4.3.1	Key issue details	9
4.3.2	Security threats	10
4.3.3	Potential security requirements	10
4.4	Key Issue #4: DO-A capable AIOT device ID protection	10
4.4.1	Key issue details	10
4.4.2	Threats	10
4.4.3	Potential security requirements	10
4.5	Key Issue #5: Amplification of resource exhaustion by exploiting AIoT paging messages	10
4.5.1	Key issue details	10
4.5.2	Security threats	11
4.5.3	Potential security requirements	11
5	Solutions	11
5.0	Mapping of solutions to key issues	11
5.1	Solution #1: Information protection after registration	11
5.1.1	Introduction	11
5.1.2	Solution details	12
5.1.2.1	Registration procedure	12
5.1.3	Evaluation	12
5.2	Solution #2: Protection of information during AIoT service communication	13
5.2.1	Introduction	13
5.2.2	Solution details	13
5.2.3	Evaluation	13
5.3	Solution #3: Protecting information for DO-A communication	13
5.3.1	Introduction	13
5.3.2	Solution Details	14
5.3.3	Evaluation	15
5.4	Solution #4: ID privacy based on stored type T-ID	15
5.4.1	Introduction	15
5.4.2	Solution details	15
5.4.3	Evaluation	16
5.5	Solution #5: Privacy-preserving device identification responding to group paging using AICI	16
5.5.1	Introduction	16
5.5.2	Solution details	16
5.5.3	Evaluation	18
5.6	Solution #6: Privacy-preserving group paging using Bloom filter	19
5.6.1	Introduction	19
5.6.2	Solution details	19
5.6.3	Evaluation	20
5.7	DO-A Capable AIoT device identifier protection with Bloom filter	20
5.7.1	Introduction	20
5.7.2	Solution details	21
5.7.2.1	Procedure	21
5.7.2.2	Tag generation	22
5.7.3	Evaluation	22
5.8	Solution #8: SUCI	22
5.8.1	Introduction	22
5.8.2	Solution details	22
5.8.3	Evaluation	22
5.Y	Solution #Y: <Solution Name>	23
5.Y.1	Introduction	23
5.Y.2	Solution details	23
5.Y.3	Evaluation	23
6	Conclusions	23
Annex <X>: Change history	23

[bookmark: foreword][bookmark: _Toc214976908]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall	indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should	indicates a recommendation to do something
should not	indicates a recommendation not to do something
may	indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can	indicates that something is possible
cannot	indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: scope][bookmark: references][bookmark: _Toc214976909][bookmark: _Toc214976910]
1	Scope
Editor’s Note: This clause is going to capture the scope of this study.
This present document aims to identify potential threats and security requirements to support additional features for AIoT in Rel-20. Specifically,
· Security aspects of concluding on authorization of intermediate UE for AIoT services in Topology 2
Editor’s note: which types of AIoT device are in the scope of topology 2 is FFS.
NOTE 1: AIoT device Type 1 is restricted to isolated private network.
[bookmark: _Hlk214576725]Editor’s note: The aspect outlined in NOTE 1 needs to be reflected in the AIoT phase 2 Study Item update.
· Security aspects to support DO-A Capable AIoT Devices
· Identifies potential threats and new security requirements
· Security mechanisms to support DO-A type AIoT communications in order to fulfil the identified security requirements
· Security aspects of the AIOT system for public networks
· Applicability of security requirements and procedures developed in TS 33.369 for isolated private networks will be re-assessed for Rel-20 AIoT system for public network
·
· NOTE 2:	For AIoT device credentials storage and processing in public networks, the guidance in SP-250852 will be followed. For Rel-20, if the AIoT system is defined as public network i.e. PLMN, the AIoT device credentials storage shall use UICC.
· Editor’s Note: Guidance given in SP-250852 will be copy pasted in NOTE 2 to replace the reference to SP-250852.
NOTE 3: SNPN will follow the requirements for credentials storage and processing in TS 33.369.
2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TR 23-700-13: "Study on Architecture Support of Ambient power-enabled Internet of Things".
[3]	3GPP TR 38.848: "Technical Specification Group Radio Access Network; Study on Ambient IoT (Internet of Things) in RAN".
[4]	3GPP TR 23700-30: "Study on Architecture support of Ambient power-enabled Internet of Things (AIoT); Phase 2".
[5]					3GPP TR 38.769: "Study on solutions for Ambient IoT (Internet of Things) in NR".
[6]	3GPP TS 22.369: "Service Requirements for ambient power-enabled IoT".
[7]	3GPP TS 23.369: "Architecture support for Ambient power-enabled Internet of Things; Stage 2".
[8]	3GPP TS 33.369: "Security aspects of Ambient Internet of Things (AIoT) services for isolated private networks".
[9]	3GPP TS 33.501: "Security architecture and procedures for 5G System".
[10]	3GPP TR 33.713: "Study on Security Aspect of Ambient IoT Services in 5G"
[11]	3GPP TS 33.102: "3G Security; Security architecture"
[12]	3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)"
[13]	3GPP TS 23.003: "Numbering, addressing and identification"
[bookmark: definitions][bookmark: _Toc214976911]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc214976912]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc214976913]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc214976914]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
<ABBREVIATION>	<Expansion>

[bookmark: clause4]
[bookmark: _Toc205543646][bookmark: _Toc214976915]4	Key issues
Editor’s Note: This clause contains all the key issues identified during the study.
[bookmark: _Toc214976916][bookmark: _Toc209106802][bookmark: _Toc209957928]4.1	Key Issue #1: Authorization of intermediate UE for 5G Ambient IoT services
[bookmark: _Toc214976917]4.1.1	Key issue details
In TR 23.700-13 [2], Key Issues #1 and #3 describe the issues on the system architecture and procedure to support 5G Ambient IoT services, furthermore TR 23.700-30 [4], KI#1 describes the issues on the support AIoT services under the RRC-based option for UE Reader connectivity.
The architecture for topology 2 is defined in TR 23.700-13 [2] clause 8.1.3 which forms the baseline for the release 20.
In the Topology 2 as defined in TR 38.848 [3], the UE is acting as the intermediate node responsible for transferring the information between AIoT device and 5GS. If the authorization and authentication of the intermediate node is not supported, the attacker can play the role of an intermediate node and arbitrarily deny 5G AIoT service to the AIoT device.
Therefore, it is necessary to study how to authorize a UE for acting as the intermediate node i.e an AIoT reader.
[bookmark: _Toc214976918]4.1.2	Security threats
If the 5GC do not authorize the UE acting as an intermediate node, the attacker UE may misuse the Ambient IoT services provided by the core and hereby impersonate an authorised intermediate node.
Editor’s Note: The threats may be refined based on SA2 agreed procedures.
[bookmark: _Toc214976919]4.1.3	Potential security requirements
The 5GS shall be able to support the authorization of the AIoT capable UE as an intermediate node.
Editor’s Note: Requirements are FFS.
[bookmark: _Toc214976920]4.2	Key Issue #2: Authentication for AIoT devices
[bookmark: _Toc214976921]4.2.1	Key issue details
DO-A capable AIOT devices can inform the network of their presence and send data to the AIOTF autonomously. The TR 23.700-30 [4] studies the architecture framework and procedure for DO-A capable AIoT devices, including the device initiated registration-like procedure and data transfer procedure.
With the capability of providing information autonomously, the existing security mechanisms (e.g. authentication procedure) specified for DT capable AIoT devices need be enhanced to accommodate DO-A use cases. The authentication between the DO-A capable AIoT device and the network is required upon device-initiated communication to validate each other’s identities. Otherwise, the attacker may impersonate the victim device and send fake identification to the network side.
Therefore, it is necessary to study how to perform authentication between the AIoT device and network, addressing risks such as impersonation.
NOTE 1:	For AIoT device credentials storage and processing in public networks, the AIoT device credentials storage will use UICC. The exact form factor of UICC, i.e. whether it is removable, non-removable or integrated is out of scope of 3GPP.
[bookmark: _Toc214976922]4.2.2	Security threats
An attacker may impersonate the victim AIoT device and report fake identification to the network side. If the billing is based on per AIoT device’s identity, the fake identity may lead to charging problem. This can be used by an adversary to steal an AIoT device by replacing the AIoT device with a fake device, which might cause a loss to the owner of the device.
An attacker can impersonate a legitimate network and communicate with AIoT device.
[bookmark: _Toc214976923]4.2.3	Potential security requirements
The 5G system shall provide a means to perform mutual authentication between the DO-A capable AIoT device and the network.
NOTE 2: AIoT device Type 1 is restricted to isolated private network.
Editor’s Note: The aspect outlined in NOTE 2 needs to be reflected in the AIoT phase 2 Study Item update.
[bookmark: _Toc101349996][bookmark: _Toc167405391][bookmark: _Toc180278711][bookmark: _Toc180278887][bookmark: _Toc180279151][bookmark: _Toc180279625][bookmark: _Toc182841062][bookmark: _Toc182899142][bookmark: _Toc199248705][bookmark: _Toc214976924]4.3	Key Issue #3: Protection of information to support DO-A Capable AIoT Devices during AIoT service communication
[bookmark: _Toc101349997][bookmark: _Toc167405392][bookmark: _Toc180278712][bookmark: _Toc180278888][bookmark: _Toc180279152][bookmark: _Toc180279626][bookmark: _Toc182841063][bookmark: _Toc182899143][bookmark: _Toc199248706][bookmark: _Toc214976925]4.3.1	Key issue details
[bookmark: _Toc101349998]As per TS 22.369 [6], Ambient power-enabled IoT (AIoT) services aim to support various use cases, including inventory taking, sensor data collection, asset tracking, and actuator control. These services intended to operate with lower power consumption and complexity than the existing IoT technologies such as eMTC, NB-IoT, and RedCap. To fulfil these requirements, AIoT devices require a communication capability.
From a security perspective, security mechanisms to protect the information transmitted during AIoT service communication need to be supported. Failure to provide such security mechanisms will lead to various attacks such as eavesdropping, manipulation and/or unauthorized transmission of the information during AIoT service communication.
[bookmark: _Toc167405393][bookmark: _Toc180278713][bookmark: _Toc180278889][bookmark: _Toc180279153][bookmark: _Toc180279627][bookmark: _Toc182841064][bookmark: _Toc182899144][bookmark: _Toc199248707][bookmark: _Toc214976926][bookmark: _Toc101349999]4.3.2	Security threats
[bookmark: _Toc167405394][bookmark: _Toc180278714][bookmark: _Toc180278890][bookmark: _Toc180279154][bookmark: _Toc180279628][bookmark: _Toc182841065][bookmark: _Toc182899145][bookmark: _Toc199248708]In addition to the command operation (e.g., write, read) as specified in TS 23.369 [7], DO-A Capable AIoT Device can send data to the AIOTF autonomously. The following threats are still applicable:
An attacker may acquire data transmitted to/from AIoT devices by eavesdropping messages if the communication of AIoT service is not confidentiality protected.
An attacker may manipulate information during communication of AIoT service if the communication of AIoT service is not integrity protected.
An attacker may replay a message if replay protection is not activated.
[bookmark: _Toc214976927]4.3.3	Potential security requirements
The 5G system shall support a means to ensure confidentiality, integrity and/or replay protection of information transmitted between DO-A Capable AIoT Device and the network.
[bookmark: _Toc104221074][bookmark: _Toc167405387][bookmark: _Toc180278707][bookmark: _Toc180278883][bookmark: _Toc180279147][bookmark: _Toc180279621][bookmark: _Toc182841058][bookmark: _Toc182899138][bookmark: _Toc199248701][bookmark: _Toc214976928][bookmark: _Hlk209199047]4.4	Key Issue #4: DO-A capable AIOT device ID protection
[bookmark: _Toc104221075][bookmark: _Toc167405388][bookmark: _Toc180278708][bookmark: _Toc180278884][bookmark: _Toc180279148][bookmark: _Toc180279622][bookmark: _Toc182841059][bookmark: _Toc182899139][bookmark: _Toc199248702][bookmark: _Toc214976929]4.4.1	Key issue details
[bookmark: _1fob9te]For AIoT device type 1, all communications between the network and the AIOT device are initiated by the network. Unlike AIOT device type 1, the DO-A AIOT device could autonomously initiate communication by sending a message to the network. Due to this change, privacy mechanisms specified in TS 33.369[8] for AIOT device type 1 may not be feasible for DO-A AIOT devices. Therefore, mechanisms for privacy of device ID of DO-A AIOT device contained in the message(s) exchanged between the device and the network should be studied.
[bookmark: _Toc104221076][bookmark: _Toc167405389][bookmark: _Toc180278709][bookmark: _Toc180278885][bookmark: _Toc180279149][bookmark: _Toc180279623][bookmark: _Toc182841060][bookmark: _Toc182899140][bookmark: _Toc199248703][bookmark: _Toc214976930]4.4.2	Threats
An attacker can identify, monitor and track a DO-A AIoT devices based on the identifiers associated with the AIoT device if the identifiers are not privacy protected.
[bookmark: _Toc104221077][bookmark: _Toc167405390][bookmark: _Toc180278710][bookmark: _Toc180278886][bookmark: _Toc180279150][bookmark: _Toc180279624][bookmark: _Toc182841061][bookmark: _Toc182899141][bookmark: _Toc199248704][bookmark: _Toc214976931]4.4.3	Potential security requirements
The 5G system shall support mechanisms to prevent privacy threats (e.g., identifying, linking, and tracking) against the identifier of the DO-A capable AIOT device(s).
[bookmark: _Toc214976932]4.5	Key Issue #5: Amplification of resource exhaustion by exploiting AIoT paging messages
[bookmark: _Toc214976933]4.5.1	Key issue details
Paging of AIoT devices is different than "regular" paging of regular UEs. In AIOT, one single paging message coming from the reader/network can be used to trigger multiple devices to respond by using, for example, a mask/filter based on target device identification, or by a group ID of the target devices. Once the target devices are triggered, the reader, core network of the PLMN, and the associated AF participate in various steps to accomplish the intended tasks, e.g., inventory reporting and command executing. Unlike regular paging, AIOT paging can happen for devices that are not necessarily already registered in the core network and hence cannot share a session security context with the network.
The paging message can include information that the devices and core network of the PLMN can use in successful accomplishment of these tasks in those steps. Therefore, if parts of or the whole paging message is corrupted, the core network of the PLMN and the AF can end up wasting computational resources that leads to no successful accomplishment of the intended tasks. Moreover, the corrupted paging message results in waste of radio resources being used by AIOT over the air interface as well.
The above can be used by an adversary that intentionally corrupt the paging message in a way so that many legitimate AIOT devices are triggered by the corrupted paging message, but later, in the core network of the PLMN or in the AF, the responses from the AIOT devices are found invalid. This happens not because the devices computed wrong responses, but because the devices used corrupted paging message in computing their responses. Such an attack can cause the PLMN and the AF wasting computational resources. It also causes the AIOT reader wasting radio resources that can adversely impact the regular UEs in the same network.
If devices respond to a corrupted paging message, that should be identified as early as possible, and the responses should not be forwarded any further to the core network or to the AF.
[bookmark: _Toc214976934]4.5.2	Security threats
An adversary can cause the core network of a PLMN or the AF wasting computational resources by corrupting or spoofing one single paging message, which is surprisingly little work on the adversary’s behalf, that triggers a lot of devices to send a paging response to the legitimate reader.
The above attack can also cause the AIOT reader and serving NG-RAN node wasting radio resources that can adversely impact the regular UEs in the same network.
[bookmark: _Toc214976935]4.5.3	Potential security requirements
Editor’s Note: Potential security requirements are FFS
[bookmark: _Toc214976936]5	Solutions
Editor’s Note: This clause contains the proposed solutions addressing the identified key issues.
[bookmark: _Toc205543652][bookmark: _Toc214976937]5.0	Mapping of solutions to key issues
Editor’s Note: This clause captures mapping between key issues and solutions.
Table 5.1-1: Mapping of solutions to key issues
	
	Key Issues

	Solutions
	1
	2
	3
	4
	5

	1
	
	
	X
	
	

	2
	
	
	X
	
	

	3
	
	
	X
	
	

	4
	
	
	
	X
	

	5
	
	
	
	X
	

	6
	
	
	
	X
	

	7
	
	
	
	X
	

	8
	
	
	
	X
	

	9
	
	X
	
	
	

	10
	
	X
	
	
	

	11
	
	X
	X
	
	

	12
	
	X
	
	
	

	13
	
	X
	
	
	

	14
	
	X
	
	
	

	15
	
	X
	
	X
	

	16
	
	
	X
	
	

	17
	
	
	X
	
	

	18
	
	
	
	X
	

	19
	
	
	
	X
	

	20
	
	
	
	X
	

	21
	X
	
	
	
	

	22
	X
	
	
	
	

[bookmark: _Toc214976938][bookmark: _Toc205543653]5.1	Solution #1: Information protection after registration
[bookmark: _Toc214976939]5.1.1	Introduction
This solution addresses KI#3.
[bookmark: _Toc214976940]5.1.2	Solution details
[bookmark: _Toc207946676][bookmark: _Toc214976941]5.1.2.1	Registration procedure
The following figure depicts the AIoT registration procedure to activate information protection.

Figure 5.1.2.1-1: AIoT registration procedure
1.	AIoT device sends initial Register Request (Device ID, Device security capabilities) towards AIoTF.
Editor’s Note:	How to protect security capabilities is ffs.
Editor's Note: Alignment with SA2 is FFS.
NOTE:	Protection of device ID is out of this solution.
2.	AIoTF sends Authentication Request (Device ID) towards ADM.
3.	AIoT device, AIoTF and ADM performs authentication procedure proposed for KI#2, e.g., using 5G AKA or EAP-AKA'.
4.	After successful authentication, AIOTF derives KCOMM_ENT and KCOMM_INT from agreed key during authentication procedure (e.g., KAIOTF) for the AIoT device. AIoT device derives KCOMM_INT and KCOMM_ENC from KAIOTF same way as AIOTF does.
Editor’s Note:	Clarification on KAIOTF derivation on AIoT device is ffs.
5.	AIOTF selects integrity and confidentiality algorithm based on Device security capabilities and algorithm priority list. The AIOTF generates the Register Response and integrity protects the Register Response with the KCOMM_INT and selected integrity algorithm, then partially encrypts the Registration Response with the KCOMM_ENC and selected confidentiality algorithm with the selected algorithms in clear text. The AIOTF sends the protected Register Response to AIoT device, and starts ciphering/deciphering (i.e., the Registration Response also is for NAS Security Mode Command).
	AIoT device integrity checks the protected Register Request, and if successful, decrypts the protected Register Response then starts ciphering/deciphering and integrity protection.
[bookmark: _Toc214976942]5.1.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
TBD
[bookmark: _Toc214976943][bookmark: _Toc214976947][bookmark: _Toc214976951]5.2	Solution #2: Protection of information during AIoT service communication
[bookmark: _Toc214976944]5.2.1	Introduction
This solution addresses key issue#3 on protection of information during AIoT service communication. The solution reuses the security mechanisms for NAS protection from TS 33.501 [9] modulo some simplifications in order to avoid the need for an additional security activation procedure. By comparison to the mechanisms specified in TS 33.369 [8], the solution introduces a security context and the counters for replay protection. This is because the solution assumes that the device may receive multiple successive commands after authentication. The solution assumes also that the AIOTF is the termination point for information protection.
[bookmark: _Toc214976945]5.2.2	Solution details
It is assumed that following a successful authentication procedure, the device and the network derive a session key called KAIOTF, for example in a similar manner to the procedure in TS 33.369 [8]. The device stores this key as part of the security context until a new authentication run. The authentication procedure is not covered in this solution and is left to other solutions addressing key issue #2. AIOTF is required to maintain security context.
Editor's Note: Unlike Rel-19, whether AIOTF has to maintain security contexts is FFS.
In addition to the session key, both the device and the network maintain a pair of downlink and uplink counters for replay protection similarly to the NAS COUNTs specified in TS 33.501 [9]. The counters are maintained and updated similarly to how it is done for the NAS COUNTs in TS 33.501 [9], i.e., following a successful integrity check.
In order to avoid an additional round trip of message to agree on the security algorithms, the selected ciphering and integrity protection algorithms are indicated in the downlink NAS message (e.g., command request) by the network to the device. The selected algorithm is maintained in the security context.
Editor’s Note: Whether the indications are included in every command or the first one is FFS.
NOTE: The format of the indications for algorithm selection (e.g., one bit or several bits) can be decided accordingly when the algorithms are decided.
In order to cater for a potential loss of the NAS response message (e.g., command response), the network keeps including the selected algorithm indications until the successful reception of a NAS response message, in which case the network stores the selected algorithms as part of the security context.
For the protection algorithms, the solution assumes that the AIOTF and device supports one or several of the algorithms specified in Annex D of TS 33.501 [9]. The solution does not take a stand on which and how many algorithms are to be supported.
The lower level security keys KCommand_enc and KCommand_int are derived from the session key based on the signalled algorithms and are stored as part of the security context both on the device and the network side.
When the security context is available, the DO-A device sends protected uplink NAS message including the DO-A data. The security context can be used for protection of downlink NAS message as well.
[bookmark: _Toc214976946]5.2.3	Evaluation
This solution addresses key issue#3 on protection of information during AIoT service communication. The solution assumes the AIOTF is the termination point for information protection. The device may communicate multiple NAS messages following a successful authentication procedure.
The device and AIOTF are required to store the security context parameters including a pair of counters, security keys and potentially selected algorithms. On the NAS interface, the solution introduce additional IEs including a MAC tag, a NAS COUNT (e.g., 8 least significant bits).
Editor’s Note: whether the solution aligns with SA2 conclusion is FFS.
TBD
5.3	Solution #3: Protecting information for DO-A communication
[bookmark: _Toc214976948]5.3.1	Introduction
KI#3 describes the need to “support a means to ensure confidentiality, integrity and/or replay protection of information transmitted between DO-A Capable AIoT Device and the network.” This solution intends to fulfill this requirement.
The solution makes the following assumption:
	- DO-A communication is a new procedure (e.g., not re-using the inventory-and-command procedure)
	- DO-A device does not need to register with the network but also works with registration of the device to the network.
	- DO-A device and the network have a pre-shared key (e.g., Kaiot_root or Kaiotf as a result of a previous authentication, either through a registration procedure or an inventory-and-command procedure)
- DO-A device and the network maintain two counters (one network counter and one device counter) that starts with 0 and are incremented every time DO-A device sends data
In this solution, the AIoT DO-A device uses its pre-shared key to generate a set of protection keys, use the protections keys to encrypt and integrity the DO-A data before sending the data in a protected NAS container to the network.
[bookmark: _Toc214976949]5.3.2	Solution Details

1. DO-A device has having data to send and may initiates an AIoT DO-Aa data transmission request (if supported) to NG-RAN. If such data transmission request is not supported, DO-A device proceeds to perform Step 2.
1a. NG-RAN sends AIoT DO-A data transmission to AIOTF if a supported AIoT DO-A data transmission request is received.
1b. If AIOTF does not already have the DO-A AIoT device context (e.g., Kaiotf or device counter value), AIOTF and ADM performs an AIOTF key retrieval procedure for the DO-A AIoT device by using a key identification scheme as described in TS 33.501[9] for maintaining security context between DO-A AIoT device and ADM. AIOTF takes the current values of the device counter and network counter and derives set of keys Kdo-a_enc and Kdo-a_int using either the Kaiot_root or Kaiotf (if Kaiotf exists for example, due to a prior authentication procedure). Key derivation function can reuse Annex A.3 or A.4 of TS 33.369[8]. Step 1b may also take place after Step 4 if Steps 1 and 1a are not performed or needed.
2. DO-A device prepares for the data to be protected. DO-A device takes the current values of the device counter and network counter and derives set of keys Kdo-a_enc and Kdo-a_int using either the Kaiot_root or Kaiotf (if Kaiotf exists for example, due to a prior authentication procedure). Key derivation function can reuse Annex A.3 or A.4 of TS 33.369[8]. Furthermore, the DO-A device constructs a AIOT NAS Container and protect the message based on the Kdo-a_enc and Kdo-a_int and the confidentiality and integrity algorithms for the AIoT device that has been pre-configured. The AIOTF shall send the protected Command Request containing an indication on whether ciphering is activated to NG-RAN. DO-A device increments the locally kept device counter and network counter by 1.
Editor’s Note: How a AIoT device protects the message is FFS.

3. The DO-A device sends a D2R message containing the protected AIOT NAS Container to the NG-RAN.
4.The NG-RAN forwards the protected AIOT NAS Container to the AIOTF.
5.The AIOTF processes the protected AIOT NAS Container. If the verification of integrity is successful, the AIOTF then deciphers the protected AIOT NAS Container if ciphering is activated. AIOTF increments the device counter and network counter by 1.
6. The AIOTF forwards the processed data to the AF.
Editor’s Note: The need for the first message is FFS.
Editor’s Note: How AIOTF looks up the key for the DO-A device is FFS.
[bookmark: _Toc214976950]5.3.3	Evaluation
TBD.
The solution relies on security context established between DO-A device and network to protect information being sent to the network. Key identification scheme described in TS 33.501[9] can be used for security context maintenance between the DO-A device and network. Since security context is established as a result of a previous authentication between the DO-A device and the network, the DO-A data is protected. As a result, the requirements as described in KI#3 are fulfilled.
Editor’s Note: How a key identification scheme in TS 33.501[9] can be used for AIOTF key retrieval is FFS.
5.4	Solution #4: ID privacy based on stored type T-ID
[bookmark: _Toc214976952]5.4.1	Introduction
This solution addresses KI#4.
This solution proposes to reuse T-ID update method of release 19 as much as possible. In release 19, two T-ID types are defined: concealed and stored. This solution propose to reuse stored type T-ID and corresponding update method.
[bookmark: _Toc214976953]5.4.2	Solution details
The following figure depicts the AIoT device ID protection based on stored type T-ID.

Figure 5.4.2-1: AIoT Device ID protection based on stored type T-ID
1.	AIoT device is preconfigured with initial T-ID (i.e. T-ID0), which can be derived from AIoT device permanent ID. The ADM also stores the initial T-ID for the AIoT device. After some registration procedures, the initial T-ID has been updated to T-IDn.
Editor’s Note:	How to pre-configure the initial T-ID is ffs.
Editor’s Note:	How the solution applies to the T-ID variants as defined in TS 33.369 is FFS.2.	AIoT device sends initial Register Request (T-IDn) towards AIOTF.
3.	AIoTF sends Authentication Request (T-IDn) towards ADM.
4.	AIoT device, AIOTF and ADM performs authentication procedure.
5-7.	If authentication succeeds, AIOTF retrieves new T-ID from ADM as described in step 10 of clause 5.4.3 in TS 33.369 [8].
8.	As described in steps 2 and 3 of clause 5.4.3 in TS 33.369 [8] with exception that the AIOTF sends Register Response with the T-ID handling information to AIoT device.
Editor’s Note:	Update on usage of the same T-ID between registration is ffs.
9.	As described in "after step 10" of clause 5.4.3 in TS 33.369 [8].
The T-IDn+1 is used for successive initial registration procedure.
[bookmark: _Toc214976954]5.4.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
Editor’s Note:	Evaluation of T-ID storage on device side in de-registration state is ffs.
TBD
[bookmark: _Toc214976955][bookmark: _Toc180278849][bookmark: _Toc180279024][bookmark: _Toc180279291][bookmark: _Toc180279770][bookmark: _Toc182841214][bookmark: _Toc182899295][bookmark: _Toc208305371]5.5	Solution #5: Privacy-preserving device identification responding to group paging using AICI
[bookmark: _Toc214976956]5.5.1	Introduction
This solution addresses KI#4: AIOT device ID protection in DO-A procedure. The solution describes how a device identifies itself to the network in response to a group paging message, when the device does not have an established session or registered state with the network. The solution uses AIoT Concealed Device Identifier (AICI) generated by concealing the AIoT device’s long-term identifier. Compared to the procedure in TS 33.369, this solution is expected to reduce the computation overhead at the network, since the network does not need to compare the RES with the XRES for all devices of the group.The AICIs are pre-computed by the network using a public key of the network — the encryption algorithm to produce an AICI is randomized, i.e., each AICI is different even when the long-term identifier of the device is the same.
The solution proposes that in response to a group paging message, the AIoT device sends a message to the network that includes an AICI. The solution proposes that the 5G network computes an AICI and provide the AICI to the AIoT device in a command message. Once a network authenticates an AIoT device, the network can send a command message to the AIoT device. In the command message, the network includes a new AICI, which is computed based on the long-term identifier of the AIoT device using the public key of the network. The downlink command message is both confidentiality and integrity protected using keys derived from the shared key KAIOT_root between the network and the AIoT device.
[bookmark: _Toc214976957]5.5.2	Solution details
[bookmark: _Hlk214975120]Figure 5.5.2-1 presents a high-level message flow of the solution. The figure is described step-by-step in the following:
In Step 0, the ADM provides the AIOTF necessary information to page a group of devices — e.g., an identifier identifying a group (let us call it a group identifier) and an authentication challenge.
NOTE 1: How the network creates a group identifier and how a device checks if the device belongs to the group identified by the group identifier is out of scope of this solution. Instead, this solution assumes a group identifier is used in group paging. In TS 33.369, the same purpose is served by using filtering information.
In Step 1, the AIOTF sends a paging request to the AIoT reader/gNB by including the information necessary for group paging — for example, a group identifier and the authentication challenge RANDAIOT_n.
In Step 2, the AIoT reader/gNB broadcasts a paging message that includes the group identifier and the authentication challenge RANDAIOT_n.
In Step 3, The device checks if it is part of the group identified by the group identifier. If the device belongs to the group, it generates another authentication challenge RANDAIOT_d, then the device computes the authentication challenge response RES based on authentication challenges RANDAIOT_n and RANDAIOT_d, using the shared key KAIOT_root with the network. The device first checks if it has a network-provided AICI or not — if it does not have a network provided AICI, then it computes AICI using a null scheme.
In Step 4, The device sends a response to the AIoT reader. The device includes an AICI, RANDAIOT_d, and RES in the response.
In Step 5, the AIoT reader/gNB forwards the response received in Step 4 to AIOTF.
In Step 6, the AIOTF forwards the message received in Step 5 to ADM.
In Step 7, the ADM deconceals AICI into long-term identifier — using the private key corresponding to the public key the network used to conceal the AICI when it sent the AICI to the device earlier. Then the device checks, authentication challenges RANDAIOT_n and RANDAIOT_d using the shared key KAIOT_root for the device, wheter response to authentication challenge RES is valid. The ADM computes a new AICI´ using the key used for computing AICI (i.e., the public key of the network), and derives a session key KAIOTF from the shared key KAIOT_root for device to protect a downlink command message
In Step 8, the ADM forwards the device’s long-term ID, AICI´ and KAIOTF to the AIoTF.
In Step 9, the AIOTF generates two keys KCommand_enc and KCommand_int, and prepares a command message that includes AICI´, encrypts the command message using KCommand_enc and computes a MAC of the encrypted command message using the key KCommand_int.
In Step 10, the AIOTF forwards the encrypted command message to the AIoT reader/gNB.
In Step 11, the AIoT reader/gNB forwards the encrypted command message and the MAC to the AIOT device.
In Step 12, the device derives key KAIOTF from the shared key KAIOT_root, and derives keys KCommand_enc and KCommand_int from KAIOTF in the same manner as in ADM, validates MAC using KCommand_int and decrypts command message using KCommand_enc, and updates AICI with AICI´

Figure 5.5.2-1: Procedure for using AICI in response to group paging and delivering an AICI to an AIoT Device
Exact content of the messages exchanged, and details about authentication challenge, computing response RES to the challenge, and deriving the keys KCommand_enc and KCommand_int are not described because these details have to be adjusted with the authentication protocol that is finally agreed.
NOTE 2: If the AIoT device does not have a network-computed AICI, for example, in the very first time of the device’s life cycle, then the AIoT device computes AICI using null scheme. This happens only in the beginning. To avoid using null scheme in the first time, a network can choose to provision every AIoT device with a network-computed AICI before they are handed out to their users.
NOTE 3: AICI is not stored in the network. Instead, the network decrypts AICI. On the other hand, a device accepts an AICI only if it is computed by the legitimate home network — hence a device cannot obtain an AICI that the network won’t recognize. Therefore, any question about AICI synchronization is not relevant.
NOTE 4: The solution requires AIoT devices to have the capability to update and store AICI.
[bookmark: _Toc214976958]5.5.3	Evaluation
The solution assumes that group paging is used to page DO-A capable devices that are not registered to the network.
Editor’s Note 1: Further Evaluation is FFS
[bookmark: _Toc214976959][bookmark: _Toc214976963][bookmark: _Hlk220407700]5.6	Solution #6: Privacy-preserving group paging using Bloom filter
[bookmark: _Toc214976960][bookmark: _Toc180278850][bookmark: _Toc180279025][bookmark: _Toc180279292][bookmark: _Toc180279771][bookmark: _Toc182841215][bookmark: _Toc182899296][bookmark: _Toc208305372]5.6.1	Introduction
This solution addresses KI#4: AIOT device ID protection in DO-A procedure. The solution uses a Bloom filter to page a group of devices. First the network generates privacy-preserving concealed identifiers for every device in the group to be paged. Then the network inserts the privacy preserving concealed identifiers into a Bloom filter, and sends the Bloom filter as a compressed paging identifier as part of the paging message.
[bookmark: _Toc214976961][bookmark: _Toc191304887][bookmark: _Toc208305373]5.6.2	Solution details
The proposed solution is explained step-by-step in the following:
Step1. The AIOTF sends group identification information (e.g., Filtering Information) to the ADM for the group that the AIOT is intends to reach to.
[bookmark: _Hlk213150644]Step2. the ADM computes a concealed temporary identifier CT-ID for each device in a group (let us call the group G) using an identifier ID of the device, a key K_AIOT_rootKID associated with the device, and a freshness parameter RAND associated with the group using a hash function H:
CT-ID = H(long-term device ID, K_AIOT_root, RAND) for each device in G
It is noticeable that the freshness parameter RAND is not per device but remains the same for every device in the group G. The RAND can also be used as the authentication challenge to all the devices. Each time the ADM generates CT-IDs for a group of devices, the ADM chooses a fresh RAND.
Step3. After computing all the CT-IDs, the ADM forwards the CT-IDs and the RAND to the AIOTF.
Step4. The AIOTF inserts the CT-IDs in a Bloom filter B. A Bloom filter is a bit array of m bits and involves k hash functions (h1, …, hk) where each hash function hi has the range [0, m-1]. Insertion of CT-ID is done by setting the bit B[hi(CT-ID)] to 1 if it is not already set to 1, for all i in {1, … , k}.
Step5. The AIOTF sends the Bloom filter B to the AIOT Reader/gNB in a paging request message by including the freshness parameter/authentication challenge RAND, the size m of the Bloom filter B and integer k representing the number of hash functions involved in the Bloom filter B.
Step6. The AIOT Reader/gNB reader includes B, RAND, m, and k in a paging message and transmits the paging message over the air.
Step7. Every AIOT device receiving the paging message computes their own CT-ID in the same manner ADM computed in Step 2. Then the device checks if the computed CT-ID is included in the Bloom filter B by using the parameter m an k. The CT-ID is considered available in the Bloom filter by checking whether B[hi(CT-ID)] is set to 1, for all i in {1, … , k} — if all those bits are set to 1, then the CT-ID is included in the Bloom filter, otherwise C-TID is not not included. If the CT-ID is found to be available in B, then the device considers that the paging message is meant for the device.

Figure 5.6.2-1: Privacy-preserving group paging using Bloom filter.
A Bloom filter is probabilistic, it cannot have any false neagatives negatives but can have false positives, i.e., if a CT-ID is found to be not included in the Bloom filter, then it is truly not included. However, if a CT-ID is found to be included in the Bloom filter, then, with some measurable probability, it may be the case that the C-TID have actually never been inserted into the Bloom filter.
Let us consider that the number of C-TIDs inserted into the Bloom filter is n. Then, the probability p of false positives is computable as a function of m, k, and n, where p ≈ (1 – e-kn/m)k. Therefore, the efficiency of a Bloom filter in the context of group paging in AIoT depends on what values of m, k, and n can be chosen in a practically feasible manner.
[image: A graph of a number of device ids][image: A graph of a number of device ids inserted into the bloom filter][image: A graph of a number of device ids inserted into the bloom filter]
Figure 5.6.2-2: False positive rates using 1, 2, and 3 hash functions for varying Bloom Filter sizes (m = 500, 750, and 1000). Y-axis presents false positive rate 100*p(n) = 100*(1 – e-kn/m)k
Figure 5.6.2-2 shows the false positive rates using different values of m, k, and n. The figure shows that, with Bloom filters of size 500 bits and 3 hash functions, about 75 devices can be inserted in the Bloom filter while keeping the false positive rate about five percent. A single AIoT device ID can be 496 bits long. Therefore, if a paging message can accommodate a long-term identifier of one device, it should not have any problem of accommodating a 500-bit long Bloom filter.
Editor’s Note: Whether a Bloom filter can be constructed that can be accommodated within a constrained group paging message while maintaining acceptable false positive rate is FFS.
Device type 2b and C are about 100 times more powerful than device type 1. It is assumed device type 2b and C are able to compute about three hash functions to process a Bloom filter.
Editor’s Note: Whether the devices have sufficient resources (e.g., power and energy) to compute k number of hash functions to process a Bloom filter suitable to use in AIOT group paging is FFS.
Editor’s Note: Alignment of the solution with SA2-defined procedures is FFS.
[bookmark: _Toc214976962][bookmark: _Toc191304888][bookmark: _Toc208305374]Bloom filter-based privacy-preserving group paging can be more efficient than filtering information when the target group is relatively small. Bloom filter-based privacy-preserving group paging is not as efficient as filtering information when the size of the target group of devices is large.
5.6.3	Evaluation
Bloom filters, as used in this solution, can page a group of devices in a privacy preserving manner — it does not leak any bits of the long-term identifiers of the target devices.
Bloom filters of size (e.g., 500 bits long using three hash functions), which can be accommodated in a paging message, can be used to page about 75 devices while keeping false positive rate about five percent.
Bloom filter-based privacy-preserving group paging can be more efficient than filtering information when the target group is relatively small.
Bloom filter-based privacy-preserving group paging is not as efficient as filtering information when the size of the target group of devices is large.
Editor’s Note: Further Evaluation is FFS
5.7	Solution #7: DO-A Capable AIoT device identifier protection with Bloom filter
[bookmark: _Toc214976964]5.7.1	Introduction
The solution addresses Key Issue #4: AIOT device ID protection in DO-A procedure. The solution introduces a Bloom filter-based procedure, together with filtering information, to efficiently page multiple DO-A Capable AIoT devices while protecting identifier privacy.
In this solution, the ADM determines the actually paged target devices from the Tag, rather than processing every device included in the filtering information. As a result, the ADM only operates on the devices involved in the current paging round, which reduces unnecessary matching and lookup steps and lowers the overall processing overhead on the ADM side.
In addition, the proposed solution does not require the transmission of AIoT device permanent identifiers, thereby enhancing identifier privacy, enables the simultaneous paging of multiple AIoT devices in a single procedure, thereby reducing signalling load on the air interface and between network entities, supports the indication of multiple, non-related AIoT devices within a single fixed-length Tag, and prevents non-target devices from responding.
[bookmark: _Toc214976965]5.7.2	Solution details
[bookmark: _Toc214976966]5.7.2.1	Procedure
The purpose of this solution is to enable multiple inventory operations while protecting the AIoT device permanent identifier during the AIoT device inventory procedure.

Figure 5.7.2.1-1: Inventory procedure
0. Step 1-6 of clause 6.2.2 Procedure for Inventory or clause 6.2.3 Procedure for command in TS 23.369 [7] is performed.
1.The AIOTF sends the filtering information to the ADM.
2 The ADM generates a freshness parameter R and generates the TagN for indicating the target devices to be paged [see 5.7.2.1].
Editor’s Note: It is FFS that if and how freshness is added for TagN generation.
[bookmark: _Hlk220424725]3. The ADM sends the Tag, R to the AIOTF.
4.The AIOTF sends an inventory request message including the Tag and R and the filtering information to the NG-RAN.
5. NG-RAN includes the Tag and R and the filtering information in the paging request message to the AIoT device.
6. Upon receiving the paging request message, the AIoT device checks the device checks whether it is within the device range indicated by the filtering information. freshness of R, then the device computes a device-specific offset Δd using R and its KAIOT_root, derives the round-specific indices. If it is within the range, the device retrieves its bit indices. It considers itself paged only if the bit values at those indices in the Tag are all “1”, otherwise, it should ignore the paging message.
The AIoT device shall pre-store the Tag bit indices. In most use cases, 3 to 10 indices are sufficient. In practice, the optimal value can be calculated as k = (m / n) ln 2, where m is the Tag length, n is the number of target devices.
7. AIoT device sends D2R message to the NG-RAN.
8. NG-RAN sends Inventory report message to AIOTF.
9-10. [Optional] If the received AIoT Identification Information needs to be decrypted by ADM, the AIoTF sends the Tag and the filtering information to the ADM to fetch the device permanent identifier.
Editor’s Note: Whether a Bloom filter can be constructed that can be accommodated within a constrained group paging message while maintaining acceptable false positive rate is FFS.
Editor’s Note: The alignment with SA2 procedure (e.g. inventory, command) is FFS.
[bookmark: _Toc214976967]5.7.2.2	Tag generation
1. TagD generation
The following parameters shall be used to form the input S to the k KDFs:
-	FC = 0xNN,
-	P0 = Device permanent identifier,
-	L0 = length of Device permanent identifier,
The input key KEY shall be KAIOT_root. The P0 input is the stored AIoT device permanent identifier. The outputs of the k KDFs are denoted T1, T2, …, Tk.
The TagD of each device is an m-bit array (index range 0…m−1) that is initialized to all zeros. Each output Tj (for j = 1…k) shall be mapped to a bit index idxj as idxj = Tj mod m. The bit in TagD at index idxj shall be set to 1.
2. Round-specific offset and round-specific indices
For each AIoT device d in an inventory round, the ADM and the AIoT device derive a device-specific offset Δd from the freshness parameter R, where Δd=KDF (KAIOT_root, R). Given the pre-stored TagD indices of device, denoted as idx1, …, idxk, the round-specific indices are computed as: idxjR = (idxj +Δd) mod m. The TagR of each device is also an m-bit array (index range 0…m−1) that is initialized to all zeros. The bit in TagR at index idxjR shall be set to 1.
3. TagN constructed by the ADM
For all n target devices (i.e., device 1 to device n) in an inventory round, the ADM constructs TagN, its bit array is formed by performing a bitwise OR (union) on the set bits from the TagRD of each device.
4. The indices of TagD pre-stored in the device
Each AIoT device has pre-stored the bit indices of its own TagD, so that upon receiving a paging message carrying the TagN, it can directly check those positions in the TagN to determine whether it is being paged.
[bookmark: _Toc214976968]5.7.3	Evaluation
TBD
[bookmark: _Toc214976969]5.8	Solution #8: SUCI
[bookmark: _Toc214976970]5.8.1	Introduction
This solution addresses Key Issue #4 and applies to topology 1 and topology 2.
[bookmark: _Toc214976971]5.8.2	Solution details
This solution proposes the use of SUCI (Subscription Concealed Identifier), as specified in TS 33.501 [9], to protect the AIoT device permanent ID. The SUCI is calculated with non-null scheme.
Editor’s note: how to protect AIoT device permanent ID in SNPN is FFS
Editor’s note: Whether AIoT devices have capability to perform SUCI calculation is FFS
[bookmark: _Toc214976972]5.8.3	Evaluation
This solution addresses Key Issue #4 thanks to ID protection mechanism already specified in TS 33.501 [9].
The possibility to perform SUCI calculation depends on AIoT device capability.
[bookmark: _Hlk213346011]Editor’s Note: Further evaluation is FFS.
[bookmark: _Toc214976973]5.9	Solution #9: AKA-based authentication for DO-A capable AIoT devices
5.9.1	Introduction
This solution addresses Key Issue #2 for DO-A capable AIoT devices.
5.9.2	Solution details
[bookmark: _Hlk213680231]For DO-A capable AIoT device in public network or PNI-NPN: 5G AKA or EAP-AKA’ authentication procedure specified in clause 6 of TS 33.501 [9] is used to perform the mutual authentication between the DO-A Capable AIoT device and the network. The ADM plays the role of the AUSF/UDM, and the AIoTF plays the role of the SEAF.
For DO-A capable AIoT device in SNPN: 5G AKA, EAP-AKA’, EAP-TLS or any key-generating EAP-method is used to perform the authentication between the DO-A Capable AIoT device and the network, as specified in Annex I of TS 33.501 [9].
Editor's Note: Alignment with SA2 is FFS
Editor's Note: Whether this solution applies for AIoT device type2 is FFS
Editor's Note: How to support the inventory and command procedure is FFS
Editor's Note: The mapping between 5G-AKA and AIoT architecture is FFS
5.9.3	Evaluation
TBD.
5.10	Solution #10: 5G AKA for authentication
5.10.1	Introduction
This solution addresses Key Issue #2 and applies to topology 1 and topology 2.
5.10.2	Solution details
This solution proposes the use 5G AKA as specified in TS 33.501 [9] for mutual authentication between AIoT device and the network.
The solution makes the following assumptions:
	- DO-A-capable devices are to be used for AIoT services supported in Topology 1 and Topology 2 for deployment in public networks.
- DO-A-capable devices support the use of UICC and therefore support the security capabilities that are necessary to perform 5G AKA between the device and the network. Root key Kaiot is securely store in UICC.
	- Existing NFs such as SEAF, AUSF, and UDM/ARPM may be reused and/or co-located with NFs defined for AIoT services such as ADM and AIoTF.
NOTE 1: NF co-location is left for deployment.
	- there is a registration procedure between the DO-A-capable device and the network, which is different than the inventory-and-command procedure that was also used for authentication as defined in TS 33.369[8]
	- DO-A-capable devices are capable of storing security context and make security materials available for secure subsequent communications between the DO-A-capable device and the network

In this solution, 5G AKA works exactly as in TS 33.501 [9], Figure 5.10.2-1 below has been updated from TS 33.501 [9] with the addition of UE/gNB Reader node and ADM added to the UDM/ARPF node.

Figure 5.10.2-1: Mutual authentication between DO-A-capable device and the network
Editor’s Note: Feasibility analysis of 5G-AKA in AIoT device type 2 is FFS
Editor’s Note: Alignment with SA2’s architecture design and how this procedure to be supported during inventory and command procedure (if supported by SA2) is FFS.
 5.10.3	Evaluation
 TBD.
[bookmark: _Toc211880036]5.11	Solution #11: Authentication and security establishment for DO-A capable device
[bookmark: _Toc211880037]5.11.1	Introduction
This solution is proposed to address the first security requirement of Key Issue #2, and Key Issue #3, supporting the authentication and security establishment for DO-A capable device.
This solution assumes that the DO-A capable device should perform the initial registration procedure before transferring the DO-A data.
For the DO-A capable device authenticating the network, the AUTN as defined in TS 33.501 [9] is reused and is generated by the ADM. For the network authenticating the DO-A capable device, the AIOTF acts as the enforcement point to compare the XRES* and RES*. By using the AUTN and RES*, the mutual authentication between the DO-A capable device and network can be achieved.
For security establishment, considering the limited capability of DO-A capable device, the SMC procedure is not performed for activating the security context. Instead, the security keys can be generated and used during the AKA procedure, reducing the interaction between the network and DO-A capable device.
[bookmark: _Toc211880038]5.11.2	Solution details

Figure 5.11.2-1: Authentication procedure for DO-A capable device
1.	The DO-A device sends the registration request to AIoTF via the Reader (e.g., RAN reader, UE reader), including the Device identifier and security capability.
2.	The AIOTF sends the authentication request to the ADM, including the Device identifier.
3.	Based on the Device identifier, the ADM calculates XRES* and derives KAIOTF. The ADM creates AIOT AV, includes RAND, AUTN, XRES* and KAIOTF. The XRES* is calculated as defined in Annex A.4 of TS 33.501 [9]. The derivation of KAIOTF is the same as the derivation of KAUSF as specified in Annex A.2 of TS 33.501 [9]. The ADM returns the AIOT AV in the authentication response message.
4. 	The AIOTF stores the XRES*. Then, the AIOTF selects the NAS algorithms based on the device security capability and calculates the KNAS_INT / KNAS_ENC based on the received KAIOTF and the selected NAS algorithms. The AIOTF sends the authentication request to the DO-A device, including the RAND, AUTN, and the selected NAS algorithms. The AIOTF protects the integrity of authentication request by using the KNAS_INT.
5.	At receipt of the RAND and AUTN, the DO-A device shall verify the freshness of the received values by checking whether AUTN can be accepted. If so, the DO-A device calculates the RES*, KAIOTF, KNAS_INT and KNAS_ENC. Based on the KNAS_INT, the DO-A device can verify the integrity of authentication request. If the verification is successful, the DO-A device temporarily stores the KNAS_INT / KNAS_ENC.
6.	The DO-A device returns the RES* by sending the authentication response, which is integrity protected.
7.	Once receiving the authentication response, the AIOTF verifies its integrity. If the verification is passed, the AIOTF compares the RES* and XRES*. If the RES* is equal to the XRES*, the AIOTF determines that the authentication is successful.
8.	The AIOTF returns the registration complete, including the authentication result. If the authentication result is successful, the DO-A device stores the KNAS_INT / KNAS_ENC in its NVM. For the following DO-A data, the KNAS_INT/KNAS_ENC is used for integrity/confidentiality protection.
Editor’s Note:	Alignment with the conclusion in TR 23.700-30 [4] is FFS.
Editor’s Note:	The activation of security context is FFS.
5.11.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
Editor’s Note: Feasibility analysis of AKA based authentication for AIOT device type 2 is FFS.
5.12	Solution #12: AKA-based authentication for inventory, command and registration
5.12.1	Introduction
This solution addresses Key Issue #2 (Authentication for AIoT devices).
The main idea is to use AKA-based authentication for scenarios studied for DO-A devices in Rel-20: inventory, command and registration. For inventory and command, this solution describes the case that the device is currently not registered, and no security context is currently established.
Since this solution uses AKA-based authentication, it can terminate on the device side in a USIM application on a UICC. The device has mobile equipment and UICC sides.
In the authentication procedures below, authentication is used together with a privacy mechanism based on a network-computed concealed identifier, called AICI in Solution #5 in this document and Solution #29 in TR 33.713 [10]. However, using AICI is only one option, and the AKA-based authentication can just as well be used with other privacy solutions.
Since AKA uses a sequence number stored in the USIM and network, respectively, no device nonce or device generated random number is necessary. AKA includes resynchronization mechanisms, which are not described in this solution.
5.12.2	Solution details
Case 1: Registration
The following procedure describes how AKA-based authentication can be used for registration of DO-A capable devices.

Figure 5.12.2-1:AKA-based authentication for registration of DO-A capable devices.
	1. The AIoT device sends a registration request to the AIOTF via the NG-RAN. The request contains the AIoT device's concealed id.
	2. The AIOTF requests authentication data and id de-concealment from the ADM, including the concealed id received in Step 1.
	3. The ADM de-conceals the id and generates RAND, AUTN and XRES as described in 3GPP TS 33.102 [11]. The ADM generates the session key KAIOTF based on CK and IK.
	4. In response to the request in Step 2, the ADM sends the cleartext id, RAND, AUTN, XRES and KAIOTF to the AIOTF.
	5. The AIOTF sends an authentication request to the AIoT device, including the RAND and AUTN.
	6. The AIoT device (for public networks: USIM on UICC in the AIoT device) verifies the MAC in the AUTN and computes the RES as described in TS 33.102 [11]. Verification of the MAC authenticates the network towards the device.
	7. The AIoT device sends the authentication response to the AIOTF, including the RES.
	8. The AIOTF verifies that RES = XRES. This verification authenticates the AIoT device towards the network.
	9. AIoT device generates the session key KAIOTF based on CK and IK in the same way as the ADM in Step 3. AIOTF and AIoT device derive the session keys based on KAIOTF.
	[10. Optionally, if a network-computed concealed identifier is used, the network assigns a new concealed id to the AIoT device.]
As an alternative to the ADM sending XRES and KAIOTF to the AIOTF already in Step 4, the ADM can also only send RAND and AUTN in Step 4. In this case, Step 8 is replaced by an interaction between AIOTF and ADM where the AIOTF requests the ADM to verify RES and send the KAIOTF to the AIOTF.
Editor’s Note: Feasibility analysis of AKA based authentication for AIOT device type 2 is FFS.
Case 2: Inventory and command
The following procedure describes how AKA-based authentication can be used together with inventory or command for a group of DO-A capable devices.

Figure 5.12.2-2:AKA-based authentication together with inventory or command for a group of DO-A capable devices.
1. AF/NEF, ADM and AIOTF initiate the inventory or command.
2. The AIOTF sends the inventory request via the NG-RAN. The inventory request contains information that identifies a group of DO-A capable AIoT devices, e.g. filtering information.
3. The AIoT Device checks whether it is selected, i.e. belongs to the group indicated in the inventory request. If yes, the AIoT device proceeds with the following steps.
4. The AIoT device sends an authentication initialization request to the AIOTF via the NG-RAN. The request contains the AIoT device's concealed id.
	5. The AIOTF requests authentication data and id de-concealment from the ADM, including the concealed id received in Step 4.
	6. The ADM de-conceals the id and generates RAND, AUTN and XRES as described in 3GPP TS 33.102 [11]. The ADM generates the session key KAIOTF based on CK and IK.
	7. In response to the request in Step 5, the ADM sends the cleartext id, RAND, AUTN, XRES and KAIOTF to the AIOTF.
	[8. In the command case, the AIOTF derives the session keys based on KAIOTF. The AIOTF uses the session keys to protect the command.]
	9. The AIOTF sends an authentication request to the AIoT device, including the RAND and AUTN. [In the command case, the AIOTF includes the protected command.]
	10. The AIoT device (for public networks: USIM on UICC in the AIoT device) verifies the MAC in the AUTN and computes the RES as described in TS 33.102 [11]. Verification of the MAC authenticates the network towards the device.
	[11. In the command case, the AIoT device generates the session key KAIOTF based on CK and IK in the same way as the ADM in Step 3. The AIoT device derives the session keys based on KAIOTF and uses them to process the protected command.]
	12. The AIoT device sends the inventory response to the AIOTF, including the RES. The inventory report also serves as authentication response. [In the command case, the AIoT device includes the protected command response.]
	13. The AIOTF verifies that RES = XRES. This verification authenticates the AIoT device towards the network.
	[14. In the command case, the AIOTF processes the protected command response message.]
	15. AIOTF and AF/NEF finalize the inventory or command.
[16. Optionally, if a network-computed concealed identifier is used, the network assigns a new concealed id to the AIoT device.]
Editor’s Note: For the inventory and command procedure, alignment with SA2 is FFS.
Editor’s Note: The need for additional signalings for authentication i.e. compared to the Rel19 procedure is FFS.
5.12.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
5.13	Solution #13: Efficient authentication for DO-A capable AIoT devices
5.13.1	Introduction
This solution addresses KI#2. This solution enables AKA (i.e., Authentication and Key Agreement) by reversing the roles between AIoT device and network. It can reduce the number of signalling exchanged between the AIoT device and network, leading to an efficient mutual authentication.
5.13.2	Solution details
5.13.2.1	Authentication procedure
KAIoT_root is the long-term key of AIoT device which is stored in the AIoT device and ADM.
Editor’s Note: Whether the solution can be used in a public network is FFS.

Figure 5.13.2.1-1: AIoT registration procedure
1. NG-RAN broadcasts RAND.
Editor’s Note: Alignment with TR 23.700-03 [4] whether NG-RAN broadcasts RAND is FFS.
Editor’s Note: How to prevent DoS attacks, where an attacker broadcasts RAND to trigger AUTN calculation, leading to battery exhaustion, is FFS.
2. AIoT devices generates AUTN using RAND and KAIoT_root.
Editor’s Note: Clarification on AUTN is FFS.
3. AIoT device sends Registration Request message to Reader including AUTN, RAND, AIoT ID, and security capability.
NOTE: Privacy protection of AIoT ID is not the scope of this solution. It is the scope of Key Issue #4.
4. NG-RAN checks whether the RAND is within the validity window.
Editor’s Note: Whether NG-RAN can check RAND transmitted in AIoT NAS message is FFS.
5. NG-RAN sends the Registration Request to AIoTF.
6. AIoTF sends Authentication Request to ADM. The Authentication Request includes AUTN, RAND, and AIoT ID.
7. ADM retrieves KAIoT_root using AIoT ID and authenticates the AIoT device by verifying the AUTN. If the verification is successful, ADM derives KAIoTF.
NOTE: The details of how to derive KAIoTF is not the scope of this solution. It is the scope of Key Issue #3.
8. ADM sends Authentication Response to AIoTF with authentication result and KAIoTF.
9. AIoTF sends Registration Accept to AIoT device. The Registration Accept message includes selected algorithms, security capability, and MAC.
10. AIoT device verifies the MAC. The AIoT device implicitly authenticates the network via integrity check of Registration Accept message.
NOTE: The details of the message protection is not the scope of this solution/ It is the scope of Key Issue #3.
Editor’s Note:	Procedural alignment with TR 23.700-30 [4] is FFS.

5.13.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
TBD
[bookmark: _Toc164702091][bookmark: _Toc167791528][bookmark: _Toc180150824][bookmark: _Toc180400517][bookmark: _Toc180481698][bookmark: _Toc182856613][bookmark: _Toc191375035][bookmark: _Toc191375247][bookmark: _Toc191376172][bookmark: _Toc191377334][bookmark: _Toc191469669][bookmark: _Toc191904811]5.14	Solution #14: DO-A capable AIoT Device registration procedure
[bookmark: _Toc164702092][bookmark: _Toc167791529][bookmark: _Toc180150825][bookmark: _Toc180400518][bookmark: _Toc180481699][bookmark: _Toc182856614][bookmark: _Toc191375036][bookmark: _Toc191375248][bookmark: _Toc191376173][bookmark: _Toc191377335][bookmark: _Toc191469670][bookmark: _Toc191904812]5.14.1	Introduction
This solution addresses Key Issue #2: Authentication for AIoT devices.
[bookmark: _Toc164702093][bookmark: _Toc167791530][bookmark: _Toc180150826][bookmark: _Toc180400519][bookmark: _Toc180481700][bookmark: _Toc182856615][bookmark: _Toc191375037][bookmark: _Toc191375249][bookmark: _Toc191376174][bookmark: _Toc191377336][bookmark: _Toc191469671][bookmark: _Toc191904813]This solution is only for isolated private networks.
Editor’s Note: How to design the authentication vector generation so that the device can be used in a public network is FFS.
5.14.2	Solution details
DO-A capable AIoT Device registration procedure is shown in the following figure.

[bookmark: MCCQCTEMPBM_00000047]Figure 5.14.2-1: DO-A capable AIoT Device registration procedure
0. Both the ADM and the DO-A Device are configured with device permanent ID and device root key. To support device permanent ID privacy protection, configure the network private key in ADM and the network public key in DO-A Devices.
1. To register to the network, the DO-A Device perform the following operations:
· Generate a Device Nonce;
· If privacy protection is activated, use the network public key to protect its permanent ID, similar to SUCI technology;
· Generate MAC for registration requests using the device root key.
Editor’s Note: How to mitigate replay attack by replay the registration request message.
Editor’s Note: Quantum-resistance of device ID protection is FFS.
2. The DO-A Device sends the registration request to the AIOTF, which includes Device ID Info, Device Nonce and MAC. The Device ID Info is either the plaintext or ciphertext of the device permanent ID.
3. The AIOTF send an authentication vector request to the ADM, which includes the device registration request received from the DO-A Device.
4. The ADM performs the following operations:
If the Device ID Info is encrypted, then decrypts it with the private key, and obtain the device permanent ID;
Retrieve the device root key using the device permanent ID;
Verify the device registration request using the device root key.
5. The ADM performs the following operations:
Generate a Network Nonce
Generate an authentication vector using the device root key, Device Nonce and Network Nonce. The authentication vector includes: AUTN, Network Nonce, XRES, Kaiotf.
NOTE:	The detailed method for generating authentication vectors will be specified during the normative phase.
6. The ADM send the authentication vector to the AIOTF.
7. The ADM generates a T-ID for the DO-A Device, and then encrypt it with the NAS encryption key. The authentication request is protected with the NAS integrity key. The NAS keys are derived from the Kaiotf.
Editor’s Note: Allocating the T-ID to a device before it is authenticated by the network may lead to a waste of network resources, which is FFS.
8. The AIOTF sends the authentication request to the DO-A Device, which includes the AUTN, Network Nonce and MAC.
9. The DO-A Device verifies the AUTN, derives Kaiotf, verifies the MAC, decrypt T-ID ciphertext, generate RES.
10. The DO-A Device sends the RES to the AIOTF.
11. The AIOTF compares the RES with the XRES. If they match, the DO-A Device is authenticated.
If the mutual authentication is successful, the DO-A Device and the AIOTF respectively store the DO-A Device security context generated based on the authentication process respectively. The DO-A security context will be used to protect the DO-A traffic between the DO-A Device and the AIOTF.
12. The AIOTF sends the registration response to the DO-A Device to complete the registration process.
[bookmark: _Toc164702094][bookmark: _Toc164952862][bookmark: _Toc180150827][bookmark: _Toc180400520][bookmark: _Toc180481701][bookmark: _Toc182856616][bookmark: _Toc191375038][bookmark: _Toc191375250][bookmark: _Toc191376175][bookmark: _Toc191377337][bookmark: _Toc191469672][bookmark: _Toc191904814]5.14.3	Evaluation
TBD.
5.15	Solution #15: Authentication procedure for DO-A capable AIoT devices
5.15.1	Introduction
This solution addresses Key Issue #2 (Authentication for AIoT devices) and Key Issue #4 (AIOT device ID protection) by defining the authentication procedure when a DO‑A capable AIoT device autonomously initiates the registration. The proposed solution follows the similar design principles to the authentication procedure defined for inventory and command procedure specified in TS 33.369, ensuring consistency across AIoT security mechanisms while minimizing device-side complexity and power consumption.
Editor’s Note: Whether the solution can be used in a public network is FFS.
Editor’s Note: Potential impacts on the support of this new authentication mechanism in UICC is FFS if it is considered as public network deployment.

5.15.2	Solution details

Figure 5.15.2-1: Authentication procedure during initial registration
1.	AIoT device initiates an initial registration by sending a AIoT NAS Registration Request message. This message includes the device registration ID (R-ID), auth token, and RANDAIoT device. The auth token is generated using a KAIoT auth, R-ID, and additional parameters included in the message. An optional indicator may be included to explicitly indicate the message is for initial registration request. The KAIoT auth is derived from KAIoT root (i.e., AIoT device root key) and RANDAIoT device.
Editor’s Note: Additional parameters based on SA2 procedure is FFS.
Editor’s Note: The details of initial R-ID is FFS.
NOTE: All keys and auth token generation is performed using Key Derivation Function (KDF) as specified in TS 33.220 [12].
2.	AIOTF sends an Authentication request to ADM/CH with all information included in the AIoT NAS Registration Request message.
3.	ADM/CH retrieves the AIoT device permanent ID and KAIoT root associated to the R-ID. Then, it generates an auth token in the same way as the AIoT device did in step 1 and performs device authentication by checking if the generated auth token matches with the received auth token. If the device authentication is successful, ADM/CH generates RANDAIoT network and derives KAIOT session based on KAIoT root, RANDAIoT device and RANDAIoT network. It also generates a new device registration ID (R-IDnew) for future registration. The R-IDnew is stored at ADM/CH to identify the AIoT device in the next registration.
4.	ADM/CH replies with an Authentication response containing KAIOT session and RANDAIoT network, R-IDnew.
5.	AIOTF protects integrity and confidentiality of a AIoT NAS Registration Accept message containing RANDAIoT network and R-IDnew using the KAIOT session. Then, the AIOTF sends the protected message to the AIoT device.
6.	AIoT device derives KAIOT session in the same way as ADM did in step 3 and processes the protected message using the KAIOT session. The AIoT device authenticates the network by checking the integrity of the received message.
7.	The AIoT device can optionally send a AIoT NAS Registration Complete message that is protected based on the KAIOT session, e.g., if requested by the network to prevent replay of the AIoT NAS Registration Request message.
8.	AIOTF processes the received message based on the KAIOT session.
5.15.3	Evaluation
TBD.
5.16	Solution #16: DO-A capable AIoT Device communication protection
5.16.1	Introduction
This solution addresses Key Issue #3: Protection of information to support DO-A Capable AIoT Devices during AIoT service communication.
The basic idea of this solution follows the principle adopted in TS 33.369 for protecting AIoT service communication of AIoT Devices. That is, first negotiate a session key, and then use the NAS keys derived from the session key to protect DO-A Device communication. This session key is only used to protect one round of data transmission.
5.16.2	Solution details
[bookmark: _Toc191376211][bookmark: _Toc191377373][bookmark: _Toc191469708][bookmark: _Toc191904850]Editor’s Note: Why not a NAS counter can be used is FFS.
Editor’s Note: Why the device cannot store NAS keys is FFS.
Editor’s Note: Whether the solution aligns with the agreed SA2 architecture is FFS.
5.16.2.1	DO-A communication request initiated by DO-A AIoT Device
DO-A capable AIoT Device communication protection procedure initiated by DO-A Device is shown in the following figure.

Figure 5.16.2.1-1: DO-A capable AIoT Device communication protection procedure initiated by DO-A Device
0. The DO-A Device and the network perform the mutual authentication, and then set the DO-A Device security context. The DO-A Device security context includes Kaiotf and T-ID.
1. To communicate with the network, the DO-A Device performs the following operations:
· Generate a Device Nonce;
· Generate a MAC for the security association request using Kaiotf.
2. The DO-A Device sends the security association request to the AIOTF, which includes T-ID, Device Nonce and MAC.
3. The AIOTF retrieves the Kaiotf based on T-ID, and then verifies the MAC of the security association request.
4. The AIOTF performs the following operations:
· Generate a Network Nonce;
· Generate new session key Ks using Kaiotf, Device Nonce and Network Nonce;
· Derive NAS keys based n Ks;
· Generate a MAC for the security association response using NAS integrity key.
5. The AIOTF sends the security association response to the DO-A Device, which includes MAC.
6. The DO-A Device performs the following operations:
· Generate new session key Ks using Kaiotf, Device Nonce and Network Nonce;
· Derive NAS keys based n Ks;
· Verify the MAC of the security association response using the NAS integrity key.
7. The DO-A Device sends data transmission request to the AIOTF, which includes the data needing to be transmitted and is protected by the NAS keys.
8. The AIOTF sends data transmission response to the DO-A Device, which is protected by the NAS keys.
5.16.2.2	DO-A communication request initiated by network
DO-A capable AIoT Device communication protection procedure initiated by network is shown in the following figure. This procedure is similar to that initiated by DO-A devices, with the only difference being that it is initiated by the AIOTF.

Figure 5.16.2.2-1: DO-A capable AIoT Device communication protection procedure initiated by network
5.16.3	Evaluation
TBD.
5.17	Solution #17: Protection of AIoT device initiated AIoT NAS procedure for DO-A capable devices
5.17.1	Introduction
This solution addresses Key Issue #3 (Protection of information) in AIoT device initiated AIoT NAS procedures (e.g., AIoT NAS data transfer and registration update described in TR 23.700-30 [2]). The protection of AIoT NAS data transfer message uses a session key (KAIoT session) that is derived based on the AIoT device root key and device freshness parameter. This session key enables the network to verify the integrity of the received message. Upon successful verification, ADM/CH derives a new session key (KAIoT session’) based on the AIoT device root key and freshness parameters generated by both the AIoT device and network. The new session key is then provided to the AIOTF to protect the corresponding AIoT NAS data transfer acknowledgement message.
Editor’s Note: Potential impacts on the support of the protection mechanism based on a new authentication mechanism in UICC is FFS if it is considered as public network deployment.

5.17.2	Solution details

Figure 5.17.2-1: Protection of AIoT data transfer procedure for DO-A capable devices
1.	When an AIoT device initiates a DO-A data transmission, it constructs the AIoT NAS data transfer message containing the device identification information, RANDAIoT device in addition to DO-A data. The message is protected based on the KAIoT session, which is derived based on KAIoT root and the RANDAIoT device. Then, the AIoT device sends the protected message to the network.
Editor’s Note: replay of AIoT NAS data transfer message is FFS.
NOTE 1: All keys and auth token generation is performed using Key Derivation Function (KDF) as specified in TS 33.220 [12].
NOTE 2: The proposed protection mechanism applies to any AIoT NAS procedures that are initiated by DO-A capable AIoT devices after initial registration.
2.	Upon receipt of the message, ADM/CH derives KAIoT session in the same way as AIoT device did in step 1 and processes the message. If the message processing is successful, the ADM/CH derives KAIoT session’ based on KAIoT root, RANDAIoT device, and newly generated RANDAIoT network.
3.	The ADM/CH provides KAIoT session’, RANDAIoT network, and DO-A data to the AIOTF.
4.	The AIOTF constructs the AIoT NAS data transfer acknowledgement message and protects it based on the KAIoT session’.
5.	The AIOTF sends the protected AIoT NAS data transfer acknowledgement message to the AIoT device.
6.	AIoT device derives KAIoT session’ in the same way as ADM/CH did in step 2, and processes the received message based on the KAIoT session’.
Editor’s Note: Motivation to use random number as freshness parameter instead of a counter is FFS.
Editor’s Note: Motivation to not maintain the device security context in AIoT device is FFS.
5.17.3	Evaluation
TBD.
5.18	Solution #18: DO-A request using UICC services
5.18.1	Introduction
The solution provides a procedure to protect the identity during DO-A request. The method uses a SUCI based approach, as this study addresses PLNM deployments, implying UICC services are available in the AIoT device including authentication methods and identifier concealment. The solution includes a T-ID in the DO-A message together with the SUCI, as an identifier which can be used during inventory procedure to identify the AIoT device. The T-ID furthermore enables the AIoT device and AIoTF to get into sync, in case of out of sync or initial message send, in case no valid T-ID is stored in the ADM. The inventory and command steps are mentioned in the solution to maintain a holistic view and the relation to proceeding steps after the DO-A message.
5.18.2	Solution details
The procedure shown in figure 5.18.2-1 is initiated when a AIoT device determines that data must be sent as DO-A. This could be sensor data which periodically needs to be updated, warnings i.e. basement flooding, temperature surge/drop, or others.

Figure 5.18.2-1: DO-A signalling initiating an inventory + command procedure.
The device selects a suitable DO-A access occasion based on configuration.
0. The AIoT device and AIoTF are pre-provisioned with the AIoT permanent device ID. It’s assumed that T-ID is not pre-configured.
1. The device constructs a SUPI according to TS 23.003 [13] with the following modification. SUPI type is NSI, Home network identifier is the domain name of the AIoTF and AIoT device permanent identifier is set as the username. The T-ID* is an identifier which is generated by a pseudo-random number generator. The intent of T-ID* is to provide an identifier which can be used during inventory, until the device gets assigned a T-ID by the AIoTF. The device stores the T-ID* but doesn’t substitute it with the real T-ID*.
The AIoT device sends the SUCI* and T-ID* to the AIoT reader.
2. [bookmark: _Hlk216799608]The AIoT reader forwards the message to the AMF, which selects the AIoTF based on the home routing indicator, the temporary identifier or local policies and sends the SUCI* and T-ID* to the AIoTF.
3. The AIoTF sends the SUCI* and T-ID* to the ADM.
4. If the ADM receives a SUCI* and deconceals it to construct a SUPI.
The ADM verifies whether the AIoT permanent identifier exists in the AIoT device register. If exists, the ADM generates an AV for this device using SUPI* to identify the authentication keys and derive the AV. The ADM returns the SUPI* and AV. T-ID* is included as a session identifier to enable the AIoTF to authenticate the AIoT prior to fetching the sensor data. If the ADM doesn’t have a T-ID or is out of sync, it may decide to substitute the T-ID with the T-ID*.
5. -7. The AIoTF will authenticate the device using EAP AKA’ as defined in TS 33.501[9] clause 6.1 and include the T-ID* as identifier in the request. This is similar to the first message of the inventory command. This step may happen at a later time, when the AIoTF initiates an inventory command procedure.
If the authentication is successful and the received T-ID* is matching the “remembered” T-ID* in step 1 or T-ID stored in the device, the AIoT device will update the T-ID * to T-ID if this is signaled as part of the inventory command.
8. -9. If the AIoTF decides to update the T-ID in the device, it may be executed as a command message. If the command message is successful, the AIoTF updates the T-ID in the AIoT device register.

Editor’s note: Whether the SUCI is post quantum compliant is FFS.
Editor’s note: Whether the solution aligns with SA2 agreed procedures is FFS.
Editor’s note: Whether AKA and SUCI is applicable for type 2 devices is FFS.
Editor’s note: Clarification on the usage of TID* in initial NAS message is FFS.

5.18.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
TBD
5.19	Solution #19: ID privacy for DO-A capable AIOT device
5.19.1	Introduction
This solution is proposed to address the key issue#4 on protection of ID privacy during AIoT service communication. AIOTF assigns the AIoT temporary ID information (e.g., GUTI-like identifier) to the device and the device is required to store the AIoT temporary ID information.
5.19.2	Solution details
Initial registration is supported and used by the DO-A capable AIoT Device to inform the network of its presence and get authenticated/authorized by the network. In the initial registration, the AIoT Device identifier using SUCI scheme is sent by the AIoT Device.
NOTE 1: If the home network has not provisioned the Home Network Public Key, the identity protection in initial registration procedure is not provided.
Editor’s Note: Whether SUCI is quantum-resistant is FFS.
Editor’s Note: Whether the solution aligns with SA2 conclusion is FFS.
After successful authentication, the AIoT Device and the network establish a security context which is used, for example, in the subsequent DO-A data transfer. If the initial registration request from the AIoT Device is accepted, the serving AIOTF allocates an AIoT temporary ID information. The AIOTF sends an AIoT NAS Registration Accept to the AIoT Device, including the AIoT temporary ID information. Upon receipt of the downlink AIOT NAS message, the AIoT Device stores the AIoT temporary ID information.
For inventory and command, the AIoT temporary ID information is included in the paging message for individual paging. Upon receiving D2R message sent by the device in response to a Paging message, the AIOTF sends a new AIoT temporary ID to the device.
For the DO-A data transfer, DO-A capable AIoT Devices send DO-A data to the AIOTF via AIoT NAS message with the stored AIoT temporary ID.
NOTE 2:	It is left to implementation to re-assign an AIoT temporary ID after a NAS command message with DOA data from the device not triggered by the network.
5.19.3	Evaluation
TBD
5.20	Solution #20: T-ID based AIOT device privacy protection
5.20.1	Introduction
This solution utilizes Temporary ID (T-ID) to protect AIOT device privacy, and considering following procedures: 1. Initial Registration procedure, 2. DO-A procedure, 3. Inventory and command procedure.
5.20.2	Solution details
The solution makes the following assumptions:
· DO-A-capable devices are to be used for AIoT services supported in Topology 1 and Topology 2 for deployment in public networks.
· DO-A-capable devices support the use of UICC and therefore support the security capabilities that are necessary to perform device privacy protection.
NOTE 1: The exact form factor of UICC to be supported in DO-A-capable devices is left for implementation.

1. AIOT ID protection for initial registration procedure
· In initial registration, the AIOT device uses concealed permanent ID i.e., SUCI or the T-ID which is allocated by AIOTF or ADM, in the registration request message.
· The AIOT device conceals its permanent ID and generates SUCI as specified in Annex C in TS 33.501[9], in which null-scheme could be used if the device has been configured by the Network. If non-null scheme calculation SUCI is used, upon reception of the SUCI, the ADM retrieves device permanent ID from SIDF using SUCI.
· After security establishment, the AIOTF or ADM allocates and securely sends the new temporary ID to the AIOT device. The AIOT device stores the allocated T-ID and update its stored T-ID if any.
Editor’s Note: Deciphering SUCI in the network side is FFS.

2. AIOT ID protection for DO-A procedure
In DO-A procedure, the device autonomously sends message to the AIOTF, along with the temporary ID allocated by the AIOTF or ADM. And new T-ID could be allocated by the AIOTF or ADM and sent to the device to update T-ID.

3. AIOT ID protection for Inventory and Command procedure
It is assumed that the inventory and command procedure only happen after initial-registration procedure.
· For individual inventory, the AIOTF uses network assigned T-ID to inventory AIOT device, and the device responses the AIOTF with the T-ID.
Editor’s Note: Whether and how the DO-A capable device supports group paging or paging all procedure and the corresponding ID protection procedure is FFS.
· For command procedure, the AIOTF/ADM could allocate and securely sends the new temporary ID to the AIOT device.
Editor’s Note: Whether SUCI is quantum-resistant is FFS.
Editor’s Note: Alignment with SA2’s conclusion is FFS.

5.20.3	Evaluation
This solution requires the AIOT device to support SUCI based permanent ID concealing mechanism, and store new T-ID generated by the Network.
Editor’s Note: Further evaluation is FFS.
5.21	Solution #21: UE Authorization during Intermediate UE selection
5.21.1	Introduction
This solution is proposed to address Key Issue #1, supporting the authorization during intermediate UE selection. This solution applies to RRC-based Topology 2.
The authorization of Intermediate UE is based on the UE subscription data stored in the UDM. For AF providing UE reader ID case, the AIoTF interacts with AMF to check the UE authorization. The AMF determines whether the UE is authorized to provide the Ambient IoT service and provides the authorization result to the AIoTF.
This solution assumes that there is no direct interface between AIOTF and UDM, as defined in Figure 7.1.1-2 of TR 23.700-30 [4].
5.21.2	Solution details

Figure 5.21.2-1: Intermediate UE Authorization during Intermediate UE selection
1.	The AF sends the Service request to AIoTF via NEF. The Service request may include Ambient IoT device ID, UE Reader ID(s), etc.
2.	Based on the UE Reader ID(s), the AIoTF determines the corresponding AMF and sends the Intermediate UE authorization request. The Intermediate UE authorization request includes the UE Reader ID(s).
3. 	If UE Reader subscription information is not locally stored, the AMF interacts with the UDM to obtain the subscription data. Based on the obtained UE Reader subscription information (locally stored or provided by the UDM), the AMF checks the authorization.
4. 	If the UE Reader subscription information indicates the UE is allowed to operate as a UE Reader, the AMF returns the successful authorization result to the AIoTF.
5.	The AIoTF can select one authorized Intermediate UE and send the Service request to it via the AMF.
Editor’s Note: Alignment with conclusion in TR 23.700-30 [4] is FFS.
5.21.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
5.22			Solution #22: Solution on authorization of intermediate UE for 5G Ambient IoT
5.22.1			Introduction
This solution addresses Key Issue#1 on Authorization of intermediate UE for 5G Ambient IoT services.
In this solution, during UE registration procedure, AMF authorizes the UE for acting as the intermediate node i.e, an AIoT reader, based on the UE subscription data. After intermediate UE authorization, AMF return the authorization results to NG-RAN and AIOTF.
5.22.2			Solution details

[bookmark: OLE_LINK1]
Figure 5.22.2-1: Authorization of intermediate UE for 5G Ambient IoT
1. The UE sends Registration Request message to AMF. The message includes UE’s capability, which indicates the capability of the UE to support AIoT services or to act as an intermediate node in AIoT system.
2. The AMF retrieves the UE subscription data from UDM. The UE subscription in the UDM consists of information indicating whether the UE is allowed to operate as a UE Reader.
3. The AMF authorizes the UE for acting as the intermediate node i.e, an AIoT reader, based on the UE subscription data and UE’s Capability.
4. The AMF sends the authorization results to NG-RAN.
5. AIOTF may request the authorized result from AMF before selecting UE reader.
6. The AMF sends the authorized intermediate UE ID(s) to the AIOTF. When the AIOTF performs intermediate UE selection, only authorized UE could be selected as intermediate node.
Editor’s Note: Whether and how the authorized result is provided to AIOTF is to be aligned with SA2.
5.22.3			Evaluation
TBD.
5.Y	Solution #Y: <Solution Name>
[bookmark: _Toc205543654][bookmark: _Toc214976974]5.Y.1	Introduction
Editor’s Note: Each solution should list the key issues being addressed.
[bookmark: _Toc205543655][bookmark: _Toc214976975]5.Y.2	Solution details
[bookmark: _Toc205543656][bookmark: _Toc214976976]5.Y.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
[bookmark: _Toc205543657][bookmark: _Toc214976977]6	Conclusions
Editor’s Note: This clause captures the conclusions of this study.

[bookmark: tsgNames][bookmark: startOfAnnexes][bookmark: _Toc205543658][bookmark: _Toc214976978]Annex <X>:
Change history

	[bookmark: historyclause]Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	10/2025
	SA3#124
	S3‑253300
	
	
	
	Initial draft TR
	0.0.1

	10/2025
	SA3#124
	S3‑253732	
	
	
	
	Incorporated accepted contributions	S3‑253822, S3‑253823, S3-253824, S3-253825, S3-253826, S3-253827
	0.1.0

	11/2025
	SA3#125
	S3‑254541
	
	
	
	Incorporated accepted contributions	S3-254694, S3-254695, S3-254696, S3-254697, S3-254698, S3-254699, S3-254700, S3-254701, S3-254702, S3-254703, S3-254705, S3-254706
	0.2.0

	02/2026
	SA3#126
	S3-260784
	
	
	
	Incorporated accepted contributions	 S3‑260814, S3‑260815, S3‑260816, S3‑260817, S3‑260818, S3‑260819, S3‑260820, S3‑260821, S3‑260822, S3‑260823, S3‑260824, S3‑260980,
S3‑260825, S3‑260826, S3‑260827, S3‑260592, S3‑260828, S3‑260829, S3‑260830
	

3GPP
oleObject1.bin
[image: image1.png]~

5G

image2.emf

oleObject2.bin
[image: image1.png]=

A GLOBAL INITIATIVE

image3.emf
AIoT device AIOTF ADM

1. Initial Register Request

(Device ID, security capabilities)

4b. Derive

communication Keys

2. Authentication Request (Device ID)

4a. Derive communication

Keys

3. Authentication procedure, e.g., 5G AKA or EAP-AKA'

5. Protected Register Response

(selected algorithms)

Microsoft_Visio_Drawing.vsdx
AIoT device
AIOTF
ADM
1. Initial Register Request (Device ID, security capabilities)
4b. Derive communication Keys
2. Authentication Request (Device ID)
4a. Derive communication Keys
3. Authentication procedure, e.g., 5G AKA or EAP-AKA'
5. Protected Register Response (selected algorithms)

image4.emf
AIoT device NG-RAN

AIOTF

AF

4. DO-A Data

(Protected NAS

Container)

6. AIoT DO-A Data Transfer

2. Prepare DO-A

protected message

1. D2R message

DO-A data transmission

request

3. D2R message

(Protected NAS

Container)

ADM

1b . AIOTF Key

Retrieval

1a. DO-A Data Request

5. Process the

protected message

Microsoft_Visio_Drawing1.vsdx
AIoT device
NG-RAN
AIOTF
AF
4. DO-A Data (Protected NAS Container)
6. AIoT DO-A Data Transfer
2. Prepare DO-A protected message
1. D2R message
DO-A data transmission request
3. D2R message
(Protected NAS Container)
ADM
1b . AIOTF Key
Retrieval
1a. DO-A Data Request
5. Process the protected message

image5.emf
AIoT device NG-RAN

AIOTF

AF

4. DO-A Data (Protected

NAS Container)

6. AIoT DO-A Data Transfer

2. Prepare DO-A

protected message

1. D2R message

DO-A data transmission

request

3. D2R message

(Protected NAS

Container)

5. Process the

protected message

ADM

1b . AIOTF Key

Retrieval

1a. DO-A Data Request

Microsoft_Visio_Drawing12.vsdx
AIoT device
NG-RAN
AIOTF
AF
4. DO-A Data (Protected NAS Container)
6. AIoT DO-A Data Transfer
2. Prepare DO-A protected message
1. D2R message
DO-A data transmission request
3. D2R message
(Protected NAS Container)
5. Process the protected message
ADM
1b . AIOTF Key
Retrieval
1a. DO-A Data Request

image6.emf
AIoT device AIOTF ADM

2. Initial Register Request (T-IDn)

3. Authentication Request (T-IDn)

5. Retrieve T-ID ()

7. Return T-ID

(Update indication, T-IDn+1)

6. Generate/derive

and store T-IDn+1

4. Authentication procedure

8a. Register Response

(Updated indication)

1. Pre-configured with T-ID0, which

has been updated by T-IDn

8b. Derive and store

T-IDn+1

9a. AIoT Command Request (T-IDn+1)

9b. Store T-IDn+1

10. AIoT Command Response ()

Microsoft_Visio_Drawing2.vsdx
AIoT device
AIOTF
ADM
2. Initial Register Request (T-IDn)
3. Authentication Request (T-IDn)
5. Retrieve T-ID ()
7. Return T-ID
(Update indication, T-IDn+1)
6. Generate/derive and store T-IDn+1
4. Authentication procedure
8a. Register Response
(Updated indication)
1. Pre-configured with T-ID0, which has been updated by T-IDn
8b. Derive and store
T-IDn+1
9a. AIoT Command Request (T-IDn+1)
9b. Store T-IDn+1
10. AIoT Command Response ()

image7.emf
AIoT Device

AIoT reader/gNB

AIoTF ADM

5. AICI, RAND

AIOT_d

, RES

1. paging request

with a group identifier

(authentication challenge RAND

AIOT_n

)

4. AICI, RAND

AIOT_d

, RES

7.1. Deconceals AICI into long-term

identifier

7.2. Checks, based on authentication

challenges RAND

AIOT_n

 and RAND

AIOT_d

 using

the shared key K

AIOT_root

 for the device, if

RES is valid.

7.3.Computes a new AICI͛�using the key

used for computing AICI, and derives a

session key K

AIOTF

 from the shared key for

the device to protect a downlink command

message

6. AICI, RAND

AIOT_d

, RES

9. Generates two keys K

Command_enc

, K

Command_int

 from K

AIOTF

.

Prepares a command message that includes AICI͕͛�encrypts

the command message using K

Command_enc

and computes a

MAC of the encrypted command message using the key

K

Command_int

8. Device long-term ID,

AICI͕͛�K

AIOTF

10. Encrypted Command

message, MAC

3.1 Check if the paging is meant for the device.

3.2 If yes, Generates authentication challenge

RAND

AIOT_d.

3.3 Computes auth challenge response RES based on

RAND

AIOT_n

 and

RAND

AIOT_d

using the shared key

K

AIOT_root

 with the network.

3.4 Checks if it has a network-provided AICI, if not,

then computes AICI using a null scheme

11. Encrypted Command message,

MAC

12.1. Derives keys K

AIOTF,

K

Command_enc

, K

Command_int

from the K

AIOTF_root

 in the same manner as in

ADM

12.2. Validates MAC and decrypts command

message

12.3. Updates AICI with AICI͛

Microsoft_Visio_Drawing3.vsdx
AIoT Device
AIoT reader/gNB
AIoTF
ADM
5. AICI, RANDAIOT_d, RES
1. paging request
with a group identifier
(authentication challenge RANDAIOT_n)
4. AICI, RANDAIOT_d, RES
7.1. Deconceals AICI into long-term identifier
7.2. Checks, based on authentication challenges RANDAIOT_n and RANDAIOT_d using the shared key KAIOT_root for the device, if RES is valid.
7.3.Computes a new AICI’ using the key used for computing AICI, and derives a session key KAIOTF from the shared key for the device to protect a downlink command message
6. AICI, RANDAIOT_d, RES
9. Generates two keys KCommand_enc, KCommand_int from KAIOTF. Prepares a command message that includes AICI’, encrypts the command message using KCommand_enc and computes a MAC of the encrypted command message using the key KCommand_int
1. paging request
with a group identifier
(authentication challenge RANDAIOT_n)
8. Device long-term ID,
AICI’, KAIOTF
10. Encrypted Command message, MAC
3.1 Check if the paging is meant for the device.
3.2 If yes, Generates authentication challenge RANDAIOT_d.
3.3 Computes auth challenge response RES based on RANDAIOT_n and RANDAIOT_d using the shared key KAIOT_root with the network.
3.4 Checks if it has a network-provided AICI, if not, then computes AICI using a null scheme
11. Encrypted Command message,
MAC
12.1. Derives keys KAIOTF, KCommand_enc, KCommand_int from the KAIOTF_root in the same manner as in ADM
12.2. Validates MAC and decrypts command message
12.3. Updates AICI with AICI’
0. Group identifier, authentication challenge
RANDAIOT_n

image8.emf
AIoT Device AIoT reader/gNB

AIoTF ADM

6. paging message

(RAND, B, m, k)

2.1. Generates RAND for the group

2.2. Computes CT-IDs for each device in the

gorup

7.1. Computes its own CT-ID in the same way ADM

did.

7.2 Checks if the CT-ID is inserted into the Bloom

filter B or not.

1. Group Identification Info.

4 Inserts all the C-TIDs into a Bloom filter B of

length m and involving k hash functions.

Microsoft_Visio_Drawing4.vsdx
AIoT Device
AIoT reader/gNB
AIoTF
ADM
6. paging message
(RAND, B, m, k)
2.1. Generates RAND for the group
2.2. Computes CT-IDs for each device in the gorup
5. paging request
(RAND, B, m, k)
7.1. Computes its own CT-ID in the same way ADM did.
7.2 Checks if the CT-ID is inserted into the Bloom filter B or not.
3. RAND, CT-IDs
1. Group Identification Info.
4 Inserts all the C-TIDs into a Bloom filter B of length m and involving k hash functions.

image9.png
p(nI+100

4

Using 1 hash function.

— m=500
— m=750
— m=100

>z

I

5 %o % w0 135 10 15
Number of Device IDs inserted into the Bloom Filer)

200

image10.png
Using 2 hash functions.

False positive in percentage,

6 2 % B w0 ms 10 15 200
Number of Device IDs inserted into the Bloom Fiter ()

image11.png
Using 3 hash functions.

| —

False positve in percentage. .

5 L
ey

—

wo w5 Bo 15
"Number of Device IDs inserted into the Bloom Fiftr (n)

image12.emf
1. Tag Request

 (Filtering information)

AIoT

Device

AIoT

RAN

AIOTF ADM NEF AF

0. Step 1-6 of clause 6.2.2 for inventory or 6.2.3 for Command as in TS 23.369

9. (Filtering information, Tag)

5. Paging request

 (Tag, R)

8. Inventory Response

2. Tag generation

6. The device determines whether it

has been paged based on the tag.

4. Inventory Request

 (Tag, R)

7. D2R message

3. Tag Response

 (Tag, R)

10. Device permanent identifiers

Microsoft_Visio_Drawing5.vsdx
1. Tag Request
 (Filtering information)
AIoT Device
AIoT RAN
AIOTF
ADM
NEF
AF
0. Step 1-6 of clause 6.2.2 for inventory or 6.2.3 for Command as in TS 23.369
9. (Filtering information, Tag)
5. Paging request
 (Tag, R)
8. Inventory Response
2. Tag generation
6. The device determines whether it has been paged based on the tag.
4. Inventory Request
 (Tag, R)
7. D2R message
3. Tag Response
 (Tag, R)

10. Device permanent identifiers

image13.emf
1. Tag Request

 (Filtering information)

AIoT

Device

AIoT

RAN

AIOTF ADM NEF AF

0. Step 1-6 of clause 6.2.2 for inventory or 6.2.3 for Command as in TS 23.369

9. (Filtering information, Tag)

5. Paging request

 (Tag, R)

8. Inventory Response

2. Tag generation

6.

 The device determines whether it

has been paged based on the filtering

information and the tag.

4. Inventory Request

 (Tag, R)

7. D2R message

3. Tag Response

 (Tag, R)

10. Device permanent identifiers

Microsoft_Visio_Drawing16.vsdx
1. Tag Request
 (Filtering information)
AIoT Device
AIoT RAN
AIOTF
ADM
NEF
AF
0. Step 1-6 of clause 6.2.2 for inventory or 6.2.3 for Command as in TS 23.369
9. (Filtering information, Tag)
5. Paging request
 (Tag, R)
8. Inventory Response
2. Tag generation
6. The device determines whether it has been paged based on the filtering information and the tag.
4. Inventory Request
 (Tag, R)
7. D2R message
3. Tag Response
 (Tag, R)

10. Device permanent identifiers

image14.emf
AIoT

Device

SEAF AUSF

ADM/UDM/

ARPF

6. Authentication Request

2. Nudm_UEAuthentication_

Get Response

(5G HE AV, [SUPI], [AKMA

indication],[Routing indicator])

1. Generate AV

5. Nausf_UEAuthentication_

Authenticate Response

(5G SE AV)

7. Calculate Authentication

Response (RES*)

8. Authentication Response

10. Nausf_UEAuthentication_

Authenticate Request

(RES*)

11. RES* Verification

12. Nausf_UEAuthentication_

Authenticate Response

(Result, [SUPI], K

SEAF

)

3. Store XRES*

4. Calculate HXRES*

9. Calculate HRES* and

compare to HXRES*

UE/gNB

Reader

Microsoft_Visio_Drawing7.vsdx
AIoT
Device
SEAF
AUSF
ADM/UDM/ARPF
6. Authentication Request
2. Nudm_UEAuthentication_
Get Response
(5G HE AV, [SUPI], [AKMA indication],[Routing indicator])
1. Generate AV
5. Nausf_UEAuthentication_
Authenticate Response
(5G SE AV)
7. Calculate Authentication Response (RES*)
8. Authentication Response
10. Nausf_UEAuthentication_
Authenticate Request
(RES*)
11. RES* Verification
12. Nausf_UEAuthentication_
Authenticate Response
(Result, [SUPI], KSEAF)
3. Store XRES*
4. Calculate HXRES*
9. Calculate HRES* and compare to HXRES*
UE/gNB
Reader

image15.emf
DO-A device Reader AIoTF ADM

1. registration request

4. authentication request

2. authentication request

6. authentication response

8. registration complete

7. authentication

verification

3. authentication response

5. authentication

verification

Microsoft_Visio_Drawing8.vsdx
DO-A device
Reader
AIoTF
ADM
1. registration request
4. authentication request
2. authentication request
6. authentication response
8. registration complete
7. authentication verification
3. authentication response
5. authentication verification

image16.emf
AIoT Device NG-RAN AIOTF ADM

1. Registration request (concealed id)

2. Request authentication data

(concealed id)

3. Deconceal id

Generate RAND, AUTN, XRES

Generate session key K

AIOTF

4. Response (cleartext id,

RAND, AUTN, XRES, K

AIOTF

)

5. Authentication request

(RAND, AUTN)

6. Verify AUTN,

compute RES

7. Authentication response (RES)

8. Verify RES = XRES

9. Derive session keys

9. Generate K

AIOTF

and

derive session keys.

[10. Assign new concealed id]

Microsoft_Visio_Drawing9.vsdx
AIoT Device
NG-RAN
AIOTF
ADM
1. Registration request (concealed id)
2. Request authentication data (concealed id)
3. Deconceal id
Generate RAND, AUTN, XRES
Generate session key KAIOTF
4. Response (cleartext id,
RAND, AUTN, XRES, KAIOTF)
5. Authentication request
(RAND, AUTN)
6. Verify AUTN, compute RES
7. Authentication response (RES)
8. Verify RES = XRES
9. Derive session keys
9. Generate KAIOTF and derive session keys.
[10. Assign new concealed id]

image17.emf
AIoT Device NG-RAN AIOTF ADM

13. Verify RES = XRES

[8. If command: derive session

keys, protect command]

10. Verify AUTN,

compute RES

AF/NEF

1. Initiate inventory or command.

2. Inventory request

(e.g. filtering information)

4. Authentication initialization

(concealed id)

5. Request authentication

data (concealed id)

6. Deconceal id

Generate RAND, AUTN, XRES

Generate session key K

AIOTF

9. Authentication request

(RAND, AUTN, [protected command])

[11. If command: Generate

K

AIOTF

, derive session keys,

process protected command.]

[14. If command: Process the

protected message]

15. Finalize inventory or command.

[16. Assign new concealed id]

3. Check if device

is selected.

Microsoft_Visio_Drawing110.vsdx
AIoT Device
NG-RAN
AIOTF
ADM
12. Authentication response
and inventory report (RES,
[protected command response])
13. Verify RES = XRES
[8. If command: derive session keys, protect command]
10. Verify AUTN, compute RES
AF/NEF
1. Initiate inventory or command.
2. Inventory request
(e.g. filtering information)
4. Authentication initialization
(concealed id)
5. Request authentication
data (concealed id)
6. Deconceal id
Generate RAND, AUTN, XRES
Generate session key KAIOTF
7. Response (cleartext id,
RAND, AUTN, XRES, KAIOTF)
9. Authentication request
(RAND, AUTN, [protected command])
[11. If command: Generate KAIOTF, derive session keys, process protected command.]
[14. If command: Process the protected message]
15. Finalize inventory or command.
[16. Assign new concealed id]
3. Check if device
is selected.

image18.emf
AIoT NG-RAN AIoTF ADM

3. Registration Request

(AUTN, RAND, AIoT ID, security

capability)

7. Retrieves the long-term key of

AIoT.

Verifies AUTN.

Derive RES and K

AIoTF

.

1. Broadcasting message

(RAND)

2. Generate AUTN.

5. Registration Request

(AUTN, RAND, AIoT ID, security

capability)

6. Auth Req

(AUTN, RAND, AIoT ID)

8. Auth Res

(Result, K

AIoTF

)

9. Registration Accept

(Selected algorithms, security capability, MAC)

10. Verifies the MAC

4. Check whether

RAND is acceptable.

Microsoft_Visio_Drawing11.vsdx
AIoT
NG-RAN
AIoTF
ADM
3. Registration Request
(AUTN, RAND, AIoT ID, security capability)
7. Retrieves the long-term key of AIoT.
Verifies AUTN.
Derive RES and KAIoTF.
1. Broadcasting message
(RAND)
2. Generate AUTN.
5. Registration Request
(AUTN, RAND, AIoT ID, security capability)
6. Auth Req
(AUTN, RAND, AIoT ID)
8. Auth Res
(Result, KAIoTF)
9. Registration Accept
(Selected algorithms, security capability, MAC)
10. Verifies the MAC
4. Check whether RAND is acceptable.

image19.emf
AIoT Reader

DO-A AIoT

Device

AIOTF

6.Authentication vector response(AUTN,

Network Nonce, XRES, Kaiotf)

ADM

2.Registration request(Device ID Info, Device Nonce,

MAC)

1.Generate Device

Nonce

3.Authentication vector request(Device

ID Info, Device Nonce, MAC)

4.Verify device ID Info

and registration request

5.Generate Network

Nonce and device

authentication vector

8.Authentication request(AUTN, Network Nonce, T-ID

ciphertext, MAC)

10.Authentication response(RES)

11.a.Store device

security context

11.b.Verify RES and store

device security context

0b.Configure with device

permanent ID, root key,

network public key

0a.Configure with device

permanent ID, root key,

network private key

12.Registration response(ok)

7.Generate T-ID

9.Verify AUTN, derive Kaiotf,

verify MAC, decrypt T-ID

ciphertext, generate RES

AIoT Reader
DO-A AIoT Device
AIOTF
6.Authentication vector response(AUTN, Network Nonce, XRES, Kaiotf)
ADM
2.Registration request(Device ID Info, Device Nonce, MAC)
1.Generate Device Nonce
3.Authentication vector request(Device ID Info, Device Nonce, MAC)
4.Verify device ID Info and registration request
5.Generate Network Nonce and device authentication vector
8.Authentication request(AUTN, Network Nonce, T-ID ciphertext, MAC)
10.Authentication response(RES)
11.a.Store device security context
11.b.Verify RES and store device security context
0b.Configure with device permanent ID, root key, network public key
0a.Configure with device permanent ID, root key, network private key
12.Registration response(ok)
7.Generate T-ID
9.Verify AUTN, derive Kaiotf, verify MAC, decrypt T-ID ciphertext, generate RES

image20.emf
AIoT device NG-RAN AIoTF ADM/CH

4. Authentication response

 (K

AIOT session

, RAND

AIoT

network

,

and R-ID

new

)

2.Authentication request

 (R-ID, auth. token, RAND

AIoT

device

)

5. AIoT NAS Registration Accept message

(R-ID

new

, RAND

AIoT

network

, MAC

)

6. Derive K

AIoT

session

 and process

the message using

K

AIoT session

3. Check Auth.

token. If successful,

generate RAND

AIoT

network

, K

AIOT session

and

R-ID

new

1. AIoT NAS Registration Request message

(R-ID, auth token, RAND

AIOT

device,

 [initial registration

indicator])

7. AIoT NAS Registration Complete message

(DO-A data, MAC)

8. Process the

protected message

using K

AIoT session

Microsoft_Visio_Drawing13.vsdx
AIoT device
NG-RAN
AIoTF
ADM/CH
4. Authentication response
 (KAIOT session, RANDAIoT network, and R-IDnew)

2.Authentication request
 (R-ID, auth. token, RANDAIoT device)

5. AIoT NAS Registration Accept message
(R-IDnew, RANDAIoT network, MAC)
6. Derive KAIoT session and process the message using KAIoT session
3. Check Auth. token. If successful, generate RANDAIoT network, KAIOT session and R-IDnew
1. AIoT NAS Registration Request message
(R-ID, auth token, RANDAIOT device, [initial registration indicator])
7. AIoT NAS Registration Complete message
(DO-A data, MAC)
8. Process the protected message using KAIoT session

image21.emf
AIoT Reader DO-A AIoT Device AIOTF

7.Data transmission request(Data, MAC)

0.Mutual authentication and setting DO-A Device security

context(Kaiotf, T-ID)

2.Security association request(T-ID, Device Nonce, MAC)

5.Security association response(Network Nonce, MAC)

4.Generate Network

Nonce and session key

6.Generate session key

and verify message

1.Genate Device Nonce

3.Verify message

8.Data transmission response(MAC)

AIoT Reader
DO-A AIoT Device
AIOTF
7.Data transmission request(Data, MAC)
0.Mutual authentication and setting DO-A Device security context(Kaiotf, T-ID)
2.Security association request(T-ID, Device Nonce, MAC)
5.Security association response(Network Nonce, MAC)
4.Generate Network Nonce and session key
6.Generate session key and verify message
1.Genate Device Nonce
3.Verify message
8.Data transmission response(MAC)

image22.emf
AIoT Reader DO-A AIoT Device AIOTF

7.Data transmission request(Data, MAC)

0.Mutual authentication and setting DO-A Device security

context(Kaiotf, T-ID)

2.Security association request(T-ID, Network Nonce, MAC)

5.Security association response(Device Nonce, MAC)

4.Generate Device Nonce

and session key

6.Generate session key

and verify message

1.Genate Network Nonce

3.Verify message

8.Data transmission response(MAC)

AIoT Reader
DO-A AIoT Device
AIOTF
7.Data transmission request(Data, MAC)
0.Mutual authentication and setting DO-A Device security context(Kaiotf, T-ID)
2.Security association request(T-ID, Network Nonce, MAC)
5.Security association response(Device Nonce, MAC)
4.Generate Device Nonce and session key
6.Generate session key and verify message
1.Genate Network Nonce
3.Verify message
8.Data transmission response(MAC)

image23.emf
AIoT device NG-RAN AIoTF ADM/CH

5. AIoT NAS data transfer acknowledgement

(RAND

AIoT network

, MAC

)

6a. Derive K

AIoT

session

¶��

6b. Process the

message using

K

AIoT session

¶�



2a. Derive K

AIoT session

based on K

AIoT root

 and

RAND

AIoT device

.



2b. Process the

message based on K

AIoT

session

.



2c. If successful,

derive K

AIoT session

͛�

based on K

AIoT root

 and

RAND

AIoT device

, and

RAND

AIoT network

1. AIoT NAS data transfer

(Device identification information, RAND

AIoT device,

 DO-A data, MAC)

3. AIoT NAS data transfer acknowledgement

(K

AIoT session

͕͛�RAND

AIoT network

, DO-A data)

4. Construct and

protect message

using K

AIoT session

¶��

Microsoft_Visio_Drawing14.vsdx
AIoT device
NG-RAN
AIoTF
ADM/CH

5. AIoT NAS data transfer acknowledgement
(RANDAIoT network, MAC)
6a. Derive KAIoT session’.
6b. Process the message using KAIoT session’.
2a. Derive KAIoT session based on KAIoT root and RANDAIoT device .
2b. Process the message based on KAIoT session.
2c. If successful, derive KAIoT session’ based on KAIoT root and RANDAIoT device, and RANDAIoT network
1. AIoT NAS data transfer
(Device identification information, RANDAIoT device, DO-A data, MAC)
3. AIoT NAS data transfer acknowledgement
(KAIoT session’, RANDAIoT network , DO-A data)
4. Construct and protect message using KAIoT session’.

image24.wmf
A

I

o

T

d

e

v

i

c

e

R

e

a

d

e

r

A

I

o

T

F

A

D

M

/

U

D

M

0

.

P

r

e

-

p

r

o

v

i

s

i

o

n

i

n

g

o

f

A

I

o

T

p

e

r

m

a

n

e

n

t

I

D

1

.

A

I

o

T

_

D

O

A

_

r

e

q

u

e

s

t

S

U

C

I

*

,

T

-

I

D

*

2

.

S

U

C

I

*

,

T

-

I

D

*

3

.

S

U

C

I

*

,

T

-

I

D

*

4

.

S

U

P

I

*

,

A

V

5

.

A

K

A

'

-

C

h

a

l

l

e

n

g

e

,

T

-

I

D

*

6

.

A

K

A

'

-

r

e

s

p

o

n

s

e

7

.

V

e

r

i

f

y

r

e

s

p

o

n

s

e

8

.

A

s

s

i

g

n

T

-

I

D

(

e

.

g

.

c

o

m

m

a

n

d

)

9

.

C

o

m

m

a

n

d

r

e

s

p

o

n

s

e

oleObject6.bin

image25.emf
AF NEF AIoTF UDM AMF UE1

3. UE subscription request/response

2. Intermediate UE authorization request

1. Service request(AIoT device ID,

service ID, UE reader ID(s))

4. Intermediate UE authorization response

5. Service request

5. Service request

Microsoft_Visio_Drawing15.vsdx
AF
NEF
AIoTF
UDM
AMF
UE1

3. UE subscription request/response

2. Intermediate UE authorization request
1. Service request(AIoT device ID, service ID, UE reader ID(s))

4. Intermediate UE authorization response

5. Service request

5. Service request

image26.emf
4. Authorization Result

1.Registration Request

(UE capability)

3.Authorization

2.Retrieve UE subscription data

6. Authorized intermediate UE

ID(s)

UDM AMF

IN UE

AIOTF gNB

5. Authorization Result Request

Microsoft_Visio_Drawing17.vsdx

4. Authorization Result
1.Registration Request
(UE capability)
3.Authorization
2.Retrieve UE subscription data
6. Authorized intermediate UE ID(s)
UDM
AMF
IN UE
AIOTF
gNB
5. Authorization Result Request

image1.emf

