3GPP TR 33.713 V0.43.0 (2024-108)
14
Release 19

[bookmark: Title][bookmark: DocumentFor][bookmark: _Hlk40295327][bookmark: page1]
	[bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 33.713 V0.43.0 (2024-108)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on Security Aspect of Ambient IoT Services in 5G
[bookmark: specRelease] (Release 19)

		

	[image:]
	[image:]

	[bookmark: warningNotice]

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	8
Introduction	9
1	Scope	10
2	References	10
3	Definitions of terms, symbols and abbreviations	10
3.1	Terms	10
3.2	Symbols	11
3.3	Abbreviations	11
4	Architecture and Security Assumptions	11
5	Key issues	11
5.1	Key Issue #1: Protection for disabling device operation	11
5.1.1	Key issue details	11
5.1.2	Threats	11
5.1.3	Potential security requirements	11
5.2	Key Issue #2: Authorization for 5G Ambient IoT services	12
5.2.1	Key issue details	12
5.2.2	Security threats	12
5.2.3	Potential security requirements	12
5.3	Key issue #3: Privacy by protecting AIoT device identifiers	12
5.3.1	Key issue details	12
5.3.2	Security Threats	12
5.3.3	Potential security requirements	13
5.4	Key issue #4: Protection of information during AIoT service communication	13
5.4.1	Key issue details	13
5.4.2	Security threats	13
5.4.3	Potential security requirements	13
5.5	Key Issue #5: Authentication in Ambient IoT service	13
5.5.1	Key issue details	13
5.5.2	Threats	14
5.5.3	Potential security requirements	14
5.6	Key issue #6: Exposure of Inventory Device Quantity	14
5.6.1	Key issue details	14
5.6.2	Security threats	14
5.6.3	Potential security requirements	15
5.X	Key Issue #X: <Key Issue Name>	15
5.X.1	Key issue details	15
5.X.2	Security threats	15
5.X.3	Potential security requirements	15
6	Solutions	15
6.0	Mapping of solutions to key issues	16
6.1	Solution #1: Ambient IoT device disabling mechanism	16
6.1.1 	Introduction	16
6.1.2 	Solution details	17
6.1.3 	Evaluation	18
6.2	Solution #2:PCF based Service Authorization and Provisioning to UE	19
6.2.1	Introduction	19
6.2.2	Solution details	19
6.2.3	Evaluation	19
6.3	Solution #3: Authorization of Intermediate UE for AIoT services	19
6.3.1	Introduction	19
6.3.2	Solution details	19
6.3.3	Evaluation	20
6.4	Solution #4: Protection for inventory and command procedure	21
6.4.1	Introduction	21
6.4.2	Solution details	21
6.4.2.1	Protection for inventory-only procedure	21
6.4.2.2	Protection for inventory and command procedure	22
6.4.2.3	Auth_token and XAuth_token derivation function	23
6.4.3	Evaluation	23
6.5	Solution #5: Disabling and Enabling AIoT Device	23
6.5.1	Introduction	23
6.5.2	Solution details	24
6.5.3	Evaluation	25
6.6	Solution #6: AIoT device authentication	25
6.6.1	Introduction	25
6.6.2	Solution details	25
6.6.3	Evaluation	27
6.7.1	 Introduction	27
6.7.2	 Details	27
6.7.3	 Evaluation	30
6.8	Solution #8: Mutual authentication for AIoT system	30
6.8.1	Introduction	30
6.8.2	Details	30
6.8.3	Evaluation	32
6.9	Solution #9: Device authentication and data communication security	32
6.9.1	Introduction	32
6.9.2	Solution details	32
6.9.3	Evaluation	34
6.10.1	Introduction	35
6.10.2	Solution details	35
6.102.1	UE reader case	35
6.10.2.1.1	Alternative 1 – UE reader granularity	35
6.10.2.1.2	Alternative 2 – AIoT device granularity	36
6.10.2.2	RAN reader case	37
6.10.3	Evaluation	38
6.11	Solution #11: Authentication and ID Privacy of AIoT devices with USIM on AIoT AS Layer	39
6.11.1	Introduction	39
6.11.2	Solution details	39
6.11.3	Evaluation	41
6.12	Solution #12: Authentication and ID Privacy of AIoT devices with USIM on AIoT Layer	41
6.12.1	Introduction	41
6.12.2	Solution details	42
6.12.3	Evaluation	44
6.13	Solution #13: Authentication and ID privacy of AIoT devices without USIM	44
6.13.1	Introduction	44
6.13.2	Solution details	45
6.13.3	Evaluation	46
6.14	Solution #14: Information protection during AIoT service communication	46
6.14.1	Introduction	46
6.14.2	Solution details	47
6.14.2.1 Inventory Service information protection	47
6.14.2.2 Command Service information protection	48
6.14.3	Evaluation	49
6.15	Solution #15: End-to-end security protection of command procedure	49
6.15.1	Introduction	49
6.15.2	Solution details	50
6.15.3	Evaluation	51
6.16	Solution #16: Disabling operation procedure for Ambient IoT services	51
6.16.1	Introduction	51
6.16.2	Solution details	51
6.16.3	Evaluation	52
6.17	Solution #17: Disabling operation procedure for AIoT services	53
6.17.1	Introduction	53
6.17.2	Solution details	53
6.17.3	Evaluation	54
6.18	Solution #Y: Authorization procedure for AF-based intermediate node selection	54
6.18.1	Introduction	54
6.18.2	Solution details	55
6.18.3	Evaluation	55
6.19	Solution #19: Authorization of AIoT capable UE in topology 2	55
6.19.1	Introduction	55
6.19.2	Solution details	56
6.19.3	Evaluation	58
6.20	 Solution #20: Lightweight AIOT ID privacy based on hashes	58
6.20.1	 Introduction	58
6.20.2	 Details	59
6.20.3	 Evaluation	61
6.21	 Solution #21: Ephemeral AIOT ID security context based on puzzles for privacy	61
6.21.1	 Introduction	61
6.21.2	 Details	62
6.21.3	 Evaluation	64
6.22	Solution #22: Solution for protecting AIoT ID by using temporary ID	64
6.22.1	Introduction	64
6.22.2	Solution details	65
6.22.3	Evaluation	65
6.23	Solution #23: AIoT device ID privacy protection using anonymity key	66
6.23.1	Introduction	66
6.23.2	Solution details	66
6.23.3	Evaluation	67
6.24	Solution #24: temporary ID based AIoT device privacy protection	67
6.24.1	Introduction	67
6.24.2	Solution details	67
6.24.3	Evaluation	68
6.25	Solution #25: Use temporary identifier to protect the privacy of AIoT device identifiers.	69
6.25.1	Introduction	69
6.25.2	Solution details	69
6.25.3	Evaluation	70
6.26	Solution #26: Local generated Temporary ID to provide device privacy	70
6.26.1	Introduction	70
6.26.2	Solution details	71
6.26.2.1 Temporary ID generation.	71
6.26.3	Evaluation	72
6.27	Solution #27: Privacy protection of AIoT device identifier based on a temporary identifier	72
6.27.1	Introduction	72
6.27.2	Solution details	73
6.27.2.1	Procedures	73
6.27.2.2	Generation of a temporary identifier	74
6.27.3	Evaluation	74
6.28	Solution #29: Privacy protection on AIoT device IDs	74
6.28.1	Introduction	74
6.28.2	Details	74
6.28.3	Evaluation	75
6.29	Solution #29: Providing a network-computed AIoT concealed device identifier (AICI) to an AIoT device	75
6.29.1	Introduction	75
6.29.2	Solution details	75
6.29.3	Evaluation	76
6.30	Solution #30: Privacy protection for inventory operation	77
6.30.1	Introduction	77
6.30.2	Solution details	77
6.30.2.1	Inventory procedure with unprotected inventory request parameters	77
6.30.2.2	Inventory procedure with protected inventory request parameters	78
6.30.3	Evaluation	79
6.31	Solution #31: Ambient IoT ID privacy	79
6.31.1 Introduction	79
6.31.2 Solution details	80
6.31.3 Evaluation	81
6.Y	Solution #Y: <Solution Name>	81
6.Y.1	Introduction	81
6.Y.2	Solution details	81
6.Y.3	Evaluation	81
7	Conclusions	81
Annex <X> (informative): Change history	82
Foreword	6
Introduction	7
1	Scope	8
2	References	8
3	Definitions of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.3	Abbreviations	9
4	Architecture and Security Assumptions	9
5	Key issues	9
5.1	Key Issue #1: Protection for disabling device operation	9
5.1.1	Key issue details	9
5.1.2	Threats	9
5.1.3	Potential security requirements	9
5.2	Key Issue #2: Authorization for 5G Ambient IoT services	10
5.2.1	Key issue details	10
5.2.2	Security threats	10
5.2.3	Potential security requirements	10
5.3	Key issue #3: Privacy by protecting AIoT device identifiers	10
5.3.1	Key issue details	10
5.3.2	Security Threats	10
5.3.3	Potential security requirements	10
5.4	Key issue #4: Protection of information during AIoT service communication	11
5.4.1	Key issue details	11
5.4.2	Security threats	11
5.4.3	Potential security requirements	11
5.5	Key Issue #5: Authentication in Ambient IoT service	11
5.5.1	Key issue details	11
5.5.2	Threats	11
5.5.3	Potential security requirements	11
5.X	Key Issue #X: <Key Issue Name>	12
5.X.1	Key issue details	12
5.X.2	Security threats	12
5.X.3	Potential security requirements	12
6	Solutions	12
6.0	Mapping of solutions to key issues	12
6.1	Solution #1: Ambient IoT device disabling mechanism	12
6.1.1 	Introduction	12
6.1.2 	Solution details	13
6.1.3 	Evaluation	14
6.2	Solution #2:PCF based Service Authorization and Provisioning to UE	14
6.2.1	Introduction	14
6.2.2	Solution details	14
6.2.3	Evaluation	15
TBD	15
6.3	Solution #3: Authorization of Intermediate UE for AIoT services	15
6.3.1	Introduction	15
6.3.2	Solution details	15
6.3.3	Evaluation	16
6.Y	Solution #Y: <Solution Name>	16
6.Y.1	Introduction	16
6.Y.2	Solution details	16
6.Y.3	Evaluation	16
7	Conclusions	16
Annex <X> (informative): Change history	17

[bookmark: _Hlk155610654]

[bookmark: foreword][bookmark: _Toc167405377][bookmark: _Toc180278697][bookmark: _Toc180278873][bookmark: _Toc180279137][bookmark: _Toc180279611][bookmark: _Toc180279790]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc167405378][bookmark: _Toc180278698][bookmark: _Toc180278874][bookmark: _Toc180279138][bookmark: _Toc180279612][bookmark: _Toc180279791]Introduction
This clause is optional. If it exists, it shall be the second unnumbered clause.
Editor’s Note: This clause contains some background information for the study.

[bookmark: scope][bookmark: _Toc167405379][bookmark: _Toc180278699][bookmark: _Toc180278875][bookmark: _Toc180279139][bookmark: _Toc180279613][bookmark: _Toc180279792][bookmark: _Hlk162531627]
1	Scope
The present document identifies potential threats and security requirements to enable AIoT services for various use cases. Consideration for the energy and complexity constraints of AIoT devices is taken into account in identifying and developing potential security mechanisms to support AIoT services. Specifically, the present document focuses on the following:
1. Identify security and privacy and threats introduced by AIoT services for use cases captured in TS 22.369 [2], for topologies captured in RP-234058[3], and for architecture captured in TR 23-700-13[4].
2. Identify security requirements to address the identified threats.
3. Develop potential solutions that fulfil the security requirements, taking into account AIoT device constraints agreed upon in other 3GPP working groups.
NOTE 1: Enable/disable device operation is within the scope of the present document.
[bookmark: references][bookmark: _Toc167405380][bookmark: _Toc180278700][bookmark: _Toc180278876][bookmark: _Toc180279140][bookmark: _Toc180279614][bookmark: _Toc180279793]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 22.369: "Service Requirements for ambient power-enabled IoT".
[3]	RP-244058234058, RAN New SID for Study on Solution for Ambient IoT in NR.
[4]	3GPP TR 23-700-13: "Study on Architecture Support of Ambient power-enabled Internet of Things".
[5]					3GPP TS 33.501: "Security Architecture and Procedures for 5G System".
[6]					R2-2406202 RAN2#126 Meeting Report
[7]	RFC 4739: "Multiple Authentication Exchanges in the Internet Key Exchange (IKEv2) Protocol".
[8]	3GPP TR 38.848: "Technical Specification Group Radio Access Network; Study on Ambient IoT (Internet of Things) in RAN".

[bookmark: definitions][bookmark: _Toc167405381][bookmark: _Toc180278701][bookmark: _Toc180278877][bookmark: _Toc180279141][bookmark: _Toc180279615][bookmark: _Toc180279794]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc167405382][bookmark: _Toc180278702][bookmark: _Toc180278878][bookmark: _Toc180279142][bookmark: _Toc180279616][bookmark: _Toc180279795]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc167405383][bookmark: _Toc180278703][bookmark: _Toc180278879][bookmark: _Toc180279143][bookmark: _Toc180279617][bookmark: _Toc180279796]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc167405384][bookmark: _Toc180278704][bookmark: _Toc180278880][bookmark: _Toc180279144][bookmark: _Toc180279618][bookmark: _Toc180279797]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
<ABBREVIATION>	<Expansion>

[bookmark: clause4][bookmark: _Toc167405385][bookmark: _Toc180278705][bookmark: _Toc180278881][bookmark: _Toc180279145][bookmark: _Toc180279619][bookmark: _Toc180279798]4	Architecture and Security Assumptions
Editor’s Note: This clause contains security architecture and assumptions to be considered for the study (e.g., per work task/KI).
The following architecture and security assumptions are applied:
· The architecture assumptions and requirements for Ambient IoT services as defined in TR 23.700-13 [4] are used as architecture assumptions in this study.
· [bookmark: _Hlk175252275]Two functional cases are considered as baseline: (1) inventory, (2) command.

[bookmark: _Toc106618430][bookmark: _Toc167405386][bookmark: _Toc180278706][bookmark: _Toc180278882][bookmark: _Toc180279146][bookmark: _Toc180279620][bookmark: _Toc180279799]5	Key issues
Editor’s Note: This clause contains all the key issues identified during the study.
[bookmark: _Toc104221074][bookmark: _Toc167405387][bookmark: _Toc180278707][bookmark: _Toc180278883][bookmark: _Toc180279147][bookmark: _Toc180279621][bookmark: _Toc180279800][bookmark: _Toc513475447][bookmark: _Toc48930863][bookmark: _Toc49376112][bookmark: _Toc56501565][bookmark: _Toc95076612][bookmark: _Toc106618431]5.1	Key Issue #1: Protection for disabling device operation
[bookmark: _Toc104221075][bookmark: _Toc167405388][bookmark: _Toc180278708][bookmark: _Toc180278884][bookmark: _Toc180279148][bookmark: _Toc180279622][bookmark: _Toc180279801]5.1.1	Key issue details
As specified in TS 22.369 [2], the enable/disable device operation is used for the operator to manage the Ambient IoT device, which can enable/disable the Ambient IoT device's capability to transmit RF signals. Based on operator policy, there are two categories of disabling device operations, i.e. permanent disabling of the capability and temporary disabling of the capability.
[bookmark: _Toc104221076][bookmark: _Toc167405389][bookmark: _Toc180278709][bookmark: _Toc180278885][bookmark: _Toc180279149][bookmark: _Toc180279623][bookmark: _Toc180279802]5.1.2	Threats
As a management operation, the availability of Ambient IoT devices will be impacted if the disabling device operation is not securely performed. For example, if the Ambient IoT device follows the spoofed permanent/temporary disable device operation from an attacker, the Ambient IoT devices will not respond to the network either permanently, or for a period of time, leading to the Denial of Service (DOS).
[bookmark: _Toc104221077][bookmark: _Toc167405390][bookmark: _Toc180278710][bookmark: _Toc180278886][bookmark: _Toc180279150][bookmark: _Toc180279624][bookmark: _Toc180279803]5.1.3	Potential security requirements
The means to securely disable the Ambient IoT device(s)’s capability to transmit RF signals shall be supported.
Editor’s Note: Whether the solutions for this key issue are the same or different from those for communication protection issue is FFS.
Editor’s Note: Security solutions for this Key Issue should be aligned with the conclusion of Ambient IoT system architecture in SA2..
[bookmark: _Toc101349996][bookmark: _Toc167405391][bookmark: _Toc180278711][bookmark: _Toc180278887][bookmark: _Toc180279151][bookmark: _Toc180279625][bookmark: _Toc180279804]5.2	Key Issue #2: Authorization for 5G Ambient IoT services
[bookmark: _Toc101349997][bookmark: _Toc167405392][bookmark: _Toc180278712][bookmark: _Toc180278888][bookmark: _Toc180279152][bookmark: _Toc180279626][bookmark: _Toc180279805]5.2.1	Key issue details
[bookmark: _Toc101349998]In TR 23.700-13 [4], Key Issues #1 and #3 describe the issues on the system architecture and procedure to support 5G Ambient IoT services.
In the Topology 2 as defined in TR 38.769 848 [28], the UE acting as the intermediate node is responsible for transferring the information between AIoT device and 5GS. If the authorization of intermediate node is not supported, the attacker can play the role of intermediate node and arbitrarily deny 5G AIoT service.
Therefore, it is necessary to study how to authorize the UE for acting as the intermediate node.
[bookmark: _Toc167405393][bookmark: _Toc180278713][bookmark: _Toc180278889][bookmark: _Toc180279153][bookmark: _Toc180279627][bookmark: _Toc180279806][bookmark: _Toc101349999]5.2.2	Security threats
If the 5GC cannot verify if the UE acting as an intermediate node is authorized, the attacker UE may impersonate the intermediate node. The attacker UE may then deny the 5G Ambient IoT services.
[bookmark: _Toc167405394][bookmark: _Toc180278714][bookmark: _Toc180278890][bookmark: _Toc180279154][bookmark: _Toc180279628][bookmark: _Toc180279807]5.2.3	Potential security requirements
The 5GS shall be able to support the authorization of the AIoT capable UE as an intermediate node in 5G Ambient IoT services.
[bookmark: _Toc92180094][bookmark: _Toc92804820][bookmark: _Toc167405395][bookmark: _Toc180278715][bookmark: _Toc180278891][bookmark: _Toc180279155][bookmark: _Toc180279629][bookmark: _Toc180279808]5.3	Key issue #3: Privacy by protecting AIoT device identifiers
[bookmark: _Toc92180095][bookmark: _Toc92804821][bookmark: _Toc167405396][bookmark: _Toc180278716][bookmark: _Toc180278892][bookmark: _Toc180279156][bookmark: _Toc180279630][bookmark: _Toc180279809]5.3.1	Key issue details
5G Ambient IoT service is a type of cellular IoT communication system where Ambient IoT devices utilize harvested energy to generate RF signals for bi-directional information transmission. Ambient IoT devices are characterized by limited functions, requiring only small and infrequent data transfers.
TS 22.369 [2] clause 5.2.6 defines the following privacy-related requirements:
[bookmark: _Hlk163044061]“The 5G system shall be able to provide a mechanism to protect the privacy of information (e.g., location and identity) exchanged during communication between an Ambient IoT device and the 5G network or an Ambient IoT capable UE.”
[bookmark: _1fob9te]In AIoT services, identifiers of AIoT device are used to identify the device. If the identifiers associated with a device are not privacy protected (e.g., exposed over the air), an attacker (e.g., an over-the-air attacker) can identify and track an AIoT device based on the identifiers associated with the AIoT device. Thus, this key issue is to investigate potential mechanisms to privacy protect the AIoT device identifiers.
[bookmark: _Toc167405397][bookmark: _Toc180278717][bookmark: _Toc180278893][bookmark: _Toc180279157][bookmark: _Toc180279631][bookmark: _Toc180279810]5.3.2	Security Threats
[bookmark: _3znysh7]An attacker can identify, monitor and track an AIoT device based on the identifiers associated with the AIoT device if the identifiers are not privacy protected.
Editor’s Note: It is FFS how the above threat affects various use cases.
Editor’s Note: Security threat and requirement for potential exposure of quantity of devices after adversary broadcasts an inventory message is FFS.
[bookmark: _Toc167405398][bookmark: _Toc180278718][bookmark: _Toc180278894][bookmark: _Toc180279158][bookmark: _Toc180279632][bookmark: _Toc180279811]5.3.3	Potential security requirements
Mechanisms for mitigating privacy threats (described above) by identifying, linking, and tracking the identifiers of AIoT Device(s) shall be supported.
Editor’s Note: AIoT use cases that do not need the above privacy protection mechanisms are FFS.
[bookmark: _Toc167405399][bookmark: _Toc180278719][bookmark: _Toc180278895][bookmark: _Toc180279159][bookmark: _Toc180279633][bookmark: _Toc180279812][bookmark: _Toc106207166][bookmark: _Toc116942731][bookmark: _Toc119928605]5.4	Key issue #4: Protection of information during AIoT service communication
[bookmark: _Toc106207167][bookmark: _Toc116942732][bookmark: _Toc119928606][bookmark: _Toc167405400][bookmark: _Toc180278720][bookmark: _Toc180278896][bookmark: _Toc180279160][bookmark: _Toc180279634][bookmark: _Toc180279813]5.4.1	Key issue details
[bookmark: _Toc106207168]As per TS 22.369 [2], Ambient power-enabled IoT (AIoT) services aim to support various use cases, including inventory taking, sensor data collection, asset tracking, and actuator control. These services intended to operate with lower power consumption and complexity than the existing IoT technologies such as eMTC, NB-IoT, and RedCap. To fulfil these requirements, AIoT devices require a communication capability.
Considering the ambient IoT device will be deployed in the indoor system, if the restricted access means (e.g., in factory) are provided, the possibility of attack is minimal. However, if the environment (e.g., in shopping mall) is open to the attacker, From from a security perspective, security mechanisms to protect the information transmitted during AIoT service communication need to be supported. Failure to provide such security mechanisms will lead to various attacks such as eavesdropping, manipulation and/or unauthorized transmission of the information during AIoT service communication.
Editor’s Note: Further key issue details is FFS.
[bookmark: _Toc167405401][bookmark: _Toc180278721][bookmark: _Toc180278897][bookmark: _Toc180279161][bookmark: _Toc180279635][bookmark: _Toc180279814]5.4.2	Security threats
[bookmark: _Toc106207169]TBD.For command operation (e.g., write, read), the following threats are applicable:
An attacker may acquire data transmitted to/from AIoT devices by eavesdropping messages if the communication of AIoT service is not confidentiality protected.
An attacker may manipulate information during communication of AIoT service if the communication of AIoT service is not integrity protected.
An attacker may replay a message if replay protection is not activated.
[bookmark: _Toc116942734][bookmark: _Toc119928608][bookmark: _Toc167405402][bookmark: _Toc180278722][bookmark: _Toc180278898][bookmark: _Toc180279162][bookmark: _Toc180279636][bookmark: _Toc180279815]5.4.3	Potential security requirements
TBD.The Ambient IoT system shall support a means to ensure confidentiality, integrity and/or anti-replay of information for AIoT services.
 Editor’s Note: Whether information protection between AIoT device and 5G core is mandatory is ffs.
Editor’s Note: Whether information protection can be done on application layer is ffs.

[bookmark: _Toc180278723][bookmark: _Toc180278899][bookmark: _Toc180279163][bookmark: _Toc180279637][bookmark: _Toc180279816]5.5	Key Issue #5: Authentication in Ambient IoT service
[bookmark: _Toc180278724][bookmark: _Toc180278900][bookmark: _Toc180279164][bookmark: _Toc180279638][bookmark: _Toc180279817]5.5.1	Key issue details
The TR 23.700-13 [4] studies the architecture support of Ambient Internet of Things (AIoT) device, considering the service requirements for ambient power-enabled IoT device. In TR 23.700-13 [4], the validation of the AIoT device identity and authentication are explicitly mentioned.
[bookmark: _Toc180278725][bookmark: _Toc180278901][bookmark: _Toc180279165][bookmark: _Toc180279639][bookmark: _Toc180279818]5.5.2	Threats
In the air interface, an attacker may impersonate the victim device and report fake identification to the network side. If the billing is based on per AIoT device’s identity, the fake identity may lead to charging problem. This can be used by an adversary to steal an AIoT device by replacing the AIoT device with a fake device, which might cause a loss to the owner of the device. Whether fake identities pose a threat in case of inventory use case, is up to the individual deployments risk profile.
Over the air interface, without authentication, an adversary can impersonate a legitimate network and send a command — e.g., disablement command will permanently deactivate a device.

Editor’s Note: additional threat is FFS.
[bookmark: _Toc180278726][bookmark: _Toc180278902][bookmark: _Toc180279166][bookmark: _Toc180279640][bookmark: _Toc180279819]5.5.3	Potential security requirements
The 5G system shall provide a means to perform mutual authentication between the AIoT device and the network.
NOTE: If solution reuses the existing authentication framework (e.g., 5G-AKA, EAP-AKA’, other EAP methods for SNPN), the existing UE security requirements in TS 33.501[5] apply. Otherwise, the core network entities, if any, that are used for authentication are dedicated for Ambient IoT service.
Editor’s Note: Secure storage and processing of credentials (on the AIoT device and network side) for solution not reusing existing authentication framework as per the note above is ffs.
Editor's Note: Whether performing authentication is to be mandated or optional, one way or mutual, or left to the application layer is to be discussed and decided in the conclusion.

Editor’s Note: Whether authentication of AIoT device is mandatory is ffs.
Editor’s Note: Whether one-way authentication needs to be defined is ffs.
Editor’s Note: Whether authentication of AIoT device can be done on application layer is ffs.
[bookmark: _Toc167405553][bookmark: _Toc180278727][bookmark: _Toc180278903][bookmark: _Toc180279167][bookmark: _Toc180279641][bookmark: _Toc180279820]5.6	Key issue #6: Exposure of Inventory Device Quantity
[bookmark: _Toc167405554][bookmark: _Toc180278728][bookmark: _Toc180278904][bookmark: _Toc180279168][bookmark: _Toc180279642][bookmark: _Toc180279821]5.6.1	Key issue details
The inventory service is a fundamental process for AIoT devices, which includes both "inventory only" and "inventory and command" cases. In both scenarios, the mandatory steps involve AIoT paging and Device ID transmission. The AIoT paging message may contain an ID of a single A-IoT device, a group ID that maps to multiple A-IoT devices, or multiple IDs of A-IoT devices. If AIoT paging message does not contain an ID, it will map to all the A-IoT devices. After these steps, the network can calculate the quantity of device IDs for this inventory.
The inventory device quantity may contain business information, such as the quantity of stock in a shopping mall. If this information falls into the hands of competitors, they may adjust their sales strategy to attract more customers from that shopping mall.
[bookmark: _Toc167405555][bookmark: _Toc180278729][bookmark: _Toc180278905][bookmark: _Toc180279169][bookmark: _Toc180279643][bookmark: _Toc180279822]5.6.2	Security threats
By broadcasting a fake inventory message with a group ID, an attacker could potentially calculate the quantity of devices in a group by observing the differences in reported device IDs, even if the IDs are encrypted. This could lead to the exposure of the inventory device quantity associated with the group ID. For example, in a shopping mall, assuming the attacker has knowledge of the link between the group ID and goods (such as knowledge of the link between SUPI and the real subscriber), the attacker could use a fake reader to broadcast this group ID. Subsequently, the attacker would receive multiple device IDs and calculate the device quantity for this group ID, allowing them to determine the number of specific goods.
An attacker could calculate the quantity of all devices by observing differences in reported device IDs, even if the IDs are encrypted, after sending a fake inventory message without any IDs. This could result in the exposure of the inventory device quantity within an area. For instance, in a shopping mall, if an attacker can control the broadcast scope into the shopping mall, they could utilize a fake reader to broadcast an inventory message without any ID. Subsequently, the attacker would receive multiple device IDs, enabling them to calculate the device quantity in this area and determine the stock levels of all the goods of this shopping mall.
[bookmark: _Toc167405556][bookmark: _Toc180278730][bookmark: _Toc180278906][bookmark: _Toc180279170][bookmark: _Toc180279644][bookmark: _Toc180279823]5.6.3	Potential security requirements
TBA.

[bookmark: _Toc167405403][bookmark: _Toc180278731][bookmark: _Toc180278907][bookmark: _Toc180279171][bookmark: _Toc180279645][bookmark: _Toc180279824]5.X	Key Issue #X: <Key Issue Name>
[bookmark: _Toc513475448][bookmark: _Toc48930864][bookmark: _Toc49376113][bookmark: _Toc56501566][bookmark: _Toc95076613][bookmark: _Toc106618432][bookmark: _Toc167405404][bookmark: _Toc180278732][bookmark: _Toc180278908][bookmark: _Toc180279172][bookmark: _Toc180279646][bookmark: _Toc180279825]5.X.1	Key issue details
[bookmark: _Toc513475449][bookmark: _Toc48930865][bookmark: _Toc49376114][bookmark: _Toc56501567][bookmark: _Toc95076614][bookmark: _Toc106618433][bookmark: _Toc167405405][bookmark: _Toc180278733][bookmark: _Toc180278909][bookmark: _Toc180279173][bookmark: _Toc180279647][bookmark: _Toc180279826]5.X.2	Security threats
[bookmark: _Toc513475450][bookmark: _Toc48930866][bookmark: _Toc49376115][bookmark: _Toc56501568][bookmark: _Toc95076615][bookmark: _Toc106618434][bookmark: _Toc167405406][bookmark: _Toc180278734][bookmark: _Toc180278910][bookmark: _Toc180279174][bookmark: _Toc180279648][bookmark: _Toc180279827]5.X.3	Potential security requirements
[bookmark: _Toc95076616][bookmark: _Toc106618435][bookmark: _Toc167405407][bookmark: _Toc180278735][bookmark: _Toc180278911][bookmark: _Toc180279175][bookmark: _Toc180279649][bookmark: _Toc180279828]6	Solutions
Editor’s Note: This clause contains the proposed solutions addressing the identified key issues.
[bookmark: _Toc80633894][bookmark: _Toc136953936][bookmark: _Toc167405408][bookmark: _Toc180278736][bookmark: _Toc180278912][bookmark: _Toc180279176][bookmark: _Toc180279650][bookmark: _Toc180279829]6.0	Mapping of solutions to key issues
Table 6.1-1: Mapping of solutions to key issues
	Solutions
	KI#1
	KI#2
	KI#3
	KI#4
	KI#5

	1
	X
	
	
	
	

	2
	
	X
	
	
	

	3
	
	X
	
	
	

	4
	
	
	
	
	X

	5
	X
	
	
	
	

	6
	
	
	
	
	X

	7
	
	
	
	
	X

	8
	
	
	
	
	X

	9
	
	
	
	
	X

	10
	
	
	
	
	X

	11
	
	
	X
	X
	X

	12
	
	
	X
	X
	X

	13
	
	
	X
	X
	X

	14
	
	
	
	X
	

	15
	
	
	
	X
	

	16
	X
	
	
	
	

	17
	X
	
	
	
	

	18
	
	X
	
	
	

	19
	
	X
	
	
	

	20
	
	
	X
	
	

	21
	
	
	X
	
	

	22
	
	
	X
	
	

	23
	
	
	X
	
	

	24
	
	
	X
	
	

	25
	
	
	X
	
	

	26
	
	
	X
	
	

	27
	
	
	X
	
	

	28
	
	
	X
	
	

	29
	
	
	X
	
	

	30
	
	
	X
	
	

	31
	
	
	X
	
	

	
	
	
	
	
	

Editor’s Note: Each solution should be mapped here.

[bookmark: _Toc167405409][bookmark: _Toc180278737][bookmark: _Toc180278913][bookmark: _Toc180279177][bookmark: _Toc180279651][bookmark: _Toc180279830][bookmark: _Toc513475452][bookmark: _Toc48930869][bookmark: _Toc49376118][bookmark: _Toc56501632][bookmark: _Toc95076617][bookmark: _Toc106618436]6.1	Solution #1: Ambient IoT device disabling mechanism
[bookmark: _Toc167405410][bookmark: _Toc180278738][bookmark: _Toc180278914][bookmark: _Toc180279178][bookmark: _Toc180279652][bookmark: _Toc180279831]6.1.1 	Introduction
This solution addresses KI#1.
According to TS 22.369, the enable/disable device operations are used by the network operator to manage the Ambient IoT device’s capability to transmit RF signals. As the disabling of RF transmission capability could, according to the operator’s policy, be temporary or permanent, it is paramount to ensure that the disabling, specifically of a permanent nature, is performed securely and in a manner that allows device recovery in case the system was compromised, and an attacker has managed to issue “disable” commands to one or multiple Ambient IoT devices.
[bookmark: _Toc167405411][bookmark: _Toc180278739][bookmark: _Toc180278915][bookmark: _Toc180279179][bookmark: _Toc180279653][bookmark: _Toc180279832]6.1.2 	Solution details
[image:]
Figure 6.1.1 – Ambient IoT device disabling mechanism
The permanent disabling of an AIoT device is performed as in a two-stage operation, where initially, the AIoT device is temporarily disabled, and then, following a cool-down period (i.e., recovery time window), the AIoT device could be disabled permanently. The two-stage permanent disabling operation is performed as follows:
In Step 0, the AIoT device is provisioned with a configuration determining how the device processes disabling operations. The configuration includes the required cool down period that needs to be met before a permanent “disable” command is allowed.
In Step 1, the AIoT managing function issues a temporary disable command to the Ambient IoT device. The command includes a counter T1.
Note 1: The AIoT Management Function (AIoT MF) depends on the entity that owns or manages the resource (i.e., AIoT device). If a device is owned or managed by the network, the disabling is triggered by a CN function, otherwise, it is triggered by a 3rd party Management Function managing the device.

Editor’s Note: Whether the AIoT managing function is an NF or an AF is FFS.
Editor’s Note: Whether the solution aligns with SA2 system architecture and procedures is FFS.
Editor’s Note: Which threats does this solution address are FFS.
In Step 12, The AIoT device, upon receiving the temporary disable command, retrieves and stores the counter T1, which will be used in subsequent processing.
In Step 23, the AIoT device sends an ACK to the AIoT MF, which may contain the counter received in Step 0. Then, the AIoT device temporarily disables its RF transmission capability..
In Step 34, depending on whether the AIoT MF intends to re-enable the AIoT device (i.e., recovery scenario), or permanently disable the AIoT device. The AIoT MF sends in:
- Step 4a: a message containing an enable command to recover the AIoT device, or
- Step 4b: a message containing managing function issues a permanent disable command to the Ambient IoT device, in which a second counter T2 is included.
Note 2: The messages in step1 and step3 carrying the temporary and permanent disable commands are protected using the same means of protection applicable to other commands (e.g., write), and so is the verification that the disable commands are coming from a legitimate party.
Editor’s Note: How inventory/authentication is performed before the permanent disable command is FFS.

In Step 45, The AIoT device processes the , upon received command. If the AIoT is requested to enable its RF transmission capability, the AIoT device recovers from the temporary disabled state and discards the stored counter T1. Otherwise, if the AIoT device is requested to ing theperform a permanent disable command, it retrieves the second counter from the message, then checks whether the following conditions are met:
- The AIoT device RF transmission capability is temporarily disabled.
- The AIoT device checks wWhether the value T2 – T1 is greater or equal to the cool-down period configured in the AIoT device.
Editor’s Note: Whether the AIoT device can maintain an internal state is FFS.
If the checks succeed, the AIoT device temporarily enables its RF transmission capability to send an ACK message to the AIoT MF in step 6 confirming that the device is permanently disabling its RF transmission capability.
In Step 7, the AIoT device disables its RF transmission capability permanently.
Editor’s Note: It is FFS how the AIoT device verifies that the disable command is coming from a trusted party.
Editor’s Note: Whether the AIoT device needs to acknowledge the permanent disable is FFS.

[bookmark: _Toc167405412][bookmark: _Toc180278740][bookmark: _Toc180278916][bookmark: _Toc180279180][bookmark: _Toc180279654][bookmark: _Toc180279833]6.1.3 	Evaluation
[bookmark: _Toc167405413]Editor’s Note: How the solution addresses the security threats and requirement of KI#1 is FFS.
In the solution proposed, the protection of disable commands (temporary and permanent) re-uses the same means of protection applicable to other commands (e.g., write command).
Ambient IoT device(s) need to maintain an internal state to support the security mechanism proposed by the solution.
Editor’s Note: Further evaluation is FFS.
TBD
[bookmark: _Toc5695][bookmark: _Toc159226039][bookmark: _Toc167405414][bookmark: _Toc180278741][bookmark: _Toc180278917][bookmark: _Toc180279181][bookmark: _Toc180279655][bookmark: _Toc180279834]6.2	Solution #2:PCF based Service Authorization and Provisioning to UE
[bookmark: _Toc159226040][bookmark: _Toc31061][bookmark: _Toc167405415][bookmark: _Toc180278742][bookmark: _Toc180278918][bookmark: _Toc180279182][bookmark: _Toc180279656][bookmark: _Toc180279835]6.2.1	Introduction
This solution addresses the KI#2 Authorization for 5G Ambient IoT services.
[bookmark: _Toc159226041][bookmark: _Toc8673][bookmark: _Toc167405416][bookmark: _Toc180278743][bookmark: _Toc180278919][bookmark: _Toc180279183][bookmark: _Toc180279657][bookmark: _Toc180279836]6.2.2	Solution details
This solution propose to reuse the existing mechanism for 5G Prose U2N relay as specified in TS 23.304[x] with following changes:
A UE acting as an intermediate node is registered with 5GC using the existing mechanism, with some enhancements to indicate its capability of acting as an intermediate node regardless of for which AIoT device, and is authorized as an intermediate node (UE) during the registration procedure.
For PCF based Service Authorization and Provisioning to UE, the Registration procedures as defined in clause 4.2.2.2 of TS 23.502 [x], UE Policy Association Establishment procedure as defined in clause 4.16.11 of TS 23.502 [x] and UE Policy Association Modification procedure as defined in clause 4.16.12 of TS 23.502 [x] apply with the following additions:
-	If the UE indicates AIoT Capability in the Registration Request message and if the UE is authorized to use 5G AIoT service based on subscription data, the AMF selects the PCF which supports AIoT Policy/Parameter provisioning and establishes a UE policy association with the PCF for AIoT Policy/Parameter delivery.The AMF reports the authorized AIoT Capability to the selected PCF, which may determine the AIoT Policy/Parameter based on the UE's authorized AIoT Capability.
This solution based on the assumption that PCF hold the Authorization information and the AIoT capabiltiy can be include in the Registration Request message.
Editor’s Note: It is FFS which 5G NF performs the authorization of the intermediate UE and this needs to align with SA2
Editor’s Note: It is FFS whether the capability is included in Registration Request
[bookmark: _Toc167405417][bookmark: _Toc180278744][bookmark: _Toc180278920][bookmark: _Toc180279184][bookmark: _Toc180279658][bookmark: _Toc180279837]6.2.3	Evaluation
[bookmark: _Toc167405418][bookmark: _Toc167405571][bookmark: _Toc180278745][bookmark: _Toc180278921]TBD
[bookmark: _Toc167405419][bookmark: _Toc180278746][bookmark: _Toc180278922][bookmark: _Toc180279185][bookmark: _Toc180279659][bookmark: _Toc180279838]6.3	Solution #3: Authorization of Intermediate UE for AIoT services
[bookmark: _Toc167405420][bookmark: _Toc180278747][bookmark: _Toc180278923][bookmark: _Toc180279186][bookmark: _Toc180279660][bookmark: _Toc180279839]6.3.1	Introduction
The solution addresses the security requirement of KI#2: Authorization for 5G Ambient IoT services. Specifically, this solution proposes a method to authorize the UE as Intermediate UE in AF-initiated AIoT service procedure. The AMF/AIoT NF select the UE based on the information provided by AF, e.g., location information or external UE ID, and then interact with the UDM to obtain the selected UE’s subscription data and check whether it is allowed to act as Intermediate UE for AIoT secvice. Only after the UE is successfully authorized as intermediate UE, the network will then perform subsequent AIoT service procedure.
[bookmark: _Toc167405421][bookmark: _Toc180278748][bookmark: _Toc180278924][bookmark: _Toc180279187][bookmark: _Toc180279661][bookmark: _Toc180279840]6.3.2	Solution details
Depicted in Figure 6.3.2-1 is the authorization procedure of Intermediate UE for AIoT Services.

[bookmark: _Hlk166157482]Figure 6.3.2-1: Authorization of Intermediate UE for AIoT service
0. The UE performs the registration procedure as specified in TS 23.502 [x] with the enhancement to indicate its AIoT Intermediate node capability, and is authorized as an intermediate UE during the registration procedure.
1. The AF sends the AIoT Service Request to the AMF/AIoT NF via the NEF, including the AIoT device ID, seivice type (e.g., Inventory, Command), location information, external UE ID (GPSI).
2. The AMF/AIoT NF selects the Intermediate UE based on the information provided by AF, e.g., location information and/or GPSI, etc.
NOTE1: The selection of Intermediate UE is up to SA2 WG decision.
3. The AMF/AIoT NF sends the UE Authorization Request to the UDM with the info of the selected UE.
4. The UDM checks whether the selected UE is allowed to act as Intermediate UE against the UE's subscription data for AIoT service.
NOTE2: The relevant subscription data could be configured offline in the UDM, or provided and updated in the UDM based on the AF-initiated AIoT service requests.
5. The UDM returns the UE Authorization Response to the AMF/AIoT NF.
6. The AMF/AIoT NF sends the AIoT Service Request to the Intermediate UE, including the AIoT device ID, service type, authorized result.
7. The inventory/Command procedure is carried out.
Editor’s Note: Whether the Intermediate UE is authorized during the registration or after the Intermediate UE selection is FFS.
Editor’s Note: Which entity performs the Intermediate UE authorization should be aligned with the AIoT system designed by SA2, which is FFS.
[bookmark: _Toc167405422][bookmark: _Toc180278749][bookmark: _Toc180278925][bookmark: _Toc180279188][bookmark: _Toc180279662][bookmark: _Toc180279841]6.3.3	Evaluation
TBD

[bookmark: _Toc180278750][bookmark: _Toc180278926][bookmark: _Toc180279189][bookmark: _Toc180279663][bookmark: _Toc180279842][bookmark: _Toc167405423]6.4	Solution #4: Protection for inventory and command procedure
[bookmark: _Toc164755003][bookmark: _Toc180278751][bookmark: _Toc180278927][bookmark: _Toc180279190][bookmark: _Toc180279664][bookmark: _Toc180279843]6.4.1	Introduction
This solution addresses key issue on authentication, key issue on information protection and key issue on protection for disabling device operation.
The solution is assumed to be used in dedicated network for ambient IoT service. It is assumed that every AIoT Device is preconfigured with a pre-shared key, while the details of secure storage and processing of credentials e.g. pre-shared key is out of scope of this solution. Accordingly, it is assumed that such a key is also preconfigured/stored in the network side along-side the device ID.
The solution provides a new AIoT device authentication procedure that could be used for both the inventory as well as the command procedures.

[bookmark: _Toc180278752][bookmark: _Toc180278928][bookmark: _Toc180279191][bookmark: _Toc180279665][bookmark: _Toc180279844][bookmark: _Toc164755004]6.4.2	Solution details
[bookmark: _Toc180278753][bookmark: _Toc180278929][bookmark: _Toc180279192][bookmark: _Toc180279666][bookmark: _Toc180279845]6.4.2.1	Protection for inventory-only procedure
 Figure 6.4.2-1: Information Flow for protection of inventory-only service
1. AF sends AIoT service operation request to NEF, including the AF ID, device information, and inventory operation.
2. NEF sends the AIoT service operation request to the selected AMF/AIoTMF.
3. The AMF/AIoTMF selects the Ambient IoT capable RANs. In addition, the Nonce1 is generated, which is used as fresh parameter for authentication. For each of the selected reader, the AMF/AIoTMF sends the request message with the generated Nonce1.
4. Upon reception of the request message, Reader executes inventory by triggering the Paging-like procedures with Nonce1 towards the AIoT devices.
5. The AIoT device performs random access like procedures to establish the connection with reader.
6. The AIoT device generates Nonce2 as the fresh parameter from device side. When deriving Auth_token, Nonce1 and Nonce2 are used to form the input S to the KDF and the pre-shared key is used as input key. Auth_token is used for network to authenticate device.
7-8. The AIoT Device sends the AIoT Device ID, Nonce2 and Auth_token to Reader. In the following step, Reader reports the AIoT Device ID, Nonce2 and Auth_token to AMF/AIoTMF.
AIoT Device uses registers for temporarily keeping the nonces required for command protection.
9. AMF/AIoTMF sends request message to authentication server for device verification, which includes AIoT Device ID, Nonce1 and Nonce2.
10. XAuth_token is calculated with same input as in device side.
11. Authentication server sends response message to AMF/AIoTMF, which includes XAuth_token.
12. AMF/AIoTMF compares Auth_token and XAuth_token.
NOTE: As an alternative, authentication server can verify the Auth_token and send the authentication result to AMF/AIoTMF.
13-14. If the verification succeeds, the AMF/AIoTMF reports the AIoT Device ID to NEF by sending the AIoT_ Notify message. The NEF forwards the received information to AF by sending the AIoT_ Notify message.
[bookmark: _Toc180278754][bookmark: _Toc180278930][bookmark: _Toc180279193][bookmark: _Toc180279667][bookmark: _Toc180279846]6.4.2.2	Protection for inventory and command procedure
 Figure 6.4.2-2: Information Flow for protection of information transfer for AIoT services
Compared with the inventory-only procedure in clause 6.4.2.1, the protection for command is enhanced with the following modification.
10. In addition to the XAuth_token calculation, the session key Ks is derived if receiving additional indication from AIoT Function. The Nonce1 and Nonce2 is used to form the input S to the KDF and the pre-shared key is used as input key to derive the session key Ks. The Ks is different with XAuth_token as different input (e.g., FC value).
11. Session key is also included. If the device security capability (e.g., AES-128 algorithm) is stored in AIoT_ UDM, it will also be sent to AMF/AIoTMF.
12. The command message is protected with session key. For example, the MAC1 will be calculated to protect the integrity of the message. The algorithm will be selected based on device security capability.
13-14. The AMF/AIoTMF sends the protected AIoT Command message to the AIoT Device, which includes encrypted data and MAC1. No AIoT device ID is required to be included in step 14, as other ID will be used between device and reader, which is discussed and decided in RAN groups. It is assumed that the device receives the command message while energy is available in energy storage.
15-16. The device will receive the message in step 14. Integrity verification and decryption will be performed. After successful verification, the device will follow the command operation. The uplink message will also be sent from device to network if needed. For example, if the command is “read” operation, data2 to be reported will be included after encryption. The message will also be integrity protected.
17-18. The AMF/AIoTMF reports the result of the AIoT service operation request to the NEF by sending the AIoT_ notification message.
Editor’s Note: The information flow will be updated based on the conclusion regarding command operation procedure in SA2.
[bookmark: _Toc180278755][bookmark: _Toc180278931][bookmark: _Toc180279194][bookmark: _Toc180279668][bookmark: _Toc180279847][bookmark: _Toc19634915][bookmark: _Toc26875983][bookmark: _Toc35528750][bookmark: _Toc35533511][bookmark: _Toc45028892][bookmark: _Toc45274557][bookmark: _Toc45275144][bookmark: _Toc51168402][bookmark: _Toc91015626]6.4.2.3	Auth_token and XAuth_token derivation function
The following parameters are used to form the input S to the KDF.
-	FC = 0xaa,
-	P0 = Nonce1,
-	L0 = length of the Nonce1(i.e. 0x00 0x10),
-	P1 = Nonce2,
-	L1 = length of Nonce2 (i.e. 0x00 0x10),
The input key KEY shall be equal to the pre-shared key.
The (X)Auth_token is identified with the 128 least significant bits of the output of the KDF.
[bookmark: _Toc164755005][bookmark: _Toc180278756][bookmark: _Toc180278932][bookmark: _Toc180279195][bookmark: _Toc180279669][bookmark: _Toc180279848]6.4.3	Evaluation
Challenge-based symmetric algorithm is used for security protection. The privacy of device identifier in uplink and downlink is not addressed in this solution.
This solution assumes there is preconfigured pre-shared key as the authentication credential stored in AIoT device and network side securely.
For inventory-only case, one-way device authentication is provided. For inventory and command case, mutual authentication is supported, in which the network authentication in device is implicitly provided by MAC verification.
Editor’s Note: the impact to include nonce in paging message is FFS.
Editor’s Note: whether replay attacks are possible against the device or the network is FFS.
Editor’s Note: whether additional authentication token is required for device to authenticate network is FFS.
[bookmark: _Toc167405576][bookmark: _Toc180278757][bookmark: _Toc180278933][bookmark: _Toc180279196][bookmark: _Toc180279670][bookmark: _Toc180279849]6.5	Solution #5: Disabling and Enabling AIoT Device
[bookmark: _Toc167405577][bookmark: _Toc180278758][bookmark: _Toc180278934][bookmark: _Toc180279197][bookmark: _Toc180279671][bookmark: _Toc180279850]6.5.1	Introduction
[bookmark: _Toc167405578]This solution addresses KI#1 to disable or enable the RF transmission capabilities of an AIoT device according to operator’s security policy. Solution makes the following assumptions:
1. Disabling/enabling instruction is to be sent as part of inventory and command procedure if command only procedure is not supported. If command only procedure is supported, the solution can be part of the command only procedure.
2. Since part of the command case is to carry instructions for the AIoT device to perform some specific functions, it is also assumed that the AIoT device and the network has established security to protect the inventory and command procedure and that the command procedure is confidentiality-, integrity-, or replay-protected. The protection of either the inventory or command procedure is not in scope of this solution.
3. For a group of AIoT device, solution assume that the group can be paged (i.e., via inventory procedure) if the paing ID corresponds to a group ID and that disable/enable code is the same for the group.
NOTE 1: While AIoT device’s RF transmission capabilities are disabled, the device is still able to receive RF signals.

NOTE 2: Protection of command procedure is recommended.
[bookmark: _Toc180278759][bookmark: _Toc180278935][bookmark: _Toc180279198][bookmark: _Toc180279672][bookmark: _Toc180279851]6.5.2	Solution details

1. Inventory procedure is performed between the AIoT device and the network (CN or AF).
NOTE: Whether Command operation procedure is stand-alone or is coupled with inventory and command is to be aligned with RAN2.

2. Depending on the business model and security protection, the Command Operation Trigger containing Code1 and Code2 can come from third-party AF or within the 3GPP network. If third-party AF initiates the Command Operation Trigger, the request is routed through to the 3GPP core network, in which case, the AF is authorized by the 3GPP network.

3. The AIoT Function/AMF (either initiated by 3GPP network or as a result of request from third-party AF) sends a Command Operation Trigger with Code1 and Code2 to the AIoT Reader (RAN node or an AIoT-capable UE).
4. The AIoT Reader (RAN node or an AIoT-capable UE) sends the Command Operation Request to the AIoT device.
5. The AIoT Device checks Code1 and Code2 against the code stored in the AIoT device, using the following logic:
If Code1 and Code2 are the same and that they match the code stored in the AIoT device, the AIoT device permanently disables its RF transmission capabilities.
If Code1 and Code2 are different, and Code1 matches the code stored in the AIoT device, the AIoT device temporarily disables its RF transmission capabilities if its RF transmission capabilities are enabled, or if the AIoT device’s RF transmission capabilities are temporarily disabled, then the AIoT device re-enables its RF transmission capabilities. Furthermore, the AIoT device replaces its stored code with the value of Code2 for future instructions.
If Code1 does not match the code stroed in the AIoT device, the Command Operation Request is discarded.
Editor’s Note: How the disable/enable code between the AIoT device and the network is synchronized is FFS.
6, 7, 8. In the case when the AIoT device’s RF capabilities are re-enabled, the AIoT device may reply with a Command Operation Reply.
[bookmark: _Toc180278761][bookmark: _Toc180278936][bookmark: _Toc180279199][bookmark: _Toc180279673][bookmark: _Toc180279852]6.5.3	Evaluation
Solution fully addresses security requirement in KI#1. The solution does not address the security of the Command Operation procedure as it is part of communication security between AIoT device and the network.
The solution requires the AIoT device to be provisioned with a code to disable or re-enable RF transmission capabilities. The codes from the network (either CN or AF) are sent as part of secured Command Operation procedure and are secure from attackers. Replacing the code in the AIoT device after each temporary disabling/enabling RF transmission capabilities using the Command Operation procedure also prevents the code being replayed.
[bookmark: _Toc158643701][bookmark: _Toc180279200][bookmark: _Toc180279674][bookmark: _Toc180279853]6.6	Solution #6: AIoT device authentication
[bookmark: _Toc158643702][bookmark: _Toc180279201][bookmark: _Toc180279675][bookmark: _Toc180279854]6.6.1	Introduction
This solution addresses KI#5.
This solution propose an AIoT device Security Management and an AIoT controller. The AIoT device Security Management is a core network function, has the following security capabilities:
 1.Stores the initial Kaiot together with the AIoT device. This key is used for MAC calculation.
2. Sends the Kaiot to AIoT controller to calculate the network MAC.
AIoT controller has capability about calculating the network MAC and verifying the device MAC.
AIoT device has capability about calculating the device MAC and verifying the network MAC.
The counter is maintained by the AIoT controller and the AIoT device.
[bookmark: _Toc180279202][bookmark: _Toc180279676][bookmark: _Toc180279855]6.6.2	Solution details
[bookmark: _Toc158643704]The following figure shows the call flow for AIoT device authentication.

Figure 6.6.2-1: AIoT device authentication
0.	AIoT device and AIoT device Security management both store the Kaiot. AIoT device stores Device ID and initial counter. The AIoT device Security management stores the mapping relationship between the Device ID and reader ID.
1.	AF sends Inventory(or command) request to AIoT controller, which includes Reader ID and Device ID. The Reader ID indicates the reader requested for Inventory(or command). Multiple Reader IDs can be included. The Device ID indicates the AIoT device for Inventory(or command). Multiple Device IDs can be included.
2.	AIoT controller sends Device information request to AIoT device Security management, which includes Device ID received in step 1. If multiple Device IDs are received in step 1, AIoT controller can repeat this step per Device ID for multiple times, or AIoT controller can send the Device ID list to AIoT device Security management in the same message.
3.	AIoT device Security management sends Device information response to AIoT controller, which includes the reader ID, and Kaiot. If Multiple Device IDs are received in step 2, this message may include all device information corresponding to the Device IDs.
4. The AIoT controller calculates the network MACn based on the Kaiot and counter, for example, MACn= HASH (device ID, reader ID, counter, Kaiot).
5.	The AIoT controller sends the Inventory(or command) Request to the reader(s) base on reader ID in step 3, which includes Device ID and MACn. If the counter is initial value, which includes start indication.
6.	The Reader(s) send Inventory(or command) Request to AIoT device, which includes Device ID and MACn, and which may includes start indication.
7. The AIoT device verifies the MACn, that is, the AIoT device calculates the local MACn', for example, MACn’=HMAC(device ID, reade ID, counter), the input key is Kaiot. The counter is the counter stored in the AIoT device. If start indication is valid, the the counter is initial counter value. If MACn and MACn' are the same, the verification succeeds. The AIoT device increases the counter by one, and store the new counter. The AIoT device can optionally calculate the MACu, for example, MACu= HMAC (device ID, reade ID, new counter), the input key is Kaiot, where Kaiot is the Kaiot stored on the AIoT device.
8.	The AIoT device sends Inventory(or command) Response to the Reader with its Device ID, which may includes MACu.
9.	The Reader sends Inventory(or command) Response to the AIoT controller with the Device ID and Reader ID, which may includes MACu.
10. The AIoT controller calculates the MACu' like the AIoT device, and verifies the MACu'. If the verification is successful, the Inventory(or command) is successful. The AIoT controller increases the counter by one. The AIoT controller stores the new counter.
11.	AIoT controller stores the Device ID and the Reader ID, if multiple Inventory(or command) Responses are received from different Readers, the AIoT controller stores the Device ID and multiple Reader IDs. AIoT controller sends the Inventory(or command) Response to AF with the Device ID and Reader ID(s).
Editor’s Note: How the AIoT device get reader ID in step 7 is FFS.
Editor’s Note:if maintaining device ID and reader ID mapping is required or not, and if required how it is done is FFS.
Editor’s Note: It is FFS how synchronization of counter between devices and Controller is ensured and how to recover from the even of de-synchronization.
Editor’s Note: The impact of sharing key Kaiot with AIoT controller is FFS.
Editor’s Note: How the AIoT controller verifes the MAC if there is multiple response in step 10.
Editor’s Note: It is FFS how to protect privacy of device identifier in the step 6 is FFS.
Editor’s Note: It is FFS if replay attacks are possible against the device or the network.
Editor’s Note:It is FFS if K needs confidentialkity/integrity protection against physical attack in the device.

[bookmark: _Toc180279203][bookmark: _Toc180279677][bookmark: _Toc180279856]6.6.3	Evaluation
TBD.
6.7			Solution #7: Lightweight AIoT Authentication solution
[bookmark: _Toc180278762][bookmark: _Toc180278937][bookmark: _Toc180279204][bookmark: _Toc180279678][bookmark: _Toc180279857]6.7.1			Introduction
The assumption of this solution is AIoT device and network sharing a long-term root key K[x].
[bookmark: _Hlk172129465]MAC/XMAC is used for device authenticating network. MAC is calculated by network side with the K, XMAC is calculated by AIoT device side with the K.
Optionally, RES/XRES is used for network authenticating device. XRES is calculated by network side with the K, RES is calculated by device side with the K.
To provide the freshness of the authentication vectors, RAND is also used to calculate MAC/XMAC and optionally RES/XRES.
[bookmark: _Toc180278763][bookmark: _Toc180278938][bookmark: _Toc180279205][bookmark: _Toc180279679][bookmark: _Toc180279858]6.7.2			Details
MAC/XMAC is used for device authenticating network. MAC is calculated by network side with the K, XMAC is calculated by AIoT device side with the K.
Optionally, RES/XRES is used for network authenticating device. XRES is calculated by network side with the K, RES is calculated by device side with the K.
To provide the freshness of the authentication vectors, RAND is also used to calculate MAC/XMAC and optionally RES/XRES.
Similar with 5G-AKA, and based on RAN2 agreement for “inventory and command” case[6], AIoT authentication solution has the following steps:

Figure 6.7.2-1 AIoT Authentication based on 5G-AKA
1. AIoT NF sends authentication vector request to UDM/ARPF for AIoT device.
2. UDM/ARPF calculates MAC with K (e.g. the root key of AIoT device) and RAND.
3. Optionally, UDM/ARPF calculates XRES with K and RAND, if network wants to authenticate AIoT device.
4. UDM/ARPF sends RAND, MAC, device ID and optionally XRES to AIoT Authentication Function.
5. AIoT Authentication Function sends Authentication Request including RAND, MAC, device ID to AIoT NF.
6. AIoT NF sends Authentication Request including RAND, MAC, device ID to Reader.
7. Reader sends Authentication Request including RAND and MAC to AIoT device. Authentication Request is carried by Step C in the “inventory and command” case.
8. AIoT device calculates XMAC with RAND and K.
9. Optionally, AIoT device calculates RES with K and RAND.
10. AIoT device verifies XMAC=MAC, then the network authentication is successful. If there is command, only after successful verification, the command can be proceeded.
11. AIoT device sends Authentication Reponses to Reader, this message optionally including RES if network wants to authenticate AIoT device. Authentication Reponses is carried by Step D in the “inventory and command” case.
12. Reader sends Authentication Reponses to AIoT NF.
13. Optionally, AIoT NF sends Uplink Authentication Request including RES to AIoT Authentication Function.
14. Optionally, AIoT Authentication Function verifies XRES=RES, then the AIoT device Authentication is successful.

As an example, the generation of MAC/XMAC and RES/XRES is described as below.
[image:]
Figure 6.7.2-2 The generation of MAC and XRES at network side.

[image:]
Figure 6.7.2-3 The generation of MAC and XRES at AIoT device side.
[bookmark: _Hlk179983212][bookmark: _Hlk180002157][bookmark: OLE_LINK4]Editor's Note:	Further evaluation of the usage of the crypto primitives is FFS.
Editor's Note:	The impact of removing the use of SEQNO (e.g., replay against device or network) from AKA is FFS
Editor's Note:	Anonymity key (AK) is used to protect SEQNO in AKA. If SEQNO is not used, the necessity of using AK to compute MAC and XRES is FFS.
Editor's Note:	It is FFS if the shared key needs confidentiality/integrity protection against physical attack in the device
Editor's Note:	When the AIoT NF triggers the authentication is FFS.
Editor's Note:	The security level of MAC/RES calculation compare to 5G-AKA is FFS.
Editor's Note:	The intermediate authentication parameter storage in AIoT device is FFS.
[bookmark: _Toc180278764][bookmark: _Toc180278939][bookmark: _Toc180279206][bookmark: _Toc180279680][bookmark: _Toc180279859]6.7.3			Evaluation
TBA.
[bookmark: _Toc167423347][bookmark: _Toc180278765][bookmark: _Toc180278940][bookmark: _Toc180279207][bookmark: _Toc180279681][bookmark: _Toc180279860]6.8	Solution #8: Mutual authentication for AIoT system
[bookmark: _Toc167423348][bookmark: _Toc180278766][bookmark: _Toc180278941][bookmark: _Toc180279208][bookmark: _Toc180279682][bookmark: _Toc180279861]6.8.1	Introduction
This solution addresses key issue#5: “Authentication in Ambient IoT service.”
[bookmark: _Toc167423349][bookmark: _Toc180278767][bookmark: _Toc180278942][bookmark: _Toc180279209][bookmark: _Toc180279683][bookmark: _Toc180279862]6.8.2	Details
Preassumption:
1. AIoT AUSF and AIoT UDM are independent network entities for AIoT system, they can also be collocated with legacy AUSF and UDM, depending on operators’ deployment.
2. The Applacation Function is out of operator domain, which can be the AIoT device manufacture.
3. It is assumed AIoT UDM owns the AIoT device credentials, while Application Function has no access to those credentials.
4. Step 1-3 are following RAN2 procedure using 2-step RACH.
[image: A screenshot of a computer

Description automatically generated]
[bookmark: _Toc167423350]
Step 0a. the AIoT device is configured with Device ID and K as the root key in the manufacturing time.
Step 0b. AIoT UDM is configured with K as the root key for the device. Every AIoT device owns a unique K.
Step 0c. The AF may sync up with AIoT UDM the device IDs after manufacturing.
Step 1. Reader sends the paging message including the device ID(s).
NOTE: what IDs to be included will be decided by RAN2.
Step 2-3. AIoT device sends random ID, device ID in Msg1. Reader echoes back the random ID in Msg2.
Step 4. AIoTF triggers the authentication through Reader.
Step 5. AIoT device calculates the RES using K and device ID and RAND, using HASH function.
Step 6. AIoT device sends the device ID, RES, and random number Counter to Reader in uplink AS message.
NOTE: The message details to be dependent on SA2 decision.
Step 7-8. Reader sends the Authentication Request to AIoT AUSF for authentication.
Step 9. AIoT AUSF sends authentication request to AIoT UDM including the device ID and Counter.
Step 10, AIoT UDM calculates the XRES and network authentication Token. AIoT UDM then sends both values back to AIoT AUSF.
Step 11. AIoT AUSF compares the RES and XRES, if they are equal, AIoT AUSF sends network authentication Token back to Reader. Otherwise, the authentication fails.
Step 12-13. the AIoT AUSF passes the authentication result and network authentication Token back to Reader.
Step 14. If the authentication success, the Reader continue with step 15, otherwise, the Reader ceases the authentication procedure.
Step 15. Reader sends the network authentication Token to AIoT devices in DL command message.
Step16. AIoT device verifies if the network authentication Token is correct. If yes, then the authentication of the network is successful, and AIoT device continue with the subsequent UL message. Otherwise, the AIoT device will cease the procedure.
	Editor’s Note: The synchronization issue is FFS.
	Editor’s Note: It is FFS when the network triggers the authentication.
	Editor’s Note: It is FFS how AIoT device maintain the authentication status.
	Editor’s Note: The call flow needs to be updated.
Editor’s Note: The architecture of AIoT is FFS, based on SA2 progress.

[bookmark: _Toc180278768][bookmark: _Toc180278943][bookmark: _Toc180279210][bookmark: _Toc180279684][bookmark: _Toc180279863]6.8.3	Evaluation

Editor’s Note: The impact on device and network is FFS.
[bookmark: _Toc102752618][bookmark: _Toc160448802][bookmark: _Toc180278769][bookmark: _Toc180278944][bookmark: _Toc180279211][bookmark: _Toc180279685][bookmark: _Toc180279864]6.9	Solution #9: Device authentication and data communication security
[bookmark: _Toc528155245][bookmark: _Toc102752619][bookmark: _Toc160448803][bookmark: _Toc180278770][bookmark: _Toc180278945][bookmark: _Toc180279212][bookmark: _Toc180279686][bookmark: _Toc180279865]6.9.1	Introduction
[bookmark: _Toc528155246][bookmark: _Toc102752620][bookmark: _Toc160448804]This solution tries to address the Key issue #3, Key issue #4 and Key issue #5.
This solution protects the privacy of AIoT Device ID by encrypting AIoT Device ID or calculating temporary ID using AIoT device authentication keys.
For AIoT Device authentication, only entities (AIoT Device or network) that possess the AIoT Device authentication key can successfully decrypt or verify the protected AIoT Device ID.
For communication security, only entities (AIoT Device or network) that possess the AIoT Device authentication key can generate session key. For each data transmission, both network nonce and AIoT Device nonce are used to protect the communication content.
[bookmark: _Toc180278771][bookmark: _Toc180278946][bookmark: _Toc180279213][bookmark: _Toc180279687][bookmark: _Toc180279866]6.9.2	Solution details
[bookmark: _Toc528155247][bookmark: _Toc102752621][bookmark: _Toc160448805]The security procedure for command operations is shown in the following figure.

 Figure 6.9. 2-1: Security procedure for command operations
0.	During the AIoT Device initialization phase, the AIoT Device Authentication Key is pre-configured in the AIoT Device. The AIoT Device Authentication Key is used to authenticate the device and secure the communication with the AIoT Device. Security policies for AIoT Device ID protection and communication may also be pre-configured.
1.	The AF sends a Command Operation Request to the Ambient IoT Function (AIoTF). The request includes the AIoT Device ID and Payload.
2.	To authenticate an AIoT Device, the AIoTF performs the following operations:
Generate a Network Nonce;
Use the Device Authentication Key and Network Nonce to derivate keys for confidentiality and/or integrity protection;
Protect the AIoT Device ID with the new derived keys to obtain the Protected AIoT Device ID; The Protected AIoT Device ID can also be a temporary ID generated using the authentication key and security parameters;
Send a Paging message to the AIoT Devices through the AIoT Reader. The message includes the Protected AIoT Device ID and Network Nonce.
3.	The AIoT Device performs the following operations:
Use the same method as the AIoTF to derive the keys, and then decrypts and/or verifies the Protected AIoT Device ID or calculate the temporary ID;
Check if the Device ID carried in the paging message matches the locally stored Device ID or locally calculated temporary ID;
Generate a Device Nonce;
Use the Device Authentication Key, Network Nonce and Device Nonce to derivate keys for Device ID confidentiality and/or integrity protection;
Protect the AIoT Device ID with the new derived keys to obtain the Protected AIoT Device ID*; The Protected AIoT Device ID* can also be a temporary ID generated using the authentication key and security parameters;
The AIoT Device returns the Protected Device ID* and Device Nonce to the AIoTF through the AIoT Reader. It may also return its Device capability.
4.	The AIoTF performs the following operations:
Use the same method as the AIoT Device to derive the keys, and then decrypts and/or verifies the Protected AIoT Device ID* or calculate the temporary ID;
Check if the Device ID carried in the authentication request matches the locally stored Device ID or locally calculated temporary ID; If they match, the authentication is successful.
5.	To protect a command message, the AIoTF performs the following operations:
Generate a Network Nonce;
Use the Device Authentication Key and Network Nonce to derivate keys for confidentiality and/or integrity protection;
Protect the AIoT Device ID with the new derived keys to obtain the Protected AIoT Device ID; The Protected AIoT Device ID can also be a temporary ID generated using the authentication key and security parameters;
Protect the Payload and/or the entire message using the new derived keys according to the Security Policy that specifies how the communication message is protected;
Send Command message to the AIoT Device through the AIoT Reader. The request includes Protected AIoT Device ID, Security Policy, Network Nonce, Secured Payload and MAC.
6.	The AIoT Device performs the following operations:
Use the same method as the AIoTF to derive the keys;
Use the same method as step 3 to check the protected AIoT device ID;
Decrypts and/or verifies the Secured Payload and/or the entire message according to the Security Policy in the message; If the verification is successful, the AIoT Device continues to perform the following operations;
Generate a Device Nonce;
Use the Device Authentication Key, Network Nonce and Device Nonce to derivate keys for confidentiality and/or integrity protection;
Protect the Payload and/or the entire message using the new derived keys according to the Security Policy (either from the command request message or from the pre-configured security policy);
Send Command Response Message to the AIoTF through the AIoT Reader. The response includes Security policy, Device Nonce, Secured payload and MAC.
7.	The AIoTF performs the following operations:
Use the same method as the AIoT Device to derive the keys, and then decrypts and/or verifies the secured Payload and/or the entire message; If the verification is successful, the AIoTF continue to perform the following operations;
Return the Payload to the AF.
Editor's Note: It is FFS if generating device Nonce twice makes the protocol computationally correct.
Editor's Note: It is FFS if the shared key needs confidentiality/integrity protection against physical attack in the device.
Editor's Note: It is FFS how to prevent power and resource exhaustion in the AIoT devices when all of devices in the paging area always have to decrypt the Device ID.
[bookmark: _Toc180278772][bookmark: _Toc180278947][bookmark: _Toc180279214][bookmark: _Toc180279688][bookmark: _Toc180279867]6.9.3	Evaluation
[bookmark: _Toc138688642][bookmark: _Toc138748143]TBD
6.10	Solution #10: Authentication for AIoT device
[bookmark: _Toc180278773][bookmark: _Toc180278948][bookmark: _Toc180279215][bookmark: _Toc180279689][bookmark: _Toc180279868]6.10.1	Introduction
This solution addresses KI#5 to propose 3 authentication procedures for AIoT devices including UE reader and RAN reader cases.
Editor’s Note:	Clarification on using mechanism described in RFC 4739 is ffs.
Editor’s Note:	Clarification on step 4 in 6.10.2.1.1 and step 5 in 6.10.2.1.2 and 6.10.2.2 is ffs.
Editor’s Note:	Clarification on example for different cases is ffs.
Editor’s Note:	Whether Auth Container can be sent to the device via paging is ffs.
[bookmark: _Toc180278774][bookmark: _Toc180278949][bookmark: _Toc180279216][bookmark: _Toc180279690][bookmark: _Toc180279869]6.10.2	Solution details
[bookmark: _Toc180278775][bookmark: _Toc180278950][bookmark: _Toc180279217][bookmark: _Toc180279691][bookmark: _Toc180279870]6.102.1	UE reader case
[bookmark: _Toc180278776][bookmark: _Toc180278951][bookmark: _Toc180279218][bookmark: _Toc180279692][bookmark: _Toc180279871]6.10.2.1.1	Alternative 1 – UE reader granularity
The following figure shows the call flow for AIoT device authentication via UE reader with UE reader granularity. This procedure has the following main points:
1. The operator is responsible for authorizing UE readers to provide AIoT services. This means that the operator does not manage individual AIoT subscriptions, but rather focuses on UE reader subscriptions. This allows the AIoT service to operate within licensed spectrum, with billing based on UE reader usage (e.g. per AIoT service) rather than the AIoT devices themselves.
2. As there is only SLA between the UE readers and operators, the operator does not require knowledge of AIoT authentication. Therefore, there is no specification of authentication between AAA and AIoT, and no need for SLA and trust establishment between AAA and 5GC. Instead, authentication is encapsulated in an Authentication Container.

Figure 6.102.1.1-1: Authentication for AIoT device via UE reader with UE reader granularity
0.	The UE reader has established a PDU Session for authentication. The 5GC authorizes the PDU Session establishment procedure, e.g., based on subscription data.
1.	The AIoT AF sends Inventory command to the AIoT NF/AMF via NEF.
2.	The AIoT NF/AMF selects the UE reader for the inventory.
3.	The AIoT NF/AMF interacts with UDM/UDR to authorize the UE reader for the inventory, e.g., whether the UE reader is allowed to serve the AF for the inventory for the AIoT devices. If authorization succeeds, the UDM/UDR returns authorization information (e.g. AAA address) to the UE reader.
4.	In case the authorization succeeds, the AIoT NF/AMF responds to the AIoT AF via NEF.
5.	In case the authorization succeeds, the AIoT NF/AMF sends AIoT paging command encapsulated in a DL NAS Transport message to the UE reader. The authorization information may be included in the DL NAS Transport message.
6.	The UE reader may interact with AAA-S based on the authorization information over the PDU Session before paging AIoT devices, e.g., using mechanism described in RFC 4739 [7]. The AAA-S may return authentication information to the UE reader.
7.	The UE reader broadcasts AIoT paging message, which may include an Auth Container that contains authentication information.
8.	The AIoT device determines to responds to the AIoT paging message, it sends an AIoT message to the UE reader with Device ID and optional another Auth Container, which contains information for authentication.
9.	The UE reader acts as proxy of the AIoT device to interact with AAA-S over the PDU Session for authentication between the AIoT device and the AAA-S, e.g., using EAP framework or mechanism described in RFC 4739 [7]. The UE reader may further interact with the AIoT device for authentication if required by AAA-S.
10.	In case the authentication succeeds, the UE reader will receive authentication success indication from AAA-S. The UE reader reports the inventory result to the AIoT AF.
As an example, when AKA based authentication method is used, then step 6 is not performed, and there is no Auth Container in steps 7 and 8, and in step 9, the RAND and AUTN will be encapsulated into an Auth Container sent from the UE reader to the AIoT device, the RES will be encapsulated into another Auth Container sent from the AIoT device to the UE reader.
[bookmark: _Toc180278777][bookmark: _Toc180278952][bookmark: _Toc180279219][bookmark: _Toc180279693][bookmark: _Toc180279872]6.10.2.1.2	Alternative 2 – AIoT device granularity
The following figure shows the call flow for AIoT device authentication via UE reader with AIoT device granularity. This procedure has the following main points:
1. The operator is responsible for managing AIoT subscriptions, but the AIoT credentials are stored in AAA. That means the operator needs to trust authentication result from AAA (i.e. there is SLA between operators and external AAA owner, or operator manage the AAA server). This allows operator to bill based on AIoT devices themselves.
2. It is also assumed that AIoT credentials are stored in AAA with specific authentication method, or AIoT device and AAA are within the same network domain or the same vendor. Therefore, there is no specification of authentication between AAA and AIoT. Instead, authentication is encapsulated in an Authentication Container.

Figure 6.10.2.1.2-1: Authentication for AIoT device via UE reader with AIoT device granularity
0.	The UE reader has registered into 5G network.
1-3.	The same as described in steps 1-3 of clause 6.10.2.1.1.
4.	In case the authorization succeeds, the AIoT NF/AMF may interact with AAA-S before paging AIoT devices, e.g., using mechanism described in RFC 4739[7]. The AAA-S may return authentication information to the AIoT NF/AMF.
5.	In case the authorization succeeds, the AIoT NF/AMF responds to the AIoT AF via NEF.
6.	In case the authorization succeeds, the AIoT NF/AMF sends AIoT paging command encapsulated in a DL NAS Transport message to the UE reader. The authorization information may be included in the DL NAS Transport message. The paging command may include an Auth Container that contains authentication information.
7.	The UE reader broadcasts AIoT paging message, which may include the Auth Container.
8.	The AIoT device determines to responds to the AIoT paging message, it sends an AIoT message to the UE reader with Device ID and optional another Auth Container, which contains information for authentication. The UE reader forwards the AIoT message encapsulated in a UL NAS Transport message to the AIoT NF/AMF.
9.	The AIoT NF/AMF acts as proxy of the AIoT device to interact with AAA-S for authentication between the AIoT device and the AAA-S, e.g., using EAP framework or mechanism described in RFC 4739 [7]. The AIoT NF/AMF may further interact with the AIoT device via the UE reader for authentication if required by AAA-S.
10.	In case the authentication succeeds, the AIoT NF/AMF will receive authentication success indication from AAA-S. The AIoT NF/AMF reports the inventory result to the AIoT AF.
[bookmark: _Toc180278778][bookmark: _Toc180278953][bookmark: _Toc180279220][bookmark: _Toc180279694][bookmark: _Toc180279873]6.10.2.2	RAN reader case
The following figure shows the call flow for AIoT device authentication via RAN reader. The main points are the same with alternative 2 of UE reader case as depicted in 6.10.2.1.2.

Figure 6.10.2.2-1: Authentication for AIoT device via RAN reader
1.	The AIoT AF sends Inventory command to the AIoT NF/AMF via NEF.
2.	The AIoT NF/AMF selects the RAN reader for the inventory.
3.	The AIoT NF/AMF interacts with UDR to authorize the inventory, e.g., whether the AF is allowed to perform the inventory.
Editor’s Note:	Clarification on inventory authorization is ffs.
4.	In case the authorization succeeds, the AIoT NF/AMF may interact with AAA-S before paging AIoT devices, e.g., using mechanism described in RFC 4739 [7]. The AAA-S may return authentication information to the AIoT NF/AMF.
5.	In case the authorization succeeds, the AIoT NF/AMF responds to the AIoT AF via NEF.
6.	In case the authorization succeeds, the AIoT NF/AMF sends AIoT paging command to the RAN reader, which may include an Auth Container that contains authentication information.
7.	The RAN reader broadcasts AIoT paging message, which may include the Auth Container.
8.	The AIoT device determines to responds to the AIoT paging message, it sends an AIoT message to the AIoT NF/AMF via the RAN reader with Device ID and optional another Auth Container, which contains information for authentication.
9.	The AIoT NF/AMF acts as proxy of the AIoT device to interact with AAA-S for authentication between the AIoT device and the AAA-S, e.g., using EAP framework or mechanism described in RFC 4739[7]. The AIoT NF/AMF may further interact with the AIoT device for authentication if required by AAA-S.
10.	In case the authentication succeeds, the AIoT NF/AMF will receive authentication success indication from AAA-S. The AIoT NF/AMF reports the inventory result to the AIoT AF.
As an example, when AKA based authentication method is used, then step 4 is not performed, no Auth Container in steps 6-8, and in step 9, the RAND and AUTN will be encapsulated into an Auth Container sent from the AIoT NF/AMF to the AIoT device, the RES will be encapsulated into another Auth Container sent from the AIoT device to the AIoT NF/AMF.
[bookmark: _Toc180278779][bookmark: _Toc180278954][bookmark: _Toc180279221][bookmark: _Toc180279695][bookmark: _Toc180279874]6.10.3	Evaluation
TBA
[bookmark: _Toc180278780][bookmark: _Toc180278955][bookmark: _Toc180279222][bookmark: _Toc180279696][bookmark: _Toc180279875]6.11	Solution #11: Authentication and ID Privacy of AIoT devices with USIM on AIoT AS Layer
[bookmark: _Toc180278781][bookmark: _Toc180278956][bookmark: _Toc180279223][bookmark: _Toc180279697][bookmark: _Toc180279876]6.11.1	Introduction
This solution is addressing the Key Issue #5: Authentication and Key issue #3: Privacy by protecting AIoT device identifiers and Key issue #4: Protection of information during AIoT service communication.
Some solutions in 3GPP TR 23.700-13 [4] suggests the following simplified protocol stack for Ambient IoT as shown in Figure 6.11.1-1:

Figure 6.11.1-1: Potential AIoT protocol stack
This new architecture provides a control plane delivery of commands and instructions towards the AIoT device from the corresponding AF in charge. Since NAS protocol is not supported and the AIoT devices have a low complexity, it is assumed that only EAP-AKA’ is supported and the non-3GPP access procedures can be reused, comparable to N5CW or AUN3 devices. With that concept it is possible to either to protect the messages between AIoT device and AIoT function, similar to untrusted access, or between AIoT device and AIoT Reader similar to trusted access.
It is assumed that the AIoT device can use SUCI based on the presence of the USIM.
The security relationship is established between AIoT Device and the AIoT Reader, it is assumed that the communication between AIoT Reader and the AIoT Function is protected with NDS/IP.
[bookmark: _Toc180278782][bookmark: _Toc180278957][bookmark: _Toc180279224][bookmark: _Toc180279698][bookmark: _Toc180279877]6.11.2	Solution details
In this solution for adopting the trusted access principles, the AIoT Reader is taking the role as the TNAP and the AIoT Function the role as TWIF/TNGF and AMF.

Figure 6.11.2.2-1: AIoT Device authentication and ID Privacy as trusted non-3GPP access

1. The AF is authenticated based on the mechanisms described in TS 33.501, e.g. TLS, a token based authorization mechanism or local configuration at the NEF. The AF subscribes for device information of authenticated AIoT devices.
2. The AIoT device connects to an AIoT Reader as an access network. The AIoT device may be triggered by the AIoT Reader to send this message, e.g. based on the presence of a specific broadcast message from AIoT Reader.
3. The AIoT reader sends an L2 message with an EAP-Identity Request to the AIoT Device. This step may be part of step 5.
4. The AIoT device provide its unique AIoT Identity, e.g. SUCI or 5G-GUTI in an EAP-Identity Response to the AIoT Reader. The message may contain other information e.g. Device EPC.
5. The AIoT Reader selects a AIoT Function, e.g. based on the received realm, and sends an AAA request to the selected AIoT Function. The AIot Reader may include the received information from the AIoT Device, e.g. Device EPC, and the device location in the request.
6. The AIoT Function shall select an AUSF and sends Nausf_UEAuthentication_Authenticate Request message to the AUSF. The Nausf_UEAuthentication_Authenticate Request message contains SUCI or SUPI (in case of a valid 5G-GUTI is received by the AIoT Function acting as an AMF). The request message contains also an indication that the request is from an AIoT device.
7. The AUSF shall send Nudm_UEAuthentication_Get Request to the UDM including SUCI or SUPI and the AIoT indication. Upon reception of the Nudm_UEAuthentication_Get Request, the UDM shall invoke SIDF if a SUCI is received. SIDF shall de-conceal SUCI to gain SUPI before UDM can process the request. The UDM may select an authentication method based on the "realm" part of the SUPI, the AIoT device indicator, a combination of the "realm" part and the AIoT device indicator, or the UDM local policy. The UDM/ARPF shall first generate an authentication vector. The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF. The UDM shall also send the MSK indicator to the AUSF to indicate that the AIoT device does not support the 5G key hierarchy.
8. The AUSF shall send the EAP-Request/AKA'-Challenge message to the AIoT Function in a Nausf_UEAuthentication_Authenticate Response message.
9. The AIoT Function shall transparently forward the EAP-Request/AKA'-Challenge message to the AIoT Reader in an AAA response message.
10. The AIoT function forwards the EAP-Request/AKA’-Challenge message to the AIoT Device in a L2 message.
11. The AIoT device computes the authentication response message.
12. The AIoT device shall send the EAP-Response/AKA'-Challenge message to the AIoT Reader in a Auth-Resp message on L2.
13. The AIoT Reader shall send the EAP-Response/AKA'-Challenge message to the AIoT Function in a AAA request message.
14. The AIoT Function shall transparently forward the EAP-Response/AKA'-Challenge message to the AUSF in Nausf_UEAuthentication_Authenticate Request message.
15. The AUSF shall verify the message by comparing the XRES and RES. If successful, based on the MSK indicator received in step 11, the AUSF shall generate the MSK, the AUSF shall not generate the KAUSF.
16. The AUSF shall send to the AIoT Function an Nausf_UEAuthentication_Authenticate Response message including the EAP-Success, the MSK, and the SUPI and if available the GPSI.
17. AIoT Function sends an EAP-Success to the AIoT Reader upon reception of the MSK, and the SUPI and if available the GPSI.
18. The AIoT Reader stores the MSK and forwards the EAP-Success to the AIoT Device in a L2 message.
[bookmark: _Hlk179968919]Editor’s Note: it is FFS whether the nr of interactions with the device are feasible for AIoT
[bookmark: _Toc180278783][bookmark: _Toc180278958][bookmark: _Toc180279225][bookmark: _Toc180279699][bookmark: _Toc180279878]6.11.3	Evaluation
Editor’s Note: The solution needs to be aligned with the final SA2 conclusions on the architecture.
[bookmark: _Toc180278784][bookmark: _Toc180278959][bookmark: _Toc180279226][bookmark: _Toc180279700][bookmark: _Toc180279879]6.12	Solution #12: Authentication and ID Privacy of AIoT devices with USIM on AIoT Layer
[bookmark: _Toc180278785][bookmark: _Toc180278960][bookmark: _Toc180279227][bookmark: _Toc180279701][bookmark: _Toc180279880]6.12.1	Introduction
This solution is addressing the Key Issue #5: Authentication and Key issue #3: Privacy by protecting AIoT device identifiers and Key issue #4: Protection of information during AIoT service communication.
Some solutions in 3GPP TR 23.700-13 [4] suggests the following simplified protocol stack for Ambient IoT as shown in Figure 6.12.1-1:

Figure 6.12.1-1: Potential AIoT protocol stack
This new architecture provides a control plane delivery of commands and instructions towards the AIoT device from the corresponding AF in charge. Since NAS protocol is not supported and the AIoT devices have a low complexity, it is assumed that only EAP-AKA’ is supported and the non-3GPP access procedures can be reused, comparable to N5CW or AUN3 devices. With that concept it is possible to either to protect the messages between AIoT device and AIoT function, similar to untrusted access, or between AIoT device and AIoT Reader similar to trusted access.
It is assumed that the AIoT device can use SUCI based on the presence of the USIM.
The security relationship is established between AIoT Device and the AIoT Function and adopts the untrusted access concepts.

[bookmark: _Toc180278786][bookmark: _Toc180278961][bookmark: _Toc180279228][bookmark: _Toc180279702][bookmark: _Toc180279881]6.12.2	Solution details
In this solution for adopting untrusted access principles, the AIoT Reader is taking the role as the Access Point and the AIoT Function the role as N3IWF and AMF.

Figure 6.12.2.1-1: AIoT Device authentication and ID Privacy as untrusted non-3GPP access
1. The AF is authenticated based on the mechanisms described in TS 33.501, e.g. TLS, a token based authorization mechanism or local configuration at the NEF. The AF subscribes for device information of authenticated AIoT devices.
2. The AIoT device connects to an AIoT Reader as an access network. The AIoT device may be triggered by the AIoT Reader to send this message, e.g. based on the presence of a specific broadcast message from AIoT Reader. When the AIoT device decides to attach to the AIoT Reader, the AIoT device selects an AIoT Function in a 5G PLMN. The AIoT Device may retrieve the address of the AIoT Function in a broadcast message of the AIoT Reader to which the AIoT Reader is connected to, or, the AIoT Function address may be preconfigured in the AIoT Device. The AioT Device retrieves limited IP connectivity from the AIoT Reader to perform the procedure.
3. The AIoT device proceeds with the establishment of an IPsec Security Association (SA) with the selected AIoT Function by initiating an IKE initial exchange.
4. The AIoT device shall initiate an IKE_AUTH exchange by sending an IKE_AUTH request message. The AUTH payload is not included in the IKE_AUTH request message, which indicates that the IKE_AUTH exchange shall use EAP signalling (in this case EAP-5G signalling).
5. The AIoT Function responds with an IKE_AUTH response message which includes the AIoT Function identity, the AUTH payload to protect the previous message it sent to the AIoT device (in the IKE_SA_INIT exchange) and an EAP-Request/5G-Start packet.
6. The AIoT device shall validate the AIoT Function certificate and shall confirm that the N3IWF identity matches the AIoT Function selected by the AIoT device. The AIoT device shall send an IKE_AUTH request which includes an EAP-Response/5G-NAS packet that contains a unique AIoT identifier, e.g. such as SUCI or 5G-GUTI and may contain the Electronic Product Code (EPC) of the AIoT device.
7. The AIoT Function shall select an AUSF and sends Nausf_UEAuthentication_Authenticate Request message to the AUSF. The Nausf_UEAuthentication_Authenticate Request message contains SUCI or SUPI (in case of a valid 5G-GUTI is received by the AIoT Function acting as an AMF). The request message contains also an indication that the request is from an AIoT device.
8. The AUSF shall send Nudm_UEAuthentication_Get Request to the UDM including SUCI or SUPI and the AIoT indication. Upon reception of the Nudm_UEAuthentication_Get Request, the UDM shall invoke SIDF if a SUCI is received. SIDF shall de-conceal SUCI to gain SUPI before UDM can process the request. The UDM may select an authentication method based on the "realm" part of the SUPI, the AIoT device indicator, a combination of the "realm" part and the AIoT device indicator, or the UDM local policy. The UDM/ARPF shall first generate an authentication vector. The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF. The UDM shall also send the MSK indicator to the AUSF to indicate that the AIoT device does not support the 5G key hierarchy.
9. The AUSF shall send the EAP-Request/AKA'-Challenge message to the AIoT Function in a Nausf_UEAuthentication_Authenticate Response message.
10. The AIoT Function shall transparently forward the EAP-Request/AKA'-Challenge message to the AIoT device in an IKE_AUTH response message.
11. The AIoT device computes the authentication response message.
12. The AIoT device shall send the EAP-Response/AKA'-Challenge message to the AIoT Function in a Auth-Resp message.
13. The AIoT Function shall transparently forward the EAP-Response/AKA'-Challenge message to the AUSF in Nausf_UEAuthentication_Authenticate Request message.
14. The AUSF shall verify the message by comparing the XRES and RES. If successful, based on the MSK indicator received in step 11, the AUSF shall generates the MSK, the AUSF shall not generate the KAUSF.
15. The AUSF shall send to the AIoT Function an Nausf_UEAuthentication_Authenticate Response message including the EAP-Success, the MSK, and the SUPI and if available the GPSI.
16. AIoT Function sends an EAP-Success/EAP-5G to the AIoT device upon reception of the MSK, and the SUPI and if available the GPSI.

Editor’s Note: it is FFS whether the number of device interactions are feasible for AIoT
Editor’s Note: how USIM is supported is FFS
[bookmark: _Toc180278787][bookmark: _Toc180278962][bookmark: _Toc180279229][bookmark: _Toc180279703][bookmark: _Toc180279882]6.12.3	Evaluation
Editor’s Note: The solution needs to be aligned with the final SA2 conclusions on the architecture.
[bookmark: _Toc180278788][bookmark: _Toc180278963][bookmark: _Toc180279230][bookmark: _Toc180279704][bookmark: _Toc180279883]6.13	Solution #13: Authentication and ID privacy of AIoT devices without USIM
[bookmark: _Toc180278789][bookmark: _Toc180278964][bookmark: _Toc180279231][bookmark: _Toc180279705][bookmark: _Toc180279884]6.13.1	Introduction
This solution is addressing the the Key Issue #5: Authentication and Key issue #3: Privacy by protecting AIoT device identifiers and Key issue #4: Protection of information during AIoT service communication.
Some solutions in 3GPP TR 23.700-13 [4] suggests the following simplified protocol stack for Ambient IoT as shown in Figure 6.13.1-1:

Figure 6.13.1-1: Potential AIoT protocol stack
This new architecture provides a control plane delivery of commands and instructions towards the AIoT device from the corresponding AF in charge. Since NAS protocol is not supported and the AIoT devices have a low complexity, it is assumed that the devices in addition do not have a USIM for authentication and the security procedures. It is further assumed that the devices do have a simple security configuration which is shared with the AF. For ID privacy, the devices use a default ID for the onboarding to the AIoT network, after that only a temporary ID is used, derived from the security configuration. Confidentiality keys are derived from the security configuration, integrity protection may not be required based on the level of importance of the downlink messages.
[bookmark: _Toc180278790][bookmark: _Toc180278965][bookmark: _Toc180279232][bookmark: _Toc180279706][bookmark: _Toc180279885]6.13.2	Solution details

Figure 6.13.2.2-1: AIoT Device authentication and ID Privacy

1. The AF has a preshared configuration of the AIoT devices, which includes a unique Default ID of the device and respective security parameters for deriving a security key and temporary IDs for ID privacy.
2. The AF sends an AIoT Request to the NEF with the Default Id and the security parameters of the AIoT device.
3. The Nef forwards the AIoT Request to the selected AioT Function.
4. The AIoT Function generates a Nonce and uses it to derive an Encryption Key and a Temporary ID from the received security context from the NEF. The AIoT Function uses the Encryption Key to calculate an Expected Result.
5. The AIoT Function sends an AIoT Request to the AioT Reader, including the Default ID and the Nonce.
6. The AIoT Reader sends the AIoT Request to the AIoT Device, which is listening to requests with the Default ID for initial onboarding to the AIoT network.
7. The AIoT Device calculates the Encryption Key and the Temporary ID for the next usage in a similar way as the AIoT Function. The AIoT Device calculates the Result as a proof that it holds the security context.
8. The AIoT Device sends a AIoT response to the AIoT Reader, including the computed Result.
9. The AIoT Reader forwards the AIoT Response to the AiOT Function.
10. The AIoT Function compares the received result with the expected result and authenticates the AIoT Device if both are identical.
11. The AIoT Function sends a AIoT Response to the NEF, indicating the success of the authentication.
12. The Nef forwards the AioT Response to the AF.
All further requests from the AF are then encrypted by the AIoT Function and the AIoT Device, the AIoT device is addressed by the Temporary ID only. The AIoT Function may change the Encryption Key and the Temporary ID by providing a new Nonce in a protected downlink request.

Editor’s Note: Whether Nonce in Step 6 can be sent to the device depends on RAN paging message
Editor’s Note: How to address synchronization issues with the Temporary ID is FFS
Editor’s Note: How to generate the encryption key is FFS
Editor’s Note: It is FFS how to use the solution with a group of devices;
Editor’s Note: Command protection is FFS
Editor’s Note: how the result of the authentication is computed is FFS
[bookmark: _Toc180278791][bookmark: _Toc180278966][bookmark: _Toc180279233][bookmark: _Toc180279707][bookmark: _Toc180279886]6.13.3	Evaluation
Editor’s Note: The solution needs to be aligned with the final SA2 conclusions on the architecture.
[bookmark: _Toc180278792][bookmark: _Toc180278967][bookmark: _Toc180279234][bookmark: _Toc180279708][bookmark: _Toc180279887]6.14	Solution #14: Information protection during AIoT service communication
[bookmark: _Toc180278793][bookmark: _Toc180278968][bookmark: _Toc180279235][bookmark: _Toc180279709][bookmark: _Toc180279888]6.14.1	Introduction
The solution addresses the security requirement of KI#4: Protection of information during AIoT service communication.
The basic principle of this solution is to reuse principles of Integrity protection in 5GS [5] but simplify the tasks in a AIoT device. Furthermore, in this solution description also reuses the concept of locally generated Temporary ID (TempID) for privacy protection. However, this solution does not strictly depend on that solution, other means of handling temporary IDs are possible.
The solution assumes the following AIoT device capabilities:
-	The AIoT device has higher complexity than a RFID tag that only reflects the same preconfigured device ID when excited by RF power, but significantly lower complexity than a 3GPP CIoT device.
-	The AIoT device has a factory-encoded key and device ID, and the network also has these stored or can retrieve them.
-	The AIoT device has a non-volatile storage capability.
As the available power in an AIoT device is very limited, the message exchange between the device and the network must be minimized and the computational requirement should be minimized. The solution is based on the following principle:
-	The AIoT device can locally derive new temporary identifiers (TempID) to be used in future communication, a list of unused TempIDs.
NOTE:	The solution requires the AIoT device to have a few TempIDs available that has not been used i.e., never sent in clear text over the radio interface.
Editor’s Note: The temporary ID derivation algorithm is FFS and as the temporary ID is derived locally the overall Temporary ID handling needs to address the case of TempID out-of-synchronization and re-synchronization between the device and 5GC.
-	The AIoT device uses these identifiers together with the factory-encoded key to protect the information transmitted.
-	The derivation of an MAC is used. The intention is to make the derivation with low complexity.
-	The Inventory service and Command service would require different type of protection.
[bookmark: _Toc180278794][bookmark: _Toc180278969][bookmark: _Toc180279236][bookmark: _Toc180279710][bookmark: _Toc180279889]6.14.2	Solution details
[bookmark: _Toc180278795][bookmark: _Toc180278970][bookmark: _Toc180279237][bookmark: _Toc180279711][bookmark: _Toc180279890]6.14.2.1 Inventory Service information protection
The information transmitted from the AIoT device is an ID triggered by an Inventory request targeting e.g. all AIoT devices, group, or type of AIoT devices. Inventory is not typically targeted for one individual device, but that case should still be considered.
Eavesdropping: To protect against eavesdropping the AIoT device shall transmit an ID that cannot be linked to specific AIoT device.
Manipulation/unauthorized transmission: To Protect against this, the system shall never send the same ID over the radio interface and have a method to check that the ID is authentic if needed.
The solution to protection against the listed attacks is the same. The UE shall always send an ID that has never been sent over the radio interface. For the listed cases the following procedure principle applies:
Group/all device Inventory request:
· The Reader transmit an Inventory request targeting a group of AIoT devices or all AIoT device.
· The AIoT device responds to the request using a TempID that has never been used before (first in the list)
· In case the Reader UE wants to verify that the ID received is authentic the Reader can perform an Individual device Inventory Request.
Individual AIoT device Inventory request:
· The Reader transmit an Inventory request targeting a specific of AIoT device by including the device TempID that has never been used before (first in the list).
· The AIoT device responds to the request using a TempID that has never been used before (second in the list, as the first TempID was used in the Inventory request).
· In case the Reader UE wants to verify that the ID received is authentic the Reader repeats this request.
[bookmark: _Toc180278796][bookmark: _Toc180278971][bookmark: _Toc180279238][bookmark: _Toc180279712][bookmark: _Toc180279891]6.14.2.2 Command Service information protection
The information transmitted from the Reader is an ID and command. The information transmitted by the UE is an ID and a response. The Command is triggered by a Reader and targeting e.g. a group of AIoT devices or an individual AIoT device.
Eavesdropping: To protect against eavesdropping an ID that cannot be linked to specific device and optionally encrypt the command.
Manipulation: To protect against this, a MAC can be derived/verified using at least the following input parameters the command/response and a shared secrete.
unauthorized transmission: To protect against this, the system shall never send the same ID over the radio interface and have a method to check that the ID is authentic if needed. Additionally, deriving a MAC as discussed above can be added.
MAC derivation
The solution proposes to use available parameters and use these in a simplified "Integrity Algorithm" e.g. scramble the input with the key.

Figure 6.14.2.2-1: Derivation of MAC or XMAC.
As the TempID has never been sent over the radio interface and it is derived from the factory encoded key, it would be possible to further simplify the MAC derivation by reusing the TempID as a "derived Key" from the factory encoded key.

Figure 6.14.2.2-2: Alternative derivation of MAC or XMAC.
Downlink (Reader -> AIoT device)
The DL command message is sent to the AIoT device using the TempID (first in the list)
In addition to the Command, the Reader includes also a MAC derived as follows:
The KEY input is the factory-encoded key in the device.
The TempID input is the next TempID in the list (second ID).
The DIRECTION bit shall be set to 1 for downlink.
MESSAGE input is the Command.
Editor’s Note: Whether and how to derive a MAC for DL Group-Command message is FFS.

Uplink (AIoT device -> Reader)
The DL command message was sent to the AIoT device using a TempID (first in the list)
The AIoT device responds to the Reader by using the next TempID (second in the list) and includes the response (e.g., an ACK or Data) plus a MAC derived as follows:
The KEY input is the factory-encoded key in the device.
The TempID input is the next TempID in the list (third TempID).
The DIRECTION bit shall be set to 0 for uplink.
MESSAGE input is the UL response (e.g., ACK or data).
[bookmark: _Toc180278797][bookmark: _Toc180278972][bookmark: _Toc180279239][bookmark: _Toc180279713][bookmark: _Toc180279892]6.14.3	Evaluation
TBD.
[bookmark: _Toc180278798][bookmark: _Toc180278973][bookmark: _Toc180279240][bookmark: _Toc180279714][bookmark: _Toc180279893]6.15	Solution #15: End-to-end security protection of command procedure
[bookmark: _Toc180278799][bookmark: _Toc180278974][bookmark: _Toc180279241][bookmark: _Toc180279715][bookmark: _Toc180279894]6.15.1	Introduction
This solution addresses key issues #1 and #4. This solution provides a security mechanism for protecting the commands transmitted between an AIoT device and an Application Function (AF) for AIoT services. This solution assumes the AF manages the AIoT device identifier and the corresponding security protection profile. The security protection profile includes a device credential and an algorithm to use to protect the command.
NOTE 1: Device credential types are determined based on each AIoT service and device capability.
The proposed mechanism is also applied to protect the messages exchanged for enable/disable device operation. The security mechanism for protecting the commands is applied when the AIoT device and AF are provisioned with the security protection profile.
[bookmark: _Toc180278800][bookmark: _Toc180278975][bookmark: _Toc180279242][bookmark: _Toc180279716][bookmark: _Toc180279895]6.15.2	Solution details

Figure 6.15.2.1-1: End-to-end protection of messages during Command procedure
NOTE 2: The reference architecture and Command procedure described in clause 6.3 of TR 23.700-13 (i.e., solution #3) [4] are used to describe the end-to-end protection mechanism in this solution. The proposed mechanism can be applied to any reference architectures and procedures for AIoT services that require transmissions of messages between AIoT devices and an Application Function.
0.	Each AIoT device is provisioned with its AIoT device identifier and security protection profile such as a device credential and an algorithm to use to protect the command. An Application Function (AF) manages the AIoT device identifier and the associated security protection profile.
1.	When the AF triggers a Command procedure towards individual AIoT device(s), the AF protects a Command based on the Command Protection Key (CPK) and a freshness parameter. The AF, then, sends a message containing the protected Command to the AIoT Controller.
When the AF triggers a Command procedure towards a group of AIoT devices, it protects a Command based on the Group Command Protection Key (GCPK) and a freshness parameter. Then, the AF sends the protected Command to the AIoT Controller.
NOTE 3: CPK is either derived from the device credential or provisioned on the AIoT device by the AF.
NOTE 4: GCPK, if used, is provisioned on the AIoT devices by the AF.
NOTE 5: Freshness parameter can be a counter, time-based counter or a random number depending on the AIoT service and device capability.
Editor’s Note: whether device ID is included is FFS.
2.	The AIoT Controller provides the Command to the selected Reader(s).
3.	 The Reader sends the Command to the AIoT device(s).
4.	Upon receiving the Command, the AIoT device decrypts/verifies the received Command. If the verification is successful, the AIoT device processes the Command.
5.	If the AIoT device needs to send a response, it generates a Command Response and protects it based on the CPK and a freshness parameter. The AIoT device, then, sends the protected Command Response.
	In case of Group command, the AIoT device protects the Command response based on the GCPK and a freshness parameter.
6.	Upon receiving the Command Response, the Reader sends it to the AIoT Controller with optional Enrichment data such as the location of the Reader if configured by AIoT Controller.
7.	The AIoT Controller provides the protected Command Response to the AF.
8.	The AF decrypts/verifies the received Command Response based on the CPK and the freshness parameter.
Editor’s Note: The procedure needs to align with SA2.
[bookmark: _Toc180278801][bookmark: _Toc180278976][bookmark: _Toc180279243][bookmark: _Toc180279717][bookmark: _Toc180279896]6.15.3	Evaluation
TBD
[bookmark: _Toc180278802][bookmark: _Toc180278977][bookmark: _Toc180279244][bookmark: _Toc180279718][bookmark: _Toc180279897]6.16	Solution #16: Disabling operation procedure for Ambient IoT services
[bookmark: _Toc180278803][bookmark: _Toc180278978][bookmark: _Toc180279245][bookmark: _Toc180279719][bookmark: _Toc180279898]6.16.1	Introduction
This solution is proposed to address Key Issue #1, which provides a method for permanently disabling the Ambient IoT device(s). This solution applies to Topology 1 and Topology 2.
Considering different roles are involved in the Ambient IoT services, it is assumed that only the owner of Ambient IoT device can authenticate the Ambient IoT device and initiate the disabling operation procedure to disable the Ambient IoT device’s capability to transmit RF signals.
In this solution, it is assumed that the Ambient IoT device is stateful. After the authentication is performed successfully, the Ambient IoT device enters the next state (e.g. secure state), in which it can execute the disabling operation.
For disabling the Ambient IoT device, the owner sends the Disabling request to the Ambient IoT device via the gNB/Intermediate node. If the owner is the application provider, the Disabling request is E2E protected between the AF and Ambient IoT device. If the owner is the operator, the Disabling request is protected by the AIoTF/AMF.
Once receiving the Disabling command, the Ambient IoT device determines whether to execute this operation based on authentication status and verification result. By maintaining the authentication status, the Ambient IoT device can ensure that the Disabling command is sent from the legitimate requester instead of the attacker. By maintaining the security material, the Ambient IoT device can ensure that the Disabling command is not tampered by the attacker.
NOTE 1: The states of Ambient IoT device are defined in TR 23.700-13 [4].
[bookmark: _Toc180278804][bookmark: _Toc180278979][bookmark: _Toc180279246][bookmark: _Toc180279720][bookmark: _Toc180279899]6.16.2	Solution details
This solution assumes that the authentication between the Ambient IoT device and its owner has been performed before disabling operation and the authentication status is stored in the Ambient IoT device. It is also assumed that the Ambient IoT device already share the security materials for communication protection with the AF or AIoTF/AMF before disabling operation.
Editor’s Note:	The security materials between the Ambient IoT device and AF or AIoTF/AMF are FFS.
NOTE 2:	The authentication and security context establishment between the Ambient IoT device and its owner is out of scope of this solution.

Figure 6.16.2-1: Disabling operation procedure for Ambient IoT services
1. The device owner sends the Disabling request to AIoTF/AMF. The Disabling request may include Ambient IoT device ID(s), disabling command, etc. If the owner of Ambient IoT device is application provider, the disabling command is E2E protected between the AF and Ambient IoT device.
2.	The AIoTF/AMF determines the gNB/Intermediate node to transmit this Disabling request.
3.	If the owner of Ambient IoT device is operator, the AIoTF/AMF protects the disabling command using the shared security materials. The AIoTF/AMF sends the Disabling request to the selected gNB/Intermediate node.
4.	Upon reception of the request message, the selected gNB/Intermediate node executes inventory procedure with the Ambient IoT device.
5. 	The selected gNB/Intermediate node sends the protected Disabling Command message to the Ambient IoT device.
6.	Once receiving the Disabling command, the Ambient IoT device firstly determines whether the authentication has been performed based on the authentication status. If the requester has been authenticated, the Ambient IoT device further verifies the received Disabling request by using the shared security materials. If the verification is successful, the Ambient IoT device can execute the disabling operation.
Note:	Once the disabling operation is finished, the owner removes the security context of Ambient IoT device.
Editor’s Note:	Whether the Disabling acknowledgement message is needed is FFS.
Editor’s Note:	How to maintain the state in the Ambient IoT device is FFS.
Editor’s Note: 	Alignment with conclusion from TR 23.700-13 [4] is FFS.
[bookmark: _Toc180278805][bookmark: _Toc180278980][bookmark: _Toc180279247][bookmark: _Toc180279721][bookmark: _Toc180279900]6.16.3	Evaluation
TBD
[bookmark: _Toc180278806][bookmark: _Toc180278981][bookmark: _Toc180279248][bookmark: _Toc180279722][bookmark: _Toc180279901]6.17	Solution #17: Disabling operation procedure for AIoT services
[bookmark: _Toc180278807][bookmark: _Toc180278982][bookmark: _Toc180279249][bookmark: _Toc180279723][bookmark: _Toc180279902]6.17.1	Introduction
The solution addresses the security requirement of KI#1: Protection for disabling device operation. According to TS 22.369 [2], the network operator shall provide a suitable mechanism to temporarily/permanently disable the capability of an Ambient IoT device or a group of Ambient IoT devices to transmit RF signals. The solution assumes the network operator is responsible for managing the AIoT device using the temporarily/permanently disable operation.
Specifically, the AIoT NF sends the AIoT Disable Request to the AIoT device. The message includes the disable security parameter, which is calculated by the shared key between AIoT devices and AIoT NF. The AIoT device calculates and verifies the disable security parameter using the same shared key to decide whether to perform the disable operation.
[bookmark: _Toc180278808][bookmark: _Toc180278983][bookmark: _Toc180279250][bookmark: _Toc180279724][bookmark: _Toc180279903]6.17.2	Solution details
Depicted in Figure 6.17.2-1 is the disable operation procedure for AIoT Services.

Figure 6.17.2-1: Disable operation procedure for AIoT service
1. The AF sends the AIoT Disable Request to the AIoT NF via the NEF, including the AIoT device filter information, and disable type (i.e., temporarily/permanently disable).
2. The AIoT NF sends the AIoT Disable Trigger to the RAN/UE Reader, including the AIoT device filter information.
The AIoT device filter information is used to page an AIoT device or a group of AIoT device, which could be the AIoT device ID, the group ID, or the partial ID of AIoT device.

3. The RAN/UE Reader sends the AIoT Paging Request to the AIoT device, including the AIoT device filter information.
4. The AIoT device checks whether the ID matches according to the AIoT device filter information.
5. The AIoT device sends the AIoT Paging Response to the RAN/UE Reader, including the AIoT device ID.
6. The RAN/UE Reader sends the AIoT Disable Trigger Response to the AIoT NF, including the AIoT device ID.
7. The AIoT NF uses f function to calculate the disable security parameter with the input parameters key K, AIoT ID, disable type and counter, i.e., f (K, AIoT ID, disable type, counter)
NOTE: The f functions can be HMACfunctions, f1-f5 functions, AES functions, etc.
NOTE: The key K can be the root key or its derived key of the AIoT device.
8. The AIoT NF sends the AIoT Disable Request to the RAN/UE Reader. The message contains the AIoT ID, disable security parameter, disable type and counter.
9. The RAN/UE Reader forwards the AIoT Disable Request to the AIoT device.
10. The AIoT device uses the same shared key to verify the disable security parameters.
11. (a) The AIoT device performs the disable operation according to the disable type, if the calculated disable security parameter matches the received disable security parameter.
(b) The AIoT device sends the AIoT Disable Response to the RAN/UE Reader before disabling the RF capability, if the AF requires a feedback.
12. The RAN/UE Reader forwards the AIoT Disable Response to the AIoT NF.
13. The AIoT NF sends the AIoT Disable Response to the AF via the NEF.
Editor's Note:	How the AIoT device maintans the counter is FFS.
[bookmark: _Toc180278809][bookmark: _Toc180278984][bookmark: _Toc180279251][bookmark: _Toc180279725][bookmark: _Toc180279904]6.17.3	Evaluation
TBD.
[bookmark: _Toc180278810][bookmark: _Toc180278985][bookmark: _Toc180279252][bookmark: _Toc180279726][bookmark: _Toc180279905]6.18	Solution #Y: Authorization procedure for AF-based intermediate node selection
[bookmark: _Toc180278811][bookmark: _Toc180278986][bookmark: _Toc180279253][bookmark: _Toc180279727][bookmark: _Toc180279906]6.18.1	Introduction
This solution is proposed to address Key Issue #2, supporting the authorization for AF-based intermediate node selection. This solution applies to Topology 2.
The authorization of intermediate node is based on the UE subscription data stored in the UDM. Once receiving the potential intermediate node information provided by the AF, the AMF/AIoTF interacts with its UDM to obtain the UE subscription data. The AMF/AIoTF determines whether the UE is authorized to provide the requested Ambient IoT service by using the Ambient IoT service information, Ambient IoT service area information, and/or Ambient IoT device information included in the UE subscription data.
[bookmark: _Toc180278812][bookmark: _Toc180278987][bookmark: _Toc180279254][bookmark: _Toc180279728][bookmark: _Toc180279907]6.18.2	Solution details

Figure 6.18.2-1: Authorization procedure for AF-based intermediate node selection
1.	The AF sends the Inventory/Command request to AMF/AIoTF via NEF. The Inventory/Command request may include UE ID(s), Ambient IoT device ID, area information, command, etc.
2.	For each UE as the potential intermediate node provided by the AF, the AMF/AIoTF interacts with its UDM to obtain the UE subscription data for UE authorization.
3.	For each UE, the AMF/AIoTF checks the UE authorization as follows:
-	If the Ambient IoT service information is included in UE subscription data, the AMF/AIoTF determines whether the UE is authorized to provide the requested Ambient IoT service.
-	If the Ambient IoT service area information is included in UE subscription data, the AMF/AIoTF determines whether the UE is authorized to provide the requested Ambient IoT service.
-	If the Ambient IoT device information is included in UE subscription data, the AMF/AIoTF determines whether the UE is authorized to provide the requested Ambient IoT service.
If multiple UEs are authorized, the AMF/AIoTF further decides to select one or more UE(s) as intermediate node(s).
4.	For the selected UE, the AMF/AIoTF sends the inventory/command request to the UE.
Editor’s Note:	The procedure of inventory/command is to be aligned with SA2.
Editor’s Note:	The details of subscription information is to be aligned with SA2.
Editor’s Note: 	Whether the AF knows the UE ID is FFS.
[bookmark: _Toc180278813][bookmark: _Toc180278988][bookmark: _Toc180279255][bookmark: _Toc180279729][bookmark: _Toc180279908]6.18.3	Evaluation
Editor’s Note: Further evaluation is FFS.
[bookmark: _Toc180278814][bookmark: _Toc180278989][bookmark: _Toc180279256][bookmark: _Toc180279730][bookmark: _Toc180279909]6.19	Solution #19: Authorization of AIoT capable UE in topology 2
[bookmark: _Toc180278815][bookmark: _Toc180278990][bookmark: _Toc180279257][bookmark: _Toc180279731][bookmark: _Toc180279910]6.19.1	Introduction
This solution addresses key issue #2: Authorization for 5G Ambient IoT services.
In the Topology 2, as defined in TR 38.848, the AIoT capable UE acting as the intermediate node is responsible for transferring the Ambient IoT data and/or signalling between AIoT devices and 5GS and under network control.
[image: A black background with a black square

Description automatically generated with medium confidence]
Figure 6.19.1-1: Topology 2

In this solution, it is proposed that the AIoT device and the AIoT capable UE acting as the intermediate UE are authorized by the network and provisioned by the network with a common security material to protect the interface between the AIoT devices and the AIoT capable UE acting as the intermediate UE.
In this solution, the interface between the AIoT capable UE acting as the intermediate node and AIoT devices is called Ntopo2. Security material to protect Ntopo2 procedure (e.g. Inventory, Command) between the AIoT devices and the AIoT capable UE acting as the intermediate UE is called Ntopo2 security material, e.g. for integrity protection, confidentiality protection.
When the protected messages received from the peer side over Ntopo2 is successfully verified by the receiving side (the AIoT devices or the intermediate UE), it indicates that the sending side (the intermediate UE or the AIoT devices) has been authorized by the network.
[bookmark: _Toc180278816][bookmark: _Toc180278991][bookmark: _Toc180279258][bookmark: _Toc180279732][bookmark: _Toc180279911]6.19.2	Solution details
The procedure for authorization for AIoT capable UE acting as the intermediate node for 5G Ambient IoT is described as follows.

Figure 6.19.2-1: Authorization of Intermediate UE for topology 2
0.	The AIoT device is provisioned with the Ntopo2 security material and its associated information from the network. During the provisioning procedure, the network checks whether the AIoT device is authorized to use Ntopo2 for Ambient IoT service. The Ntopo2 security material and its associated information is described in step 3.
Editor’s Note: It’s FFS how the Ntopo2 security material is provisioned to the AIoT device, and by which 5GC NF.
NOTE1: 	One or more AIoT devices (e.g. AIoT devices in the same group) can be associated with a common Ntopo2 security material.
1.	The AIoT capable UE performs Registration procedure as defined in TS 23.502. The UE includes the AIoT Intermediate node capability indication in Registration Request message. The AMF determines whether the UE is authorized to work as Intermediate UE for AIoT based on the UE’s Subscription data. If the UE is authorised to work as Intermediate UE, then the AMF also includes the authorization information in NGAP message sent to NG-RAN.
2.	AF sends AIoT service request (e.g. Inventory Request, Command Request) to the AIoT capable UE. The AIoT service request may be sent to the AIoT capable UE via 5GC or from AF directly over user plane with input parameters containing the area information, device information, optional inventory strategy information, and optional report aggregation info etc.
NOTE2: 	The detail of AIoT service request procedure is to be defined by SA2.
3.	The AIoT capable UE sends a Key Request message to the network to get the Ntopo2 security material if the Ntopo2 security material is not available locally. In addition, the AIoT capable UE includes its Ntopo2 security capability to be used over the interface with AIoT devices, e.g. supported ciphering algorithms. The AIoT capable UE may also include the information that is associated with Ntopo2 security material e.g. the spatial information (e.g. geographical area), the temporal information (e.g. time period, expiry), and/or the AIoT device information (e.g. device ID, device group ID, device type, device mask info etc).
4.	The 5G NF checks whether the AIoT capable UE is authorized to work as Intermediate UE for Ambient IoT service and provisions Ntopo2 security material. The 5G NF may check the Ambient IoT service authorization information for the AIoT capable UE with the AF.
Editor’s Note: It’s FFS which 5G NF performs the authorization and provisions the security material.
5.	The 5G NF returns the Ntopo2 security material in Key Response Message. In addition, the 5G NF may include the chosen Ntopo2 ciphering algorithm, the Ntopo2 security policies, and the information that is associated with Ntopo2 security material as described in step 3.
6.	The AIoT capable UE interacts with NG-RAN for radio resource allocation if the UE is authorized as in step 1.
NOTE3:	The detail for radio resource allocation is assumed to be defined by RAN.
7.	If the AIoT service request is Inventory Request, the AIoT capable UE initiates Inventory request over Ntopo2, selects Ntopo2 security material as received in step 5 and based on the associated security material information and input parameters in AIoT service request, and protects the Inventory request message with Ntopo2 security material.
8.	If verification of the protected Inventory request message is successful based on the Ntopo2 security material received in step 0, the AIoT device reports the device ID and/or other info to the AIoT capable UE in the response message. The response message is protected by Ntopo2 security material. Successful verification of the protected Inventory request message assures the AIoT device that the AIoT capable UE is authorized to provide the AIoT service.
9.	If the AIoT service request is Command Request, the AIoT capable UE initiates Command request over Ntopo2 and protects the Command request message with Ntopo2 security material simliar as step 7.
10.	If verification of the protected Command request message is successful based on the Ntopo2 security material received in step 0, the AIoT device performs the Command and sends the response message. The response message is protected by Ntopo2 security material. Successful verification of the protected Command request message assures the AIoT device that the AIoT capable UE is authorized to provide the AIoT service.
11.	The AIoT capable UE verifies the AIoT service response messange (Inventory response or Command response). Successful verification of the AIoT service response message assures the AIoT capable UE that the AIoT device is authorized for the AIoT service. The AIoT capable UE sends the AIoT service response to the AF. The AIoT service response may be sent to the AF via 5GC or directly over user plane.
Editor’s Note: What is the security material and the protocol betwen AIoT device and reader is FFS.
Editor’s Note: Clarify if ntopo2 key is long-term key or not. If long-term, the security impact is FFS.
[bookmark: _Toc180278817][bookmark: _Toc180278992][bookmark: _Toc180279259][bookmark: _Toc180279733][bookmark: _Toc180279912]6.19.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
[bookmark: _Toc180279734][bookmark: _Toc180279913]6.20			Solution #20: Lightweight AIOT ID privacy based on hashes
[bookmark: _Toc180278818][bookmark: _Toc180278993][bookmark: _Toc180279260][bookmark: _Toc180279735][bookmark: _Toc180279914]6.20.1			Introduction
The assumption of this solution is AIoT device can not support 5G-AKA due to power or computational resource limitation.
The existing Key issue #3, Privacy by protecting AIoT device identifiers, specifies the following requirement:
Mechanisms for mitigating privacy threats (described above) by identifying, linking, and tracking the identifiers of AIoT Device(s) shall be supported.
In addition, RAN2#125bis chairman notes [4] detail the following baseline procedure:
[bookmark: _Hlk165549985]…
3. RAN2 will support two use cases, “inventory” and “command”. The definition, detailed wording is FFS
4. Baseline:
Step A: Based on the service request, the reader sends the Initial Trigger Message indicating device(s) that need to respond; Details FFS
Step B: Triggered device(s) performs the random access-like procedure, if needed; Details FFS
Step C: The device may perform the data communication with the reader as needed,: Details FFS
…
This solution aims to address both, the KI#3 of the present document and the baseline procedure described in the RAN2#125bis agreement.
Moreover, the proposed procedure for obfuscating the AIoT Device AIOT_ID describes the “inventory” use case but is equally applicable to the “command” use case.
[bookmark: _Toc180278819][bookmark: _Toc180278994][bookmark: _Toc180279261][bookmark: _Toc180279736][bookmark: _Toc180279915]6.20.2			Details
The simplified call flow associated with the proposed solution is presented below.

Figure 6.20.2-1: Call flow for Lightweight AIOT ID privacy based on hashes
Steps associated with the call flow in Figure 6.20.2-1:
0. Configuration and provisioning step
0a. AIOT Device is configured/provisioned with AIOT_ID
0b. RAN Reader/Intermediate Node is configured/provisioned with a list of AIOT_IDs
1.	AF sends an Inventory Operation Request with the following information: target area for the operation, client which requests the operation, and match information used to filter and discover the target AIoT devices for the operation.
2.	The NEF authorizes the AF request. If the AF request is authorized, The NEF discovers the AIoT function using the information in the Inventory Operation Request, e.g. using the target area for the operation to discover the AIoT function from NRF. If the target area for the operation matches the AIoT service area of the AIoT Function, the NRF returns the information for the AIoT function to the NEF.
3.	The NEF forwards the Inventory Operation information to each of the selected AIoT functions.
4.	The AIoT function discovers and selects a reader or an Intermediate Node to perform Inventory Operation according to the Inventory Operation information. e.g. using the target area for the operation to discover the readers. If the target area for the operation matches the AIoT service area supported by the readers, those readers can be selected to execute the inventory operation.
5.	The AIoT Function sends an Inventory Request with the Inventory Operation information for each selected reader.
6.	The selected reader executes the inventory operation towards the target AIoT Devices.
Note that step 6 may be eavesdropped, manufactured, and replayed by an attacker. An appropriate authorisation of the Reader and freshness control to prevent message 6 replay will be needed to remedy such attacks.
7. The AIoT Device performs AIOT_ID selection based on matching of hashed AIOT_ID
a. The AIoT Device computes a hash using RAND_READ as salt for each AIOT_ID
b. The AIoT Device compares the hash values of its provisioned AIOT_ID and AIOT_ID hashes from the broadcast message to find at least one matching hashed AIOT_ID.
c. The AIoT Device selects an AIOT_ID that has a matching hash.
Note that step 7 may create an overhead for the AIOT that may lead to a resources depletion attack on AIoT Device. This overhead is either lighter or comparable with other methods for confidentiality protection of the AIoT Device identity.
Editor’s Note: The detailed explanation of the AIOT Device selection in this step is FFS.
8. The AIoT Device sends a Registration Request containing hashed obfuscated AIOT-ID
9. The RAN Reader or Intermediate Node performs AIOT_ID selection based on matching of hashed AIOT_ID
a. compute a hash using RAND_READ for each AIOT_ID
b. check that the hashed AIOT_ID received from the AIOT Device matches one of the stored AIOT-ID from step 0b
10. The RAN Reader or Intermediate Node sends the Inventory Report with AIOT_ID to AMF/AIOT AF
11-12..	AIoT Function reports the operation result to the AF vie NEF/AF.
[bookmark: _Toc180278820][bookmark: _Toc180278995][bookmark: _Toc180279262][bookmark: _Toc180279737][bookmark: _Toc180279916]6.20.3			Evaluation
This solution addresses the requirement of Key issue #3.
This solution proposes a lightweight privacy protection method for the AIoT Device identity. The proposed method provides lightweight confidentiality protection of AIoT Device identifiers.
Editor’s Note: The impact of the proposed solution on power and processing-constrained AIOT devices and network is FFS.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc180279738][bookmark: _Toc180279917]6.21			Solution #21: Ephemeral AIOT ID security context based on puzzles for privacy
[bookmark: _Toc180278821][bookmark: _Toc180278996][bookmark: _Toc180279263][bookmark: _Toc180279739][bookmark: _Toc180279918]6.21.1			Introduction
The assumption of this solution is AIoT device can not support 5G-AKA due to power or computation resource limitation.
The existing Key issue #3, Privacy by protecting AIoT device identifiers, specifies the following requirement:
Mechanisms for mitigating privacy threats (described above) by identifying, linking, and tracking the identifiers of AIoT Device(s) shall be supported.
This solution aims to address KI#3 of the present document.
The proposed procedure for obtaining the ephemeral security context is equally applicable to both, “inventory” and “command” use cases.
The agreed AIOT Random Access framework is presented below.

Figure 6.21.1-1: AIOT Random Access framework
The steps in Figue6.X.1-1 are described below.
1. The reader sends a paging message and a set of occasion synchronization messages which respectively provides the device IDs of the devices to respond and configures/delimits the random access occasions for transmissions by the AIOT devices
2. An AIOT device selects an occasion (using at least slotted ALOHA as the baseline), and transmits a random device ID in MSG1
3. The reader, upon successful reception of MSG1, transmits MSG2 by including the received random device ID in MSG2.
4. If the device receives the echoed random device ID in MSG2, it transmits MSG3 which contains upper layer data (e.g., an application layer device ID)
5. MSG4 may be transmitted by the reader (e.g., for subsequent command transmission), but the understanding is that contention is already resolved at MSG2 transmission.
[bookmark: _Toc180278822][bookmark: _Toc180278997][bookmark: _Toc180279264][bookmark: _Toc180279740][bookmark: _Toc180279919]6.21.2			Details
The simplified call flow based on the AIOT Random Access framework is presented below. This procedure is based on the security properties of cryptographic puzzles.

Figure 6.21.2-1: Modified AIoT Random Access Procedure for establishing ephemeral security between AIOT Device and Reader
The steps in Figure 6.21.2-1 are described below.
1. The Reader determines to prepare a set of cryptographic puzzles and the Reader will prepare a set of N tuples. Each tuple is comprised of a K-MACi (key) and corresponding K-MACi-IND (key index corresponding to key).
2. The Reader composes a set of N cryptographic puzzles each hiding a tuple comprising of the Ephemeral Key K-MACi, corresponding Ephemeral Key Index K-MACi-IND , and either partial key or partial hash function argument.
3. The reader transmits a paging message and a set of occasion synchronization messages. The combination of the paging message and synchronization message identifies which AIoT devices should respond to the paging message. In other words, the combination of the paging message and synchronization messages identifies which AIoT devices should perform a random access procedure. The paging message includes one or more of the puzzles that were constructed in step 2.
Editor’s Note: The feasibility of including multiple puzzles in paging messages is FFS.
4. The AIoT Device uses the information in the paging message and synchronization messages to determine that the AIoT Device needs to respond to the paging message. In other words, the AIoT Device determines that it needs to perform a RACH procedure. If the AIoT Device determines that it needs to perform a RACH procedure, then, a the AIOT Device randomly selects one puzzle from the set of N puzzles that were received in the paging message. If the AIoT Device does not determine that it needs to perform a RACH procedure, or the AIoT device determines that the strength of the puzzle, as determined by the puzzle number, does not satisfy certain requirements, then the procedure will stop in this step and the AIoT will not perform a RACH procedure. Determining that the strength of the puzzle does not satisfy the AIoT security requirements for the application means that the selected puzzle strength may compromise information used by the application after the security context is established with a puzzle of a certain strength.
5. The AIoT Device solves the puzzle that was selected in step 4 and recovers the security parameters.
Editor’s Note: The feasibility or using puzzle-based methods in power and processing-constrained AIOT devices is FFS.
6. An AIOT device selects an occasion (using at least slotted ALOHA as the baseline), and transmits a random device ID in a message, MSG1. The message also includes the K-MACi-IND that was recovered in step 5.
7. The Reader performs a lookup for the K-MACi from the corresponding K-MACi-IND received in step 6.
8. The AIOT Device and the Reader enter a state where they have established an ephemeral security context using K-MACi. The subsequent messages of this procedure may now be confidentiality and integrity protected using the ephemeral security context based on K-MACi. In other words, the AIOT Device and the Reader have established an ephemeral security context. The ephemeral security context is based on K-MACi. After this step, the AIoT Device may use the ephemeral security context to encrypt data that it sends to the reader and the reader may use the ephemeral security context to encrypt data that it sends to the AIoT Device. Thus, information can be sent more securely between the AIoT Device and the Reader. In addition, the ephemeral security context obtained in this step can be used to bootstrap more persistent security associations between AIOT functional entities.
9. Upon successful reception of MSG1, the reader transmits MSG2 by including the received random device ID in MSG2. The Reader may use K-MACi to encrypt some or all of the information in MSG2.
10. The AIoT Device uses K-MACi to decrypt some or all of the information in MSG2. A random device ID is an example of information that is carried in MSG2. If the AIoT Device determines that the random device ID that it transmitted in step 6 is included in MSG2, then the AIoT Device transmits MSG3 which contains upper-layer data (e.g., an application layer device ID). The AIoT Device may use K-MACi to encrypt some or all of the information in MSG3.
11. The Reader uses K-MACi to decrypt some or all of the information in MSG3. The reader may then Transmit MSG4 (e.g., for subsequent command transmission), but the understanding is that contention is already resolved at MSG2 transmission. The reader may use K-MACi to encrypt some or all of the information in MSG4.
[bookmark: _Toc180278823][bookmark: _Toc180278998][bookmark: _Toc180279265][bookmark: _Toc180279741][bookmark: _Toc180279920]6.21.3			Evaluation
[bookmark: _Toc180278824][bookmark: _Toc180278999][bookmark: _Toc180279266]TBD
[bookmark: _Toc180278863][bookmark: _Toc180279038][bookmark: _Toc180279305][bookmark: _Toc180279742][bookmark: _Toc180279921]6.22	Solution #22: Solution for protecting AIoT ID by using temporary ID
[bookmark: _Toc107821159][bookmark: _Toc167795280][bookmark: _Toc180278864][bookmark: _Toc180279039][bookmark: _Toc180279306][bookmark: _Toc180279743][bookmark: _Toc180279922]6.22.1	Introduction
This solution addresses key issue #3: Privacy by protecting AIoT device identifiers.
It is assumed that an AIoT device has power or computational resource limitation.
To avoid fake ID reporting, AIoTF checks the authenticity of the message by verifying the MAC which is generated using KAIoT and RANDAIoTF.
It is assumed that AIoT device and AF are provisioned with AIoT device identifier and a key (K).
Editor’s Note: Alignment with conclusion from TR 23.700-13 [4] is FFS.
[bookmark: _Toc180278865][bookmark: _Toc180279040][bookmark: _Toc180279307][bookmark: _Toc180279744][bookmark: _Toc180279923]6.22.2	Solution details

Figure 6.32.2-1 AIoT ID protection call flow
0. AIoT ID and a key (K) are provisioned to the AIoT device and AF. AF generates KAIoT from K and RANDAF.
1. AF sends AIoT service request message to AIoTF (AIoT Function). This message may be sent via NEF. AIoT service request message includes Temp AIoT ID #1, RANDAF, and KAIoT.
NOTE: If this message is sent for the first time, the Temp AIoT ID #1 is the AIoT ID.
Editor’s Note: Sending the AIoT device ID in plaintext is the first message is FFS.
2. AIoTF transfers AIoT service request message. This message includes RANDAIoTF, RANDAF, and Temp AIoT ID #1.
3. AIoT device derives KAIoT from K and RANDAF. After that, AIoT device generates MAC using Temp AIoT ID #1, RANDAIoTF, and KAIoT.
4. AIoT device responds with AIoT service response. The message includes RANDAIoT, Temp AIoT ID #1, and MAC.
5. After AIoTF finds KAIoT from Temp AIoT ID #1 received in step 4, AIoTF checks the authenticity of the message by verifying the MAC.
6. If the verification in step 5 is successful, AIoTF sends AIoT service response to AF. RANDAIoT and Temp AIoT ID #1 are included in this message.
7. AIoT device and AF generate Temp AIoT ID #2 from KAIoT, RANDAIoT, and Temp AIoT ID #1. The Temp AIoT ID #2 is used next time the AF requests a service to AIoT.
Editor’s Note: How to resolove syncronization issue on the temporary ID between AIoT device and network is FFS.
Editor’s Note: Key recovery attack is FFS.
[bookmark: _Toc107821161][bookmark: _Toc167795286][bookmark: _Toc180278866][bookmark: _Toc180279041][bookmark: _Toc180279308][bookmark: _Toc180279745][bookmark: _Toc180279924]6.22.3	Evaluation
This solution addresses the requirement of Key Issue #3 by using temporary AIoT ID.
This solution assumes that AIoT device and AF are provisioned with AIoT device ID and a key.
Editor’s Note: Further evaluation is FFS.

[bookmark: _Toc180278825][bookmark: _Toc180279000][bookmark: _Toc180279267][bookmark: _Toc180279746][bookmark: _Toc180279925]6.23	Solution #23: AIoT device ID privacy protection using anonymity key
[bookmark: _Toc180278826][bookmark: _Toc180279001][bookmark: _Toc180279268][bookmark: _Toc180279747][bookmark: _Toc180279926]6.23.1	Introduction
This solution addresses the security requirement of KI#3: Privacy by protecting AIoT device identifiers.
To prevent the AIoT deivce ID from being exposed in the air interface, the 5GC can trigger the reader(s) to pag an AIoT device or a group of AIoT Devices by broadcasting a partial AIoT Device ID. The AIoT device ID is consist of the common part (e.g., the Home Network identifier, or the 3rd party identifier) and the unique part (e.g., an identifier used to identify a specific Ambient IoT device). The partial AIoT Device ID is the common part of a group of AIoT device ID.
The AIoT deivce matches the partial AIoT deivce ID will perform random access responding to the pagging message and report its permanent ID to the network. The AIoT device encrypts its permanent ID with an anonymity key AK, which is a shared key between AIoT device and AIoTF. The AK and corresponding Key ID is provided to the Network by the AF. The AIoTF may receive the AK and Key ID from AF’s service request or retrieve such information from UDM (provided in advance by the AF).
[bookmark: _Toc180278827][bookmark: _Toc180279002][bookmark: _Toc180279269][bookmark: _Toc180279748][bookmark: _Toc180279927]6.23.2	Solution details
This solution describes the AIoT device ID protection as shown in the following figure 6.Y.2-1.

Figure 6.23.2-1: AIoT device ID privacy protection using anonymity key
1. The AF sends the AIoT Service Request to AIoTF, including the AIoT device ID, may include the anonymity key AK and the key ID. The anonymity key AK and the key ID can be provided by the AF to the Network, and pre-stored in UDM. The AK include two kinds of keys: (1) a specific key for each AIoT device; or (2)a group key shared by a group of AIoT devices.
2. The AIoTF requests the Reader to start Paging the AIoT device or a group of AIoT devices, using the partial AIoT Device ID.
The AIoT device ID is consist of the common part (e.g., the Home Network identifier, or the 3rd party identifier) and the unique part (e.g., an identifier used to identify a specific Ambient IoT device). The partial AIoT Device ID is the common part of a group of AIoT device ID.
3. The Reader pages the AIoT device or a group of AIoT devices using the partial AIoT Device ID.
For one or mautiple AIoT device(s):
4. The AIoT deivce matchs the partial AIoT deivce ID will perform random access responding to the message and report its permanent ID to the network. To prevent the AIoT device permanent ID being exposed, the AIoT device encrypts the AIoT device permanent ID with the anonymity key AK. The input parameters to the ciphering should include at least a fresh value, this fresh value changes to prevent the AIoT device from being linked or traced.
5. The AIoT device sends the Paging Response to the Reader, including the encrypted AIoT device permanent ID, the Key ID, and the fresh value.
6. The Reader sends the encrypted AIoT device permanent ID, the Key ID, and the fresh value to the AIoTF.
7. The AIoTF may retrieve the AK using the received Key ID from the UDM if needed. The AIoTF uses the anonymity key AK and the fresh value to decrypt the AIoT device permanent ID. Then the AIoTF matches the decrypted AIoT devices ID(s) with the received AIoT device ID in step 1.
Editor's Note: Where are Anonymity Keys stored in Network side is FFS.
Editor's Note:	The privacy protection of using the individual AIoT device Key with exposed Key ID in step 5 is FFS.
Editor's Note:	Possible known ciphertext attack and remediation is FFS.
[bookmark: _Toc180278828][bookmark: _Toc180279003][bookmark: _Toc180279270][bookmark: _Toc180279749][bookmark: _Toc180279928]6.23.3	Evaluation
[bookmark: _Hlk173773026]This solution fully addresses security requirement in KI#3.
[bookmark: _Hlk173773047]This solution requires the AIoT device to be provisioned with the anonymity key to encrypt the permanent device ID. And this solution is suitable for both Inventory-only case and Inventory and Command case.
[bookmark: _Toc180278829][bookmark: _Toc180279004][bookmark: _Toc180279271][bookmark: _Toc180279750][bookmark: _Toc180279929]6.24	Solution #24: temporary ID based AIoT device privacy protection
[bookmark: _Toc180278830][bookmark: _Toc180279005][bookmark: _Toc180279272][bookmark: _Toc180279751][bookmark: _Toc180279930]6.24.1	Introduction
This solution addresses the security requirement of KI#3: Privacy by protecting AIoT device identifiers. The purpose of the AIoT device temporary ID is to provide an unambiguous identification of the AIoT device that does not reveal the AIoT device permanent identity. The AIoT device temporary ID is allocated by the AIoTF after AIoT device initial registration.
[bookmark: _Toc180278831][bookmark: _Toc180279006][bookmark: _Toc180279273][bookmark: _Toc180279752][bookmark: _Toc180279931]6.24.2	Solution details
This solution describes the allocation and usage of the AIoT device temporary identifier, as shown in the following figure 6.24.2-1.

Figure 6.24.2-1: signalling flow of the AIoT device temporary ID allocation and usage
0. [bookmark: _Hlk166148510]The AIoT device temporary ID is allocated by AIoTF after AIoT device initial registration. It is assumed that there are available security contexts between AIoT device and the Network after the AIoT device initial registration. Hence, the AIoT device temporary ID is protected by security contexts of the AIoT device, and transferred to the AIoT device.
1. The AF sends the AIoT Service Request to the AIoTF via the NEF, including the AIoT device ID. The NEF maps the external AIoT device ID to internal AIoT device ID.
Editor’s Note: whether there is AIoT device external ID is based on SA2’s decision, which is FFS.
2. The AIoTF maps the received AIoT device ID to the AIoT device temporary ID, and use the AIoT device temporary ID to indicate the specific AIoT device. The AIoTF sends the AIoT Service Request (Inventory or Command) via the reader.
After the AIoT device temporary ID allocation, the AIoT device can be paged by its temporary ID, or partial of the temporary ID to enable more efficient radio signalling procedures.
3. The AIoT device sends the AIoT Service Response to the AIoTF via the reader, including the AIoT device temporary ID.
4. The AIoTF maps the AIoT device temporary ID to AIoT device ID to response the AF via the NEF. The NEF maps the internal AIoT device ID to external AIoT device ID.
Editor's Note:	How to synchronize and reallocate the temporary ID is FFS.

[bookmark: _Toc180278832][bookmark: _Toc180279007][bookmark: _Toc180279274][bookmark: _Toc180279753][bookmark: _Toc180279932]6.24.3	Evaluation
This solution fully addresses security requirement in KI#3.
This solution requires the AIoT device to store the temporary ID allocated by the Network
Editor's Note:	 More Evaluation is FFS.
[bookmark: _Toc180279933]6.25	Solution #25: Use temporary identifier to protect the privacy of AIoT device identifiers.
[bookmark: _Toc180279934]6.25.1	Introduction
This solution addresses key issue #3: Privacy by protecting AIoT device identifiers.
[bookmark: _Toc180279935]6.25.2	Solution details

Figure 1. AIoT Temporary Identifier configuration procedure.
AIoT is an Ambient IoT Device which has ultra-low complexity power, cost and resource-constrained. The reader refers to the base station or UE based on the connectivity topologies. The core network NF includes independent or co-located network functions such as AMF/AUSF/UDM/Authentication Function of AIoT.
0. Initial temporary identifier (TempID) and crenditials such as TempID generation key are known by both the CN NF and the AIoT device through onboarding or registration procedure of AIoT device or other NAS/AS procedure.
1. The network sends AIoT request such as inventory request or command request to AIoT device.
2. Once triggered by AIoT request, the AIoT sends information including TempID to the reader.
3. The reader transfer the AIoT information to the core network.
4. The network use tempID to identify devices and perform operations. For example, the core network verifies the validity of the AIoT device based on the TempID and other subscription data of the device.
5. The network returns an acknowledgement to the reader. And a freshness parameter is included in the response.
6. The reader transfers the acknowledgement to the AIoT device.
7. Both the AIoT device and the core network function generate a new TempID according to the TempID derivation function for later use. The freshness parameter will be used in both sides.
Editor’s Note: How to deal with the TempID synchronization issue is FFS.
Editor’s Note: The corenetwork NF needs to be specified.

[bookmark: _Toc180278833][bookmark: _Toc180279008][bookmark: _Toc180279275][bookmark: _Toc180279754]TempID derivation function
When deriving the TempID from TempID generation key, the following parameters shall be used to form the input S to the KDF:
-	FC = 0xxx;
-	P0 = "TempID";
-	L0 = length of "TempID"; (i.e. 0x00 0x06)
-	P1 = device ID;
-	L1 = length of device ID.
-	P2 = freshness parameter;
-	L2 = length of freshness parameter.
The input key KEY (i.e. TempID generation key) is long term key pre-configured both in AIoT device and core network function.
Device ID is the fixed identifier of AIoT device.
[bookmark: _Toc180279936]6.25.3	Evaluation
Edtor’s Note: evaluation is FFS.
[bookmark: _Toc180278834][bookmark: _Toc180279009][bookmark: _Toc180279276][bookmark: _Toc180279755][bookmark: _Toc180279937]6.26	Solution #26: Local generated Temporary ID to provide device privacy
[bookmark: _Toc180278835][bookmark: _Toc180279010][bookmark: _Toc180279277][bookmark: _Toc180279756][bookmark: _Toc180279938]6.26.1	Introduction
The solution addresses the security requirement of KI#3: Privacy by protecting AIoT device identifiers. Specifically, this solution proposes a method for the Ambient IoT system to generate and use Temporary IDs.
The basic principle of this solution is that a Temporary ID (TempID) is locally generated both by the CN NF and the AIoT device after every time the TempID has been sent over the radio interface as a response to an Inventory request or a Command request.
The solution assumes the following AIoT device capabilities:
-	The AIoT device has higher complexity than a RFID tag that only reflects the same preconfigured device ID when excited by RF power, but significantly lower complexity than a 3GPP CIoT device.
-	The AIoT device has a factory-encoded key and device ID.
-	The AIoT device has a non-volatile storage capability.
-	The TempID generation algorithm is light weight and enough complex to avoid unauthorized AIoT device tracking.
As the available power in an AIoT device is very limited, the message exchange between the device and the network must be minimized. The solution is based on the following principle:
-	The initial temporary identifier (TempID) is known by both the CN NF and the AIoT device. After the AIoT device has been onboarded to the network the CN NF provision the AIoT device with the initial TempID and/or parameters to derive the initial TempID i.e., parameters for the TempID generation algorithm.
NOTE:	It is assumed that during the onboarding procedure the CN NF can retrieve information from another NF or Application Function (AF) to onboard the AIoT device. The initial message from the UE during onboarding could e.g. include the device owner ID, URL, FQDN or other info that enables the CN NF to establish an IP connection with the AF that holds additional onboarding information needed.
-	Every time the TempID has been sent over the radio interface as a response to an Inventory request or a Command request, both CN NF and AIoT device locally generate a new TempID. The exact algorithm used can be decided during the normative phase, but the assumption is that it at least uses the factory-encoded key and a seed.
-	If the CN NF detects that the TempID is out of sync, i.e., the CN NF expected a different TempID than received during an Inventory or Command. The CN NF has two options to re-synchronize 1) send a new seed to restart the algorithm or 2) find the received TempID in the sequence of TempIDs and continue from there.
[bookmark: _Toc180278836][bookmark: _Toc180279011][bookmark: _Toc180279278][bookmark: _Toc180279757][bookmark: _Toc180279939]6.26.2	Solution details
[bookmark: _Toc180278837][bookmark: _Toc180279012][bookmark: _Toc180279279][bookmark: _Toc180279758][bookmark: _Toc180279940]6.26.2.1 Temporary ID generation.
In the procedure below CN NF is used as a generic name for the 5GC Network Function that supports the Ambient IoT functionality. It is expected that SA2 will define and specify CN NF as part of the 5GC architecture.

Figure 6.26.2-1 Local temporary ID control
0.	It is assumed that the AIoT device is pre-provisioned by the device owner with information to be used when onboarding to a network. The information includes a device unique identifier (unique at owner level, not necessary globally unique), device owner ID and security Key.
	It is assumed that the device owner and the MNO has a Service Level Agreement (SLA) and the network is provisioned with information needed to onboard an AIoT device(s) or a URL or FQDN to establishing IP connection to an AF that holds the device unique onboarding information.
1. The AIoT device is triggered to onboard and sends an onboarding request that includes (device owner ID, device ID). The network either holds the necessary information to continue the onboarding or connects to the device owners AF and retrieves the necessary information from the AF to continue the onboarding.
NOTE:	How the AIoT device is triggered to request onboarding is up to SA2 WG to specify.
The CN NF sends a response message (Accept/Reject, selected TempID algorithm, seed) to the AIoT device.
Editor’s Note: It is FFS whether the device ID must be concealed.
2. The CN NF creates a AIoT device context and generates locally the TempID to be used when triggering the AIoT device next time e.g. when sending a Command to the AIoT device. To generate the TempID the CN NF uses the device security key received by the device owner AF, selected algorithm, and seed.
3. The AIoT device generates locally the TempID to be used next time. To generate the TempID the AIoT device uses its pre-provisioned security key and the selected algorithm and seed received in the response message.
4. The CN NF sends a command message or Inventory request, that may be triggered by 3rd-part AF. The Command message includes the AIoT device TempID, PDU.
5. The AIoT device only considers Command message that includes its expected TempID and check the command PDU. In case of Inventory request the AIoT device check whether the Inventory is for the device.
6. The AIoT device responds to the Command or Inventory request.
7. Both the AIoT device and CN NF generates the next temporary ID.

[bookmark: _Toc180278838][bookmark: _Toc180279013][bookmark: _Toc180279280][bookmark: _Toc180279759][bookmark: _Toc180279941]6.26.3	Evaluation
TBD.
[bookmark: _Toc180278839][bookmark: _Toc180279014][bookmark: _Toc180279281][bookmark: _Toc180279760][bookmark: _Toc180279942]6.27	Solution #27: Privacy protection of AIoT device identifier based on a temporary identifier
[bookmark: _Toc180278840][bookmark: _Toc180279015][bookmark: _Toc180279282][bookmark: _Toc180279761][bookmark: _Toc180279943]6.27.1	Introduction
This solution addresses key issue #3.
This solution provides a privacy protection mechanism by introducing a temporary identifier associated with an AIoT device. In the proposed mechanism, an AIoT device generates a temporary device identifier (T-ID) when it needs to transmit its device identifier towards the network (e.g., for the purpose of inventory management). This solution assumes that an Application Function (AF) manages the AIoT device identifier and the corresponding security protection profile. The security protection profile includes device credential and an algorithm to use to generate a T-ID.
NOTE 1: The privacy protection mechanism based on a temporary identifier is applied when the AIoT device and AF are provisioned with the security protection profile.
NOTE 2: Device credential types are determined based on each AIoT service and device capability.
[bookmark: _Toc180278841][bookmark: _Toc180279016][bookmark: _Toc180279283][bookmark: _Toc180279762][bookmark: _Toc180279944]6.27.2	Solution details
[bookmark: _Toc180278842][bookmark: _Toc180279017][bookmark: _Toc180279284][bookmark: _Toc180279763][bookmark: _Toc180279945]6.27.2.1	Procedures

Figure 6.27.2.1-1: Privacy protection based on a temporary device identifier (T-ID) during Inventory procedure
NOTE 3: The reference architecture and Inventory procedure described in clause 6.3 of TR 23.700-13 (i.e., solution #3) [4] are used to describe the privacy protection mechanism in this solution. The proposed mechanism can be applied to any reference architectures and procedures for AIoT services that require transmission of AIoT device identifier by AIoT device.
0.	Each AIoT device is provisioned with its AIoT device identifier and security protection profile such as a device credential and an algorithm to use to generate a T-ID. An Application Function (AF) manages the AIoT device identifier and the associated security protection profile.
1-3.	The AF triggers an Inventory procedure towards AIoT devices.
4.	Upon receiving the Inventory Request from the Reader, the AIoT device replies to the Reader with an Inventory Response containing a temporary device identifier (T-ID). The AIoT device generates a new T-ID as described in clause 6.27.2.2.
5.	Upon receiving a T-ID, the Reader sends the received T-ID to the AIoT Controller. Additionally, the Reader sends Enrichment data (e.g., the Reader location) along with the T-ID if configured by the AIoT Controller.
6.	The AIoT Controller stores the received T-ID and Enrichment data.
7.	There are two methods to provide Inventory Response to AF as follows:
-	Pull-based procedure: When the AIoT Controller receives a Data Request from the AF (step 7a in Figure 6.27.2.1-1), it sends an Inventory Response containing the stored T-IDs along with the Enrichment data if exist (step 7b in Figure 6.27.2.1-1). If a list of T-ID(s) was included in the Data Request, the AIoT Controller only contains the information associated with the requested T-IDs in the Inventory Response.
-	Push-based procedure: the AIoT Controller sends an Inventory Response (step 7b in Figure 6.Y.2.1-1) containing the information received from previous steps to the corresponding AF if T-ID includes the service identifier (e.g., AF Identity).NOTE 4: In case of pull-based procedure in step 7, a freshness parameter needs to be synchronized between the AIoT device and AF.
Editor’s Note: How an AF identifies the key to generate expected T-ID is FFS.
[bookmark: _Toc180278843][bookmark: _Toc180279018][bookmark: _Toc180279285][bookmark: _Toc180279764][bookmark: _Toc180279946]6.27.2.2	Generation of a temporary identifier
A new temporary device identifier (T-ID) is generated as follows:
T-ID = F(K, freshness parameter, AIoT device identifier), where F is a service specific function that generates a temporary ID. The K is the key provisioned at the AIoT device and AF for temporary ID generation. The K is either a device credential or derived from the device credential. The freshness parameter is determined based on the device capability. For example, an index can be used as a freshness parameter along with a refresh timer. In this case, the AIoT device increments the index if a refresh timer has expired.
[bookmark: _Toc180278844][bookmark: _Toc180279019][bookmark: _Toc180279286][bookmark: _Toc180279765][bookmark: _Toc180279947]6.27.3	Evaluation
This solution addresses the security requirements in key issue #3 by introducing a temporary identity based on symmetric key provisioned at an AIoT device and AF.
[bookmark: _Toc180278845][bookmark: _Toc180279020][bookmark: _Toc180279287][bookmark: _Toc180279766][bookmark: _Toc180279948]6.28	Solution #29: Privacy protection on AIoT device IDs
[bookmark: _Toc180278846][bookmark: _Toc180279021][bookmark: _Toc180279288][bookmark: _Toc180279767][bookmark: _Toc180279949]6.28.1	Introduction
This solution addresses key issue#3: “Mechanisms for mitigating privacy threats (described above) by identifying, linking, and tracking the identifiers of AIoT Device(s) shall be supported.”
[bookmark: _Toc180278847][bookmark: _Toc180279022][bookmark: _Toc180279289][bookmark: _Toc180279768][bookmark: _Toc180279950]6.28.2	Details
Preassumption: the AIoT device has one ID preconfigured by the manufacture (Application Function).

 [image: A screenshot of a computer

Description automatically generated]

Step 0a. the device is configured with one Device ID in the manufacturing time. Every ID is configured corresponding
to an Index.
Editor’s Notes: Clarifications of the configuration of device ID and the Index and the mapping is FFS.
Editor’s Notes: How to address the synchronizaiton issue is FFS.
Editor’s Notes: if the ID is sending in the plaintext in paging message, the attacker can track the HASH chain, how to address this issue is FFS.
Editor’s Notes: It is FFS how the procedure is integrated into inventory procedure, e.g. how the Reader report the device ID to the AF, when the inventory procedure is triggered.
Editor’s Notes: It is FFs what is the impact on the device and network.
Step 0b. the Application Function sends the Device IDs and Indexes to the AIoTF through NEF.
Step 0c. AIoTF sends the corresponding Device IDs to each Reader based on distribution policy from Application Function or local policy from MNOs.
Step 0d. Reader stores the Devices IDs and the corresponding Indexes under this Reader.
Step 1. Reader sends the paging message to the AIoT devices. Reader sends ID1-1, ID2-1, … in the paging message.
NOTE 1: According to RAN2 agreement in #116, the paging message may contain one ID (one Device ID or one group ID) or more (multiple IDs FFS in RAN2) IDs. The procedure may be updated based on RAN2 progress.
NOTE 2: IDm-n indicates the n-th ID for Device m.
Step 2: AIoT device replies with ID1-1||Index to the Reader.
NOTE 3: Index shall indicate which ID of which device.
Step 3: Reader compares the ID1-1 with its data base, then confirm this ID1-1 is in its data base.
Step 4: Reader echoes back the ID1-1 to device, following RAN2 procedure.
Step 5: Device checks ID1-1 is correct, use ID1-2 in next message, in which ID1-2 = HASH (ID1-1)
NOTE 4: Reader shall use unused ID for each device for the next paging if there is any.
[bookmark: _Toc180278848][bookmark: _Toc180279023][bookmark: _Toc180279290][bookmark: _Toc180279769][bookmark: _Toc180279951]6.28.3	Evaluation
TBD
[bookmark: _Toc180278849][bookmark: _Toc180279024][bookmark: _Toc180279291][bookmark: _Toc180279770][bookmark: _Toc180279952]6.29	Solution #29: Providing a network-computed AIoT concealed device identifier (AICI) to an AIoT device
[bookmark: _Toc180278850][bookmark: _Toc180279025][bookmark: _Toc180279292][bookmark: _Toc180279771][bookmark: _Toc180279953]6.29.1	Introduction
This solution addresses KI#3: Privacy by protecting AIoT device identifiers.
[bookmark: _Toc180278851][bookmark: _Toc180279026][bookmark: _Toc180279293][bookmark: _Toc180279772][bookmark: _Toc180279954]6.29.2	Solution details
The solution proposes a method for the 5G network to compute a AIoT Concealed Device Identifier (AICI) and provide the SUCI to the AIoT device in a command message. Once an AIoT device is identified, e.g., after a successful completion of inventory procedure, the network can send a command message on the downlink channel to the AIoT device. In the downlink command message, the network includes an AICI, which is computed based on the long-term identifier of the AIoT device using the public key of the network. The downlink command message is both confidentiality and integrity protected using keys derived from a shared key between the network and the AIoT device. Figure 6.29.2-1 presents a high-level message flow of the solution.

Figure 6.29.2-1: Procedure for delivering a AICI to an AIoT Device
The figure is self-explanatory, therefore, the steps are not explained step-by-step. Exact content of the messages exchanged, and details about authentication challenge, computing response to the challenge, and deriving the keys Kenc and Kint are not described because these details have to be adjusted with the authentication protocol that is finally agreed.
NOTE: If the AIoT device does not have a network-computed AICI, for example, in the very first time of the device’s life cycle, then the AIoT device computes AICI using null scheme. This happens only in the beginning. To avoid using null scheme in the first time, a network can choose to provision every AIoT device with a network-computed AICI before they are handed out to their users.

Editor’s Note: The content of the paging message and how the device decides to respond to the paging message based on the content of the paging message is FFS.
Editor’s Note: Synchronization of AICI is FFS
Editor’s Note: Whether AICI is to be computed and decrypted in SIDF/UDM is FFS
Editor’s Note: Whether AIoT device can update and store AICI is FFS

[bookmark: _Toc180278852][bookmark: _Toc180279027][bookmark: _Toc180279294][bookmark: _Toc180279773][bookmark: _Toc180279955]6.29.3	Evaluation
TBD

[bookmark: _Toc180278853][bookmark: _Toc180279028][bookmark: _Toc180279295][bookmark: _Toc180279774][bookmark: _Toc180279956]6.30	Solution #30: Privacy protection for inventory operation
[bookmark: _Toc180278854][bookmark: _Toc180279029][bookmark: _Toc180279296][bookmark: _Toc180279775][bookmark: _Toc180279957]6.30.1	Introduction
This solution addresses Key issue #3: Privacy by protecting AIoT device identifiers.
The principle of this solution is that the key used to protect inventory operations is pre-configured in AIoT devices. These keys are shared among multiple AIoT devices.
This solution provides two procedures:
- Inventory procedure with unprotected inventory request parameters, and
- Inventory procedure with protected inventory request parameters, which can address the privacy issues related to groups of devices.
[bookmark: _Toc180278855][bookmark: _Toc180279030][bookmark: _Toc180279297][bookmark: _Toc180279776][bookmark: _Toc180279958]6.30.2	Solution details
[bookmark: _Toc138688586][bookmark: _Toc138748085][bookmark: _Toc180278856][bookmark: _Toc180279031][bookmark: _Toc180279298][bookmark: _Toc180279777][bookmark: _Toc180279959]6.30.2.1	Inventory procedure with unprotected inventory request parameters
Editor’s Note: What is the Device ID Matching Info. needs clarification.
Editor’s Note: The feasibility of UDM participating in security computing is FFS.
Editor’s Note: The need for transmitting security policy in message is FFS.
Editor’s Note: How to decrypt data if there is no Key ID in the message is FFS.
The inventory procedure with unprotected inventory request parameters is shown in the following figure.

 Figure 6.30.2-1: Inventory procedure with unprotected inventory request parameters
0.	During the device initialization phase, the Device ID protection keys are pre-configured in the AIoT device. The Device ID protection keys are used to protect Device ID during inventory process. A key ID for these keys may also be pre-configured in order to facilitate key management. A security policy for AIoT Device ID protection may also be pre-configured.
1.	The AF sends an inventory operation request to the Ambient IoT Function (AIoTF). The AF may also provide Device ID Matching Information to address only specified AIoT Devices.
2.	The AIoTF sends Inventory parameter request to the UDM.
3.	The UDM generates a Network Nonce and sends it to the AIoTF.
4.	The AIoTF sends Inventory request to the AIoT Devices through the AIoT Reader. The Inventory request includes the Device ID Matching Information and Network Nonce.
5.	The AIoT Device that matches the Device ID Matching Information performs the following operations:
- Generate a Device Nonce;
- Use the pre-configured Device ID protection keys, Network Nonce and Device Nonce to derivate keys for Device ID confidentiality and/or integrity protection;
- Use new derived keys to protect the AIoT Device ID according to the AIoT Device ID protection policy (security policy);
- The AIoT Device sends Inventory response to the AIoTF through the AIoT Reader. The response includes Security policy, Device Nonce, protected AIoT Device ID and the key ID (if any).
6.	The AIoTF sends Authentication request to the UDM. The Authentication request includes Security policy, Device Nonce, Protected AIoT Device ID and the key ID (if any).
7.	The UDM uses the same method as the AIoT Device to derive the keys, and then decrypts and/or verifies the protected AIoT Device ID.
	The UDM checks whether the AIoT Device ID is valid. If the verification is successful, the UDM return the Device ID to the AIoTF.
8.	The AIoTF, AIoT Devices and UDM continue to perform steps 4-7 on the remaining AIoT Devices.
9.	The AIoTF returns the Inventory result to the AF.
[bookmark: _Toc180278857][bookmark: _Toc180279032][bookmark: _Toc180279299][bookmark: _Toc180279778][bookmark: _Toc180279960]6.30.2.2	Inventory procedure with protected inventory request parameters
The inventory procedure with protected inventory request parameters is shown in the following figure.

 Figure 6.30.2-2: Inventory procedure with protected inventory request parameters
0.	Same as step 0 in clause 6.30.2.1.
1.	Same as step 1 in clause 6.Y.2.1.
2.	The AIoTF sends Inventory parameter request to the UDM. The request includes the Device ID Matching Information.
3.	The UDM performs the following operations:
- Generate a Network Nonce;
- Use the Device ID protection keys and Network Nonce to derivate keys for confidentiality and/or integrity protection;
- Use new derived keys to protect the AIoTF Device ID Matching Information according to the AIoT Device ID protection policy (security policy);
The protected AIoT device ID matching information may also be a temporary ID generated using security key and security parameters.
- Send Inventory parameter response to the AIoTF. The response includes protected AIoT Device ID Matching Information, Security policy, Network Nonce, and the key ID (if any).
4.	The AIoTF sends Inventory request to AIoT Devices through AIoT Reader. The Inventory request includes Protected AIoT Device ID Matching Information, Security policy, Network Nonce, and the key ID (if any).
5.	The AIoT Device performs the following operations:
- If there is a key ID in the request, check if it matches one of the locally stored keys.
- Use the same method as the UDM to derive the keys, and then decrypts and/or verifies the protected AIoT Device ID Matching Information;
If temporary ID is used, the locally stored key and parameters received from the request are used to calculate the local temporary ID.
- Check if its Device ID/Group ID matches the Device ID Matching Information;
If temporary ID is used, check if the local temporary ID is equal to the temporary ID in the request.
The other operations are the same as step 5 in clause 6.Y.2.1.
6-9.	The remaining steps and operations are the same as steps 6-9 in clause 6.Y.2.1.
[bookmark: _Toc180278858][bookmark: _Toc180279033][bookmark: _Toc180279300][bookmark: _Toc180279779][bookmark: _Toc180279961]6.30.3	Evaluation
This solution addresses the Key Issue #3.
This solution uses pre-configured keys to protect AIoT Device IDs during inventory operations. The pre-configured key can be shared among all AIoT Devices or a group of AIoT devices. The pre-configured keys can also be used on the network side to protect the privacy of Device ID matching information.
Editor’s Note: Further evaluation is FFS.
[bookmark: _Toc180278859][bookmark: _Toc180279034][bookmark: _Toc180279301][bookmark: _Toc180279780][bookmark: _Toc180279962]6.31	Solution #31: Ambient IoT ID privacy
[bookmark: _Toc180278860][bookmark: _Toc180279035][bookmark: _Toc180279302][bookmark: _Toc180279781][bookmark: _Toc180279963]6.31.1 Introduction
This solution addresses KI#3 and proposes a solution to protect the privacy of the identifier of an Ambient IoT (AIoT) device. The solution focuses on the functionality in the AIoT device:
- verifying a request to share the identity of the AIoT device,
- protecting the identity of the AIoT device, when sharing it.
The procedure fits the baseline RAN procedure agreed in RAN2#125bis:
Step A: Based on the service request, the reader sends the Initial Trigger Message indicating device(s) that need to respond;
Step B: Triggered device(s) performs the random access-like procedure, if needed;
Step C: The device may perform the data communication with the reader as needed.
[bookmark: _Toc180278861][bookmark: _Toc180279036][bookmark: _Toc180279303][bookmark: _Toc180279782][bookmark: _Toc180279964]6.31.2 Solution details
[image: A diagram of a company

Description automatically generated]
Figure 6.31.2-1: Ambient IoT ID privacy
In step 0, AIoT device(s) are configured with identity(ies) and device specific parameters, such as security credentials including device- and group-specific credentials.
In step 1, the AIoT Management Function (AIoT MF) sends a message to the reader to trigger an inventory procedure including an inventory request message and a configuration associated with the inventory procedure. The configuration includes timers (e.g., to broadcast the request and to collect responses from AIoT device(s)), response aggregation requirements and forwarding criteria, etc.
Note 1: The AIoT Management Function (AIoT MF) depends on the entity that owns or manages the resource (i.e., AIoT device). If a device is owned or managed by the network, the disabling is triggered by a CN function, otherwise, it is triggered by a 3rd party Management Function managing the device.
In step 2, the reader UE/gNB sends the inventory request message, as received in step 1, to AIoT device(s). The inventory request includes a device (or group) identifier and a device-specific (or group-specific) challenge. Based on the configuration received, the reader UE/gNB may start a timer T1 to collect responses.
In step 3, The AIoT device processes the received request and checks whether the message:
3.1 is addressed to the AIoT device by matching its identifier (i.e., device or group identifier) against the received identifier, and
3.2 is sent by a trusted party by verifying the challenge value using its security credentials and identifiers.
If the checks 3.1 and 3.2 succeed, the AIoT computes a pseudonym based on its identifier and the received challenge value. This can be implemented by means of a lightweight function, e.g., a hash function.In step 4, the AIoT device sends its pseudonym in a response message (e.g., an inventory response message) including a device-specific key identifier.
Editor’s Note: Whether the lightweight function is a keyed hash function and how the device-specific key identifier is used are FFS.
In step5, based on the configuration received in step 1, the reader UE/gNB aggregates the response message(s) received, until the time T1 runs out and/or other forwarding criteria (e.g., all device responses are received) are met.
In step 6, the reader UE/gNB forwards the response(s) to the AIoT MF.
[bookmark: _Toc180278862][bookmark: _Toc180279037][bookmark: _Toc180279304][bookmark: _Toc180279783][bookmark: _Toc180279965]6.31.3 Evaluation
This solution describes a lightweight solution for privacy protection of AIoT device(s) identity(ies).
Editor’s Note: Further evaluation is FFS.
[bookmark: _Toc180278867][bookmark: _Toc180279042][bookmark: _Toc180279309][bookmark: _Toc180279784][bookmark: _Toc180279966]6.Y	Solution #Y: <Solution Name>
[bookmark: _Toc513475453][bookmark: _Toc48930870][bookmark: _Toc49376119][bookmark: _Toc56501633][bookmark: _Toc95076618][bookmark: _Toc106618437][bookmark: _Toc167405424][bookmark: _Toc180278868][bookmark: _Toc180279043][bookmark: _Toc180279310][bookmark: _Toc180279785][bookmark: _Toc180279967]6.Y.1	Introduction
Editor’s Note: Each solution should list the key issues being addressed.
[bookmark: _Toc513475454][bookmark: _Toc48930871][bookmark: _Toc49376120][bookmark: _Toc56501634][bookmark: _Toc95076619][bookmark: _Toc106618438][bookmark: _Toc167405425][bookmark: _Toc180278869][bookmark: _Toc180279044][bookmark: _Toc180279311][bookmark: _Toc180279786][bookmark: _Toc180279968]6.Y.2	Solution details
[bookmark: _Toc513475455][bookmark: _Toc48930873][bookmark: _Toc49376122][bookmark: _Toc56501636][bookmark: _Toc95076620][bookmark: _Toc106618439][bookmark: _Toc167405426][bookmark: _Toc180278870][bookmark: _Toc180279045][bookmark: _Toc180279312][bookmark: _Toc180279787][bookmark: _Toc180279969]6.Y.3	Evaluation
Editor’s Note: Each solution should motivate how the potential security requirements of the key issues being addressed are fulfilled.
[bookmark: _Toc513475456][bookmark: _Toc48930874][bookmark: _Toc49376123][bookmark: _Toc56501637][bookmark: _Toc95076621][bookmark: _Toc106618440][bookmark: _Toc167405427][bookmark: _Toc180278871][bookmark: _Toc180279046][bookmark: _Toc180279313][bookmark: _Toc180279788][bookmark: _Toc180279970]7	Conclusions					
Editor’s Note: This clause contains the agreed conclusions that will form the basis for any normative work.

[bookmark: _Toc167405428][bookmark: _Toc180278872][bookmark: _Toc180279047][bookmark: _Toc180279314][bookmark: _Toc180279789][bookmark: _Toc180279971]
Annex <X> (informative):
Change history
[bookmark: historyclause]
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	04/2024
	SA3#1156Adhoc-e
	S3-241476
	
	
	
	Initial draft TR
	0.0.0

	04/2024
	SA3#115Adhoc-e
	S3-241648
	
	
	
	Incorporated accepted contributions S3-241477, S3-241622, S3-241630, S3-241636
	0.1.0

	05/2024
	SA3#116
	S3-242536
	
	
	
	Incorporated accepted contributions S3-242649, S3-242534, S3-242535, S3-242539, S3-242540, S3-242541
	0.2.0

	08/2024
	SA3#117
	S3-243699
	
	
	
	Incorporated accepted contributions S3-243492, S3-243680
	0.3.0

	10/2024
	SA3#118
	S3-243828
	
	
	
	Incorporated accepted contributions S#-244124, S3-244366, S3-234460, S3-244367, S3-244368. S3-244369, S3-244370, S3-244449, S3-244450, S3-244451, S3-244452, S3-244453, S3-244454, S3-244455, S3-244456, S3-244457, S3-244458, S3-244459, S3-244508, S3-244509, S3-244467, S3-244468, S3-244469, S3-244470, S3-244477, S3-244478, S3-244479, S3-244480, S3-244483, S3-244484, S3-244485, S3-244486, S3-244487, S3-244488, S3-244489
	0.4.0

3GPP
image1.png
~

5G

image2.png
=

A GLOBAL INITIATIVE

image3.png
AloT Management Function

AloT device Reader UE/gNB
Step0
Step1
Step2
Step3

Step4

image4.emf
AF

AIoT

devices

gNB

UDM NEF AMF/AIoT NF

0.Intermediate UE registration

1.AIoT Service Request

(AIoT device ID, service type, location info, GPSI)

Intermediate

UE

3. UE Authorization Request

(UE info)

4.Check whether the

selected UE is allowed to

act as Intermediate UE

5. UE Authorization Response

7.AIoT Service procedure

2. Selection of

Intermediate UE

6. AIoT Service Request

(AIoT ID, service type, authorized result)

Microsoft_Visio_Drawing.vsdx
AF
AIoT devices
gNB
UDM
NEF
AMF/AIoT NF

0.Intermediate UE registration
1.AIoT Service Request
(AIoT device ID, service type, location info, GPSI)
Intermediate UE

3. UE Authorization Request
(UE info)
4.Check whether the selected UE is allowed to act as Intermediate UE
5. UE Authorization Response
7.AIoT Service procedure
2. Selection of Intermediate UE
6. AIoT Service Request
(AIoT ID, service type, authorized result)

image5.emf
1. AIoT Service Operation Req

AIoT Device Reader AIoT Function

Authentication

_Server

NEF

3. Service request

(nonce1)

4. Paging-like

(nonce1)

5. Random Access-like

11. Auth res msg

(XAuth_token)

AF

7. UL message

(device ID, nonce2, Auth_token)

8. Service response

(device ID, nonce2, Auth_token)

13. AIoT Service notification

14. AIoT Service notification

2. AIoT Service Operation Req

6. Auth_token

calculation

9. Auth req msg

(device ID, nonce1, nonce2)

10. XAuth_token

calculation

12. Auth_token

verification

image6.emf
1. AIoT Service Operation Req

AIoT Device Reader AIoT Function

Authentication

_Server

NEF

3. Service request

(nonce1)

4. Paging-like

(nonce1)

5. Random Access-like

11. Auth res msg

(XAuth_token, Ks)

AF

8. Service response

(device ID, Auth_token, nonce2)

17. AIoT Service notification

18. AIoT Service notification

2. AIoT Service Operation Req

6. Auth_token

calculation

9. Auth req msg

(device ID, nonce1, nonce2)

10. XAuth_token and Ks

calculation

12. Auth_token verification

13. Command request

(command, [data1], MAC1)

15. Command response

([data2], MAC2) 16. Command response

([data2], MAC2)

14. Command request

(command, [data1], MAC1)

7. UL message

(device ID, Auth_token, nonce2)

image7.emf
3. Command Operation

Trigger [Code1, Code2]

4. Command Operation

Request[Code1, Code2]

6. Command Operation

 Result

AMF/AIoT

function

AIoT Device

RAN

Reader(s)/UE

reader(s)

NEF AF

7.Command Operation

 Trigger Reply

Authentificatio

n function

2. Command Operation

Trigger [Code1, Code2]t

8. Command Operation

Trigger Reply

1. Inventory Procedure

5. process

command

3. Command Operation Trigger [Code1, Code2]
4. Command Operation Request[Code1, Code2]
6. Command Operation
 Result
AMF/AIoT function
AIoT Device
RAN Reader(s)/UE reader(s)
NEF
AF
7.Command Operation
 Trigger Reply
Authentification function
2. Command Operation Trigger [Code1, Code2]t
8. Command Operation
Trigger Reply
1. Inventory Procedure
5. process command

image8.emf
AIoT device

Reader

AIoT Controller

AF

AIoT device Security

Management

1. inventory request

(device ID)

2. Reader find request

(device ID)

3. Reader find response

(reader ID,Kaiot)

5. inventory request

(device ID

，

[start

indiction], MACn)

4. Calculates MACn=Hash

（

device ID,

reader ID,counter

，

Kaiot

）

9. inventory response

([MACu])

8. inventory response

([MACu])

6. inventory request

(device ID

，

[start indiction],

MACn)

7. Verifies the MACn

，

and calculates

MACu=Hash

（

device ID, reader

ID,counter+1

，

Kaiot

）

,and stores new counter

10.Verifies MACu, and stores new

counter

11. inventory response

AIoT device
Reader
AIoT Controller
AF
AIoT device Security Management
1. inventory request
(device ID)
2. Reader find request
(device ID)
3. Reader find response
(reader ID,Kaiot)
5. inventory request
(device ID，[start indiction], MACn)
4. Calculates MACn=Hash（device ID, reader ID,counter，Kaiot）
9. inventory response
([MACu])
8. inventory response
([MACu])
6. inventory request
(device ID，[start indiction], MACn)
7. Verifies the MACn，and calculates MACu=Hash（device ID, reader ID,counter+1，Kaiot）,and stores new counter
10.Verifies MACu, and stores new counter
11. inventory response

image9.emf
AIoT

Device

UDM/

ARPF

AIoT Authentication

Function

AIoT NF

2. Calculate MAC

with K and RAND

3. Calculate XRES

with K and RAND

4. MAC, RAND,

Device ID

5. Authentication

Request (MAC,

RAND, Device ID,)

8. Calculate XMAC with

and RAND

9. Calculate RES with K

and RAND

10. Verify XMAC=MAC

12. Authentication

Response (Device

ID)

14. Verify XRES=RES

13. Authentication

Response (Device

ID)

Reader

7. Authentication

Request (MAC,

RAND)

6. Authentication

Request (MAC,

RAND, Device ID)

11. Authentication

Response

1.Authentication vector request

(Device ID)

Microsoft_Visio_Drawing1.vsdx
AIoT
Device
UDM/
ARPF
AIoT Authentication Function
AIoT NF
2. Calculate MAC with K and RAND
3. Calculate XRES with K and RAND
4. MAC, RAND, Device ID
5. Authentication Request (MAC, RAND, Device ID,)
8. Calculate XMAC with and RAND
9. Calculate RES with K and RAND
10. Verify XMAC=MAC
12. Authentication Response (Device ID)
14. Verify XRES=RES
13. Authentication Response (Device ID)
Reader
7. Authentication Request (MAC, RAND)
6. Authentication Request (MAC, RAND, Device ID)
11. Authentication Response
1.Authentication vector request (Device ID)

image10.emf

K

RAND

F unction 1 Fun ction 2

⊕

MAC

XRES

AK

Generate RAND

image11.emf

K

RAND

Function 1

Function 2

⊕

XMAC

RES

AK

Verify MAC = XMAC

image12.png
AloT device | Reader | | AloTF | |AloT AUSF| | AloT UDM |

Oa. Device ID and K are
configured during

Application Function

0Oc. Dgvice ID sync
manufacture time) Ob. K is configured for all
1. Paging (ID the AloT devices
2.Msg1(random ID, device ID)

3.Msg2(echo(random ID))
4.Trigger Authentication(device 10, RAND)

5. Calculate RES

6.Authentication request(device|ID, RES, Counter)
1 7. Authentication request(device ID, RES, Counter)
8. Auth request (device ID, RES, Counter)
9. Auth request (device ID, Counter)

10. Auth response (XRES, Token)

11 Compare the RES and XRE!
Determing whether to send the Token
12. Auth response (Token)

13. Auth response [Token|
14. If successful, continue
15. DL Command (Token)

16. Calculatg Token using K,
device ID and Count

17. UL message

image13.emf
AIoT Reader AIoT Device AIoTF

2.Paging(Protected Device ID, Network Nonce)

AF

1.Operation request(Operation=Command,

Device ID, Payload)

3.Random access(Protected Device ID*, Device Nonce, [Device Capability])

6.Command response(Security Policy, Device Nonce, Secured Payload, MAC)

5.Command(Protected Device ID, Security policy, Network Nonce, Secured Payload, MAC)

7.Operation response(Payload)

0.Pre configure: Authentication

Key, [Security Policies]

Authentication process

Command process

4.Authentication check

AIoT Reader
AIoT Device
AIoTF
2.Paging(Protected Device ID, Network Nonce)
AF
1.Operation request(Operation=Command, Device ID, Payload)
3.Random access(Protected Device ID*, Device Nonce, [Device Capability])
6.Command response(Security Policy, Device Nonce, Secured Payload, MAC)
5.Command(Protected Device ID, Security policy, Network Nonce, Secured Payload, MAC)
7.Operation response(Payload)
0.Pre configure: Authentication Key, [Security Policies]
Authentication process
Command process
4.Authentication check

image14.emf
SMF/UPF

8. AIoT message (Device ID, [Auth Container])

AIoT NF/

AMF

AIoT

device

UE reader NEF

7. AIoT Paging ([Auth Container])

0. UE reader has established PDU Session for authentication

AIoT

AF

AAA-S

UDM/

UDR

1. Inventory ()

2. Select UE reader

5. DL NAS Transport (AIoT paging)

3. UE reader authorization

4. Response ()

6. Interact with AAA-S via UPF over the PDU Session

9. Authentication procedure via PDU Session of UE reader

10. Report of inventory

SMF/UPF
8. AIoT message (Device ID, [Auth Container])
AIoT NF/
AMF
AIoT device
UE reader
NEF
7. AIoT Paging ([Auth Container])
0. UE reader has established PDU Session for authentication
AIoT AF
AAA-S
UDM/
UDR
1. Inventory ()
2. Select UE reader
5. DL NAS Transport (AIoT paging)
3. UE reader authorization
4. Response ()
6. Interact with AAA-S via UPF over the PDU Session
9. Authentication procedure via PDU Session of UE reader
10. Report of inventory

image15.emf
4b. Response (Auth Container)

9. Authentication procedure

8a. AIoT message (Device ID, [Auth Container])

AIoT NF/

AMF

AIoT

device

UE reader NEF

7. AIoT Paging ([Auth Container])

AIoT

AF

AAA-S

UDM/

UDR

1. Inventory ()

2. Select UE reader

6. DL NAS Transport (AIoT paging ([Auth Container]))

3. UE reader authorization

5. Response ()

4a. Request ()

10. Report of inventory

0. UE reader has registered into 5G network

8b. UL NAS Transport (AIoT message)

4b. Response (Auth Container)
9. Authentication procedure
8a. AIoT message (Device ID, [Auth Container])
AIoT NF/
AMF
AIoT device
UE reader
NEF
7. AIoT Paging ([Auth Container])
AIoT AF
AAA-S
UDM/
UDR
1. Inventory ()
2. Select UE reader
6. DL NAS Transport (AIoT paging ([Auth Container]))
3. UE reader authorization
5. Response ()
4a. Request ()
10. Report of inventory
0. UE reader has registered into 5G network
8b. UL NAS Transport (AIoT message)

image16.emf
4b. Response (Auth Container)

9. Authentication procedure

8. AIoT message (Device ID, [Auth Container])

AIoT NF/

AMF

AIoT

device

RAN

reader

NEF

7. AIoT Paging ([Auth Container])

AIoT

AF

AAA-S UDR

1. Inventory ()

2. Select RAN reader

6. AIoT paging ([Auth Container]))

3. Inventory authorization

5. Response ()

4a. Request ()

10. Report of inventory

4b. Response (Auth Container)
9. Authentication procedure
8. AIoT message (Device ID, [Auth Container])
AIoT NF/
AMF
AIoT device
RAN reader
NEF
7. AIoT Paging ([Auth Container])
AIoT AF
AAA-S
UDR
1. Inventory ()
2. Select RAN reader
6. AIoT paging ([Auth Container]))
3. Inventory authorization
5. Response ()
4a. Request ()
10. Report of inventory

image17.emf
AIoT AS

layer

App layer

 AIoT

layer

AIoT AS

layer

Lower

layer

New AP

Lower

layer

New AP

Lower

Layer

Lower

Layer

SBI

interface

API

 AIoT

layer

App layer

AIoT device RAN reader

AIoT Function or AMF

with AIoT functionality

SBI

interface

API

NEF

Lower

Layer

Lower

Layer

AF

oleObject7.bin

image18.emf
AIoT Device AIoT Reader AIoT Function NEF AF

2. L2 Connection

3. L2(EAP-Req/Identity)

4. L2(EAP-Res/Identity <SUCI> or <5G-GUTI>)

5. AAA-Request <SUCI> or <5G-GUTI>

AUSF/UDM

6. Nausf_UEAuthentication_AuthenticateRequest(SUCI or SUPI, AIoT Ind)

Takes Role as TNAP Takes Role as TWIF and AMF

7. Generate

AV

8. Nausf_UEAuthentication_AuthenticateResponse(EAP-Request/AKA'-Challenge)

9. AAA-Response(EAP-Request/AKA'-Challenge)

10. L2(EAP-Request/AKA'-Challenge)

12. L2(EAP-Response/AKA'-Challenge)

13. AAA-Request (EAP-Response/AKA'-Challenge)

14. Nausf_UEAuthentication_AuthenticateRequest(EAP-Response/AKA'-Challenge)

15. Verify Response,

derive MSK

11. Calculate Auth.

Response

16. Nausf_UEAuthentication_AuthenticateResponse(EAP-Success, GPSI, SUPI, MSK)

17. AAA-Response(EAP-Success, MSK)

18. L2(EAP-Success)

1. Subscribe to notifications on authenticated AIoT Devices

AIoT Device
AIoT Reader
AIoT Function
NEF
AF
2. L2 Connection
3. L2(EAP-Req/Identity)
4. L2(EAP-Res/Identity <SUCI> or <5G-GUTI>)
5. AAA-Request <SUCI> or <5G-GUTI>
AUSF/UDM
6. Nausf_UEAuthentication_AuthenticateRequest(SUCI or SUPI, AIoT Ind)
Takes Role as TNAP
Takes Role as TWIF and AMF
7. Generate AV
8. Nausf_UEAuthentication_AuthenticateResponse(EAP-Request/AKA'-Challenge)
9. AAA-Response(EAP-Request/AKA'-Challenge)
10. L2(EAP-Request/AKA'-Challenge)
12. L2(EAP-Response/AKA'-Challenge)
13. AAA-Request (EAP-Response/AKA'-Challenge)
14. Nausf_UEAuthentication_AuthenticateRequest(EAP-Response/AKA'-Challenge)
15. Verify Response,
derive MSK
11. Calculate Auth. Response
16. Nausf_UEAuthentication_AuthenticateResponse(EAP-Success, GPSI, SUPI, MSK)
17. AAA-Response(EAP-Success, MSK)
18. L2(EAP-Success)
1. Subscribe to notifications on authenticated AIoT Devices

oleObject9.bin

image19.emf
AIoT Device AIoT Reader AIoT Function NEF AF

2. L2 Connection

3. IKE_SA_INIT

6. IKE_AUTH Req (EAP-Res/Identity <SUCI> or <5G-GUTI>)

AUSF/UDM

7. Nausf_UEAuthentication_AuthenticateRequest(SUCI or SUPI, AIoT Ind)

Takes Role as AP Takes Role as N3IWF and AMF

8. Generate

AV

9. Nausf_UEAuthentication_AuthenticateResponse(EAP-Request/AKA'-Challenge)

10. IKE_AUTH Res(EAP-Request/AKA'-Challenge)

12. IKE_AUTH Req(EAP-Response/AKA'-Challenge)

13. Nausf_UEAuthentication_AuthenticateRequest(EAP-Response/AKA'-Challenge)

14. Verify Response,

derive MSK

11. Calculate Auth.

Response

15. Nausf_UEAuthentication_AuthenticateResponse(EAP-Success, GPSI, SUPI, MSK)

16. IKE_AUTH Res(EAP-Success)

4. IKE_AUTH Req (UE ID, without AUTH)

5. IKE_AUTH Res (EAP-Req)

1. Subscribe to notifications on authenticated AIoT Devices

AIoT Device
AIoT Reader
AIoT Function
NEF
AF
2. L2 Connection
3. IKE_SA_INIT
6. IKE_AUTH Req (EAP-Res/Identity <SUCI> or <5G-GUTI>)
AUSF/UDM
7. Nausf_UEAuthentication_AuthenticateRequest(SUCI or SUPI, AIoT Ind)
Takes Role as AP
Takes Role as N3IWF and AMF
8. Generate AV
9. Nausf_UEAuthentication_AuthenticateResponse(EAP-Request/AKA'-Challenge)
10. IKE_AUTH Res(EAP-Request/AKA'-Challenge)
12. IKE_AUTH Req(EAP-Response/AKA'-Challenge)
13. Nausf_UEAuthentication_AuthenticateRequest(EAP-Response/AKA'-Challenge)
14. Verify Response,
derive MSK
11. Calculate Auth. Response
15. Nausf_UEAuthentication_AuthenticateResponse(EAP-Success, GPSI, SUPI, MSK)
16. IKE_AUTH Res(EAP-Success)
4. IKE_AUTH Req (UE ID, without AUTH)
5. IKE_AUTH Res (EAP-Req)
1. Subscribe to notifications on authenticated AIoT Devices

oleObject11.bin

image20.emf
AIoT Device AIoT Reader AIoT Function NEF AF

2. AIoT Request (Default ID,

Security Configuration)

5. AIoT Request (Nonce, Default ID)

11. AIoT Response

3. AIoT Request (Default ID,

Security Configuration)

6. AIoT Request (Nonce, Default ID)

8. AIoT Response (Result)

9. AIoT Response (Result)

10. Compare Result with

Expected Result

7. Generate Encryption Key,

Temp. ID, Result

1. Preshared Configuration of

AIoT Devices

4. Generate Nonce, Encryption

Key, Temp. ID, Expected Result

12. AIoT Response

AIoT Device
AIoT Reader
AIoT Function
NEF
AF
2. AIoT Request (Default ID, Security Configuration)
5. AIoT Request (Nonce, Default ID)
11. AIoT Response
3. AIoT Request (Default ID, Security Configuration)
6. AIoT Request (Nonce, Default ID)
8. AIoT Response (Result)
9. AIoT Response (Result)
10. Compare Result with Expected Result
7. Generate Encryption Key, Temp. ID, Result
1. Preshared Configuration of AIoT Devices
4. Generate Nonce, Encryption Key, Temp. ID, Expected Result
12. AIoT Response

image21.emf

I A KEY

MAC

Sender

TempID DIRECTION MESSAGE

IA

X MAC

TempID DIRECTION MESSAGE

KEY

Receiver

oleObject13.bin

XMAC

MAC

DIRECTION

Receiver

MESSAGE

DIRECTION

MESSAGE

Sender

IA

IA

KEY

TempID

KEY

TempID

image22.emf

I A TempID

MAC

Sender

Message DIRECTION IA

XMAC

Message DIRECTION TempID

Receiver

oleObject14.bin

XMAC

MAC

DIRECTION

Receiver

DIRECTION

Sender

IA

IA

TempID

Message

TempID

Message

image23.emf
1. Send Command (Protected Command,

freshness parameter)

5. Send Command Response

(Protected Command Response, freshness parameter)

2. Send Command (Protected

Command, freshness parameter)

AIoT device Reader AIoT controller Application function

6. Send Command Response

(Protected Command Response(s),

freshness parameter, [Enrichment data])

3. Send Command (Protected Command,

freshness parameter)

7. Send Command Response

(Protected Command Response(s),

freshness parameter, [Enrichment data])

0b. Store AIoT device identifiers

and associated security

protection profile

0a. Provisioned with AIoT device

identifiers and associated

security protection profile

8. Decrypt/Verify the received

message, and process the message

content

4. Decrypt/Verify the received

Command, and process the

content in the Command

Microsoft_Visio_Drawing2.vsdx
1. Send Command (Protected Command, freshness parameter)

5. Send Command Response  (Protected Command Response, freshness parameter)
2. Send Command (Protected Command, freshness parameter)
AIoT device
Reader
AIoT controller
Application function
6. Send Command Response  (Protected Command Response(s), freshness parameter, [Enrichment data])
3. Send Command (Protected Command, freshness parameter)
7. Send Command Response  (Protected Command Response(s), freshness parameter, [Enrichment data])
0b. Store AIoT device identifiers and associated security protection profile
0a. Provisioned with AIoT device identifiers and associated security protection profile
8. Decrypt/Verify the received message, and process the message content
4. Decrypt/Verify the received Command, and process the content in the Command

image24.emf
Ambeint

IoT device

Reader AIoTF/AMF Device owner

1. Disabling request

2. determine

Reader

3. Disabling request

4. Inventory

5. Disabling command

6. verify the command

Ambeint IoT device
Reader
AIoTF/AMF
Device owner
1. Disabling request
2. determine Reader
3. Disabling request
4. Inventory
5. Disabling command
6. verify the command

image25.emf
AF

AIoT

Device

UE/RAN

Reader

NEF AIoT NF

11a.AIoT Disable Response

(ACK)

7. Calculate the disable-SecParam,

i.e.,f(K, AIoT device ID, disable

type, counter)

10. Verify the

disable-SecParam

1.AIoT Disable Request

(AIoT device filter information, disable type)

8.AIoT Disable Request

(AIoT ID, disable-SecParam, disable type, counter)

13.AIoT Disable Response

(ACK)

11b. Perform Disable

operation according

to disable type

2.AIoT Disable Trigger

(AIoT device filter information)

4. ID matching

5.AIoT paging Response

(AIoT device ID)

3.AIoT Paging Request

(AIoT device filter information)

6.AIoT Disable Trigger Response

(AIoT device ID)

9.AIoT Disable Request

(AIoT ID, disable-SecParam, disable type, counter)

12.AIoT Disable Response

(ACK)

AF
AIoT Device
UE/RAN Reader
NEF
AIoT NF

11a.AIoT Disable Response
(ACK)
7. Calculate the disable-SecParam, i.e.,f(K, AIoT device ID, disable type, counter)
10. Verify the disable-SecParam
1.AIoT Disable Request
(AIoT device filter information, disable type)
8.AIoT Disable Request
(AIoT ID, disable-SecParam, disable type, counter)
13.AIoT Disable Response
(ACK)
11b. Perform Disable operation according to disable type
2.AIoT Disable Trigger
(AIoT device filter information)
4. ID matching
5.AIoT paging Response
(AIoT device ID)
3.AIoT Paging Request
(AIoT device filter information)
6.AIoT Disable Trigger Response
(AIoT device ID)
9.AIoT Disable Request
(AIoT ID, disable-SecParam, disable type, counter)
12.AIoT Disable Response
(ACK)

image26.emf
AF NEF

AMF/

AIoTF

UDM UE

2a. Authorization request(UE ID)

4. Inventory/Command request

2b. Authorization response

1. Inventory/Command request(UE ID,

device ID, area info, command)

3. UE

authorization

AF
NEF
AMF/
AIoTF
UDM
UE

2a. Authorization request(UE ID)

4. Inventory/Command request
2b. Authorization response

1. Inventory/Command request(UE ID, device ID, area info, command)
3. UE authorization

image27.png
—> Ambient loT data/signaling

()

intermedvlh D)
)

node
Ambient loT

BS
device

image28.emf
AIoT

device

NG-RAN

5GC

3. Key request for Ntopo2 security material

5. Key response for Ntopo2 security material

AF

4. Authorization of the

Intermediate

UE for Ambient IoT serive

Intermediate

UE

0. AIoT device gets Ntopo2 security material

1. Registration to 5GC

6. Determines Radio Resource

2. AIoT Service Request (e.g. Inventory, Command)

Inventory

8. Device ID, [other info]

7. Initiate Inventory

Command

10. Command Response

9. Initiate Command

11. AIoT Service response

Microsoft_Visio_2003-2010_Drawing.vsd
AIoT device

NG-RAN

0. AIoT device gets Ntopo2 security material

1. Registration to 5GC

5GC

image29.emf
1. inventory Operation

Request

11. Inventory Operation result

AMF/AIoT

function

AIoT Device

RAN Reader/

Intermediate

Node

NEF AF

2. Authorize AF request

Select AIoT function

3. inventory Operation Information

4 discover and select

Readers

5. Inventory Request

12. Inventory Operation

result

0a. Device configured wih

AIoT_ID

0b. RAN/Reader

configured wih AIoT list

6. Broadcast Information

(list of HASH(AIOT_ ID,

RAND_READ) ,

RAND_READ)

7.

a. compute a hash using RAND_READ for

each AIOT_ID

b. find at least one match between

provisioned AIOT_ID and AIOT_ID hashes

c. select one of the AIOT_ID with a matching

hash

(HASH(selected

AIOT_ID,RAND_AIOT))

10. Inventory Report

(AIOT_ID)

9.

a. compute a hash using RAND_READ for

each AIOT_ID

b. check that hashed AIOT_ID received from

the AiOT Device matches one of the stored

AIOT-ID from step 0b

Microsoft_Visio_Drawing3.vsdx
1. inventory Operation Request
11. Inventory Operation result
AMF/AIoT function
AIoT Device
RAN Reader/Intermediate Node
NEF
AF
2. Authorize AF request
Select AIoT function
3. inventory Operation Information
4 discover and select Readers
5. Inventory Request
12. Inventory Operation
result
0a. Device configured wih AIoT_ID
0b. RAN/Reader configured wih AIoT list
8. “Registration Request”

6. Broadcast Information (list of HASH(AIOT_ ID, RAND_READ) , RAND_READ)
7.
a. compute a hash using RAND_READ for each AIOT_ID
b. find at least one match between provisioned AIOT_ID and AIOT_ID hashes
c. select one of the AIOT_ID with a matching hash
(HASH(selected AIOT_ID,RAND_AIOT))
10. Inventory Report

(AIOT_ID)
9.
a. compute a hash using RAND_READ for each AIOT_ID
b. check that hashed AIOT_ID received from the AiOT Device matches one of the stored AIOT-ID from step 0b

image30.emf
AIOT

Device

Reader

 1. Paging [or Occasion SYNC]

 2. MSG1 (Random Device ID)

 3. MSG2 (Echo Random Device ID)

 4. (Upper Layer Data: e.g., App. Device ID)

 5. MSG4 (?)

Microsoft_Visio_Drawing4.vsdx
AIOT Device
Reader
1. Paging [or Occasion SYNC]
2. MSG1 (Random Device ID)
3. MSG2 (Echo Random Device ID)
4. (Upper Layer Data: e.g., App. Device ID)
5. MSG4 (?)

image31.emf
AIOT

Device

Reader

 3. Paging [or Occasion SYNC] (Set of N puzzles)

 6. MSG1 (Random Device ID, MACKi-IND)

 9. MSG2 (Echo Random Device ID, ACK)

 10. (Upper Layer Data: e.g., App. Device ID)

 11. MSG4 (?)

1. Prepare a set of N

tuples comprising of K-

MACi and corresponding

K-MACi-IND

2. Compose a set of N

cryptographic puzzles

each containing a tuple

comprising of K-MACi,

corresponding K-MACi-

IND, and either partial key

or partial hash function

argument

5. Solving the selected

puzzle and recovering the

security parameters K-

MACi and corresponding -

MACKi-IND

4. Randomly select a

puzzle i from the SIB1 set

of N puzzles

7. Looking up K-MACi

corresponding to

K-MACi-IND

8. The AIOT Device and the Reader have established ephemeral

security context using K-MACi

Microsoft_Visio_Drawing15.vsdx
AIOT Device
Reader
3. Paging [or Occasion SYNC] (Set of N puzzles)
6. MSG1 (Random Device ID, MACKi-IND)
9. MSG2 (Echo Random Device ID, ACK)
10. (Upper Layer Data: e.g., App. Device ID)
11. MSG4 (?)
1. Prepare a set of N tuples comprising of K-MACi and corresponding K-MACi-IND
2. Compose a set of N cryptographic puzzles each containing a tuple comprising of K-MACi, corresponding K-MACi-IND, and either partial key or partial hash function argument
5. Solving the selected puzzle and recovering the security parameters K-MACi and corresponding -MACKi-IND
4. Randomly select a puzzle i from the SIB1 set of N puzzles
7. Looking up K-MACi corresponding to
K-MACi-IND
8. The AIOT Device and the Reader have established ephemeral security context using K-MACi

image32.emf
AIoT Reader AIoTF NEF

4. AIoT Service Response

(RAND

AIoT

, Temp AIoT ID #1, MAC)

5. Check the

authenticity of the

message

2. AIoT Service Request

(RAND

AIoTF

, RAND

AF

, Temp AIoT ID #1)

1. AIoT Service Request

(Temp AIoT ID #1, RAND

AF

, K

AIoT

)

AF

6. AIoT Service Response

(RAND

AIoT

, Temp AIoT ID #1)

0. Generates K

AIoT

 from K

and RAND

AF

3. Generates MAC

using RAND

AIoTF

 and

K

AIoT

.

7. Generates Temp

AIoT ID #2 from K

AIoT

,

RAND

AIoT

, and Temp

AIoT ID #1.

7. Generates Temp

AIoT ID #2 from K

AIoT

,

RAND

AIoT

, and Temp

AIoT ID #1.

oleObject18.bin

image33.emf
A-IoT Device Reader AIoTF NEF

3. Paging request

(partial AIoT device ID)

5.Paging response

(Encrypted AIoT device

permanent ID, fresh

value, Key ID)

7. Retrieve AK using Key

ID if needed;

Decrypt AIoT device ID

2. Paging request

(partial AIoT device ID)

1. Inventory/Command Request

(AIoT device ID, [AK, Key ID])

4. Encrypt AIoT

device permanent

ID and fresh value

with AK

AF

6.Paging response

(Encrypted AIoT device

permanent ID, fresh value,

Key ID)

Microsoft_Visio_Drawing6.vsdx
A-IoT Device
Reader
AIoTF
NEF
3. Paging request
(partial AIoT device ID)
5.Paging response
(Encrypted AIoT device permanent ID, fresh value, Key ID)
7. Retrieve AK using Key ID if needed;
Decrypt AIoT device ID
2. Paging request
(partial AIoT device ID)
1. Inventory/Command Request
(AIoT device ID, [AK, Key ID])
4. Encrypt AIoT device permanent ID and fresh value with AK
AF
6.Paging response
(Encrypted AIoT device permanent ID, fresh value, Key ID)

image34.emf
AIoT device Reader AIoTF NEF AF

1.AIoT Service Request

(AIoT device ID)

ID mapping

2.AIoT Service Request

(Temporary AIoT device ID)

3.AIoT Service Response

 (Temporary AIoT device ID)

4.AIoT Service Response

(AIoT device ID)

0a.Initial Registration

0b.Temporary AIoT device ID allocation

Microsoft_Visio_Drawing7.vsdx
AIoT device
Reader
AIoTF
NEF
AF
1.AIoT Service Request
(AIoT device ID)
ID mapping
2.AIoT Service Request
(Temporary AIoT device ID)
3.AIoT Service Response
 (Temporary AIoT device ID)
4.AIoT Service Response
(AIoT device ID)
0a.Initial Registration
0b.Temporary AIoT device ID allocation

image35.emf
AIoT device Reader(s) Corenetwork NF (s)

0. Credentials including TempID

generation key, initial TempID

2. AIoT information(TempID)

3. AIoT information(TempID)

7. Generates new TempID

7. Generates new TempID

5. AIoT information ack(freshness parameter)

4. operations in network

6. AIoT information ack(freshness parameter)

0. Credentials including TempID

generation key, initial TempID

1. AIoT request from network

AIoT device
Reader(s)
Corenetwork NF (s)
0. Credentials including TempID generation key, initial TempID
2. AIoT information(TempID)
3. AIoT information(TempID)
7. Generates new TempID
7. Generates new TempID
5. AIoT information ack(freshness parameter)
4. operations in network
6. AIoT information ack(freshness parameter)
0. Credentials including TempID generation key, initial TempID
1. AIoT request from network

image36.emf
Reader CN NF

UDM/

UDR

NEF

AF

AIoT

Dev

4a. Command (TempID, PDU)

0. AF provisioned information to either UDR or CN NF

0. AIoT device is pre-

provisioned by the

device owner

1. AIoT device onboarding

3. TempID generation

2. AIoT context and

TempID generation

5. TempID

verification

7. TempID generation 7. TempID generation

6a. Command response (TempID, PDU)

4b. Inventory (arg.)

6b. Inventory response (TempID)

Reader
CN NF
UDM/UDR
NEF
AF
AIoT Dev
4a. Command (TempID, PDU)
0. AF provisioned information to either UDR or CN NF
0. AIoT device is pre-provisioned by the device owner
1. AIoT device onboarding
3. TempID generation
2. AIoT context and TempID generation
5. TempID verification
7. TempID generation
7. TempID generation
6a. Command response (TempID, PDU)
4b. Inventory (arg.)
6b. Inventory response (TempID)

image37.emf
1. Inventory Request

3. Inventory Request

4. Inventory

Response (T-ID)

7b. Inventory Response

(T-IDs, [Enrichment data])

2. Inventory Request

5. Inventory Response

(T-ID, [Enrichment data])

AIoT device Reader AIoT controller Application function

6. Store (T-ID, [Enrichment

data]) association

7a. Data Request

([T-IDs])

0b. Store AIoT device identifier

and associated security protection

profile

0a. Provisioned with AIoT

device identifier and associated

security protection profile

Microsoft_Visio_Drawing8.vsdx
1. Inventory Request
3. Inventory Request
4. Inventory Response (T-ID)
7b. Inventory Response (T-IDs, [Enrichment data])
2. Inventory Request
5. Inventory Response (T-ID, [Enrichment data])
AIoT device
Reader
AIoT controller
Application function
6. Store (T-ID, [Enrichment data]) association
7a. Data Request
([T-IDs])
0b. Store AIoT device identifier and associated security protection profile
0a. Provisioned with AIoT device identifier and associated security protection profile

image38.png
AloT device Reader AloTF NEF ‘ Application Function
ach device

0Ob. Configure all the device|IDs, one ID for

0Oa. Configuration during
manufadturing time: Oc. Configurg the device IDs per Reader
Device ID1-1

0d. Store @ll the Device
IDs undef this Reader

1. Paging (D1, ID2,....)
Msg18&2(optional)
2. Msg3-Device ID transmission (ID1-1 ||Index1)

3. Mapping with its
database, ¢check whether
this Device]ID is genuine.

4. Msg4-(ID1-1 |[Index1)

5. Check|ID1-1is correct,

use ID1;2 in next time
ID1-2 ={HASH (ID1-1)

image39.emf
AIoT Device AIoT reader/gNB

AIoTF SIDF/UDM

2. paging

(authentication challenge)

4. AICI, response to

authentication challenge

7.1. Deconceals AICI into long-term identifier

7.2. Checks, using the shared key K for the

long-term id, if response to authentication

challenge is valid.

7.3.Computes a new AICI͛�using the key used

for computing AICI, and derives a

confidentiality key Kenc and integrity key

Kint from the shared key for the long-term id

to protect a downlink command message

6. AICI,

authentication challenge,

response to authentication

challenge

9. Prepares a command message that includes AICI͕͛�encrypts

the command message using Kenc and computes a MAC of

the encrypted command message using the key Kint

8. AICI͕͛�Kenc, Kint

10. Encrypted Command

message, MAC

3. Computes auth challenge response using

shared key K with the network. Checks if it

has a network-provided AICI, if not, then

computes AICI using a null scheme

11. Encrypted Command message,

MAC

12.1. Derives keys Kenc and Kint from the

shared key K in the same manner as in SIDF/

UDM

12.2. Validates MAC and decrypts command

message

12.3. Updates AICI with AICI͛

Microsoft_Visio_Drawing9.vsdx
AIoT Device
AIoT reader/gNB
AIoTF
SIDF/UDM
5. AICI,
authentication challenge, response to authentication challenge
2. paging
(authentication challenge)
4. AICI, response to
authentication challenge
7.1. Deconceals AICI into long-term identifier
7.2. Checks, using the shared key K for the long-term id, if response to authentication challenge is valid.
7.3.Computes a new AICI’ using the key used for computing AICI, and derives a confidentiality key Kenc and integrity key Kint from the shared key for the long-term id to protect a downlink command message
6. AICI,
authentication challenge,
response to authentication challenge
9. Prepares a command message that includes AICI’, encrypts the command message using Kenc and computes a MAC of the encrypted command message using the key Kint
1. paging request
(authentication challenge)
8. AICI’, Kenc, Kint
10. Encrypted Command message, MAC
3. Computes auth challenge response using shared key K with the network. Checks if it has a network-provided AICI, if not, then computes AICI using a null scheme
11. Encrypted Command message,
MAC
12.1. Derives keys Kenc and Kint from the shared key K in the same manner as in SIDF/UDM
12.2. Validates MAC and decrypts command message
12.3. Updates AICI with AICI’

image40.emf
AIoT Reader AIoT Device AIoTF UDM

1.Operation request(Operation=Inventory, Device ID Matching

info)

4.Inventory request(Device ID Matching Info, Network

Nonce)

AF

9.Operation response(Device ID list)

5.Inventory response(Security policy, [Key ID], Device

Nonce, Protected Device ID)

7.Authentication response(Device ID)

6.Authentication request(Security policy, [Key

ID], Device Nonce, Protected Device ID)

8.Repeat steps 4-7 for other devices

0.Preconfigure:Device ID

protection keys, [Key ID]

2.Inventory parameter request()

3.Inventory parameter response(Network Nonce)

AIoT Reader
AIoT Device
AIoTF
UDM
1.Operation request(Operation=Inventory, Device ID Matching info)
4.Inventory request(Device ID Matching Info, Network Nonce)
AF
9.Operation response(Device ID list)
5.Inventory response(Security policy, [Key ID], Device Nonce, Protected Device ID)
7.Authentication response(Device ID)
6.Authentication request(Security policy, [Key ID], Device Nonce, Protected Device ID)
8.Repeat steps 4-7 for other devices
0.Preconfigure:Device ID protection keys, [Key ID]
2.Inventory parameter request()
3.Inventory parameter response(Network Nonce)

image41.emf
AIoT Reader AIoT Device AIoTF UDM

1.Operation request(Operation=Inventory, Device ID Matching

Info)

4.Inventory request(Protected Device ID Matching Info,

Security policy, [Key ID], Network Nonce)

AF

9.Operation response(Device ID list)

5.Inventory response(Security policy, [Key ID], Device

Nonce, Protected Device ID)

7.Authentication response(Device ID)

6.Authentication request(Security policy, [Key ID],

Network Nonce, Device Nonce, Protected Device ID)

8.Repeat steps 4-7 for other devices

0.Preconfigure:Device ID

protection keys, [Key ID]

2.Inventory parameter

request(Device ID Match Info)

3.Inventory parameter response(Protected Device ID

Matching Info, Security policy, [key ID], Network Nonce)

AIoT Reader
AIoT Device
AIoTF
UDM
1.Operation request(Operation=Inventory, Device ID Matching Info)
4.Inventory request(Protected Device ID Matching Info, Security policy, [Key ID], Network Nonce)
AF
9.Operation response(Device ID list)
5.Inventory response(Security policy, [Key ID], Device Nonce, Protected Device ID)
7.Authentication response(Device ID)
6.Authentication request(Security policy, [Key ID], Network Nonce, Device Nonce, Protected Device ID)
8.Repeat steps 4-7 for other devices
0.Preconfigure:Device ID protection keys, [Key ID]
2.Inventory parameter request(Device ID Match Info)
3.Inventory parameter response(Protected Device ID Matching Info, Security policy, [key ID], Network Nonce)

image42.png
AloT device

Reader UE/gNB

AloT Management Function

0. provisioning device with a configuration for managing disabling operations.

1. Inventory request
and configuration

2. Inventory request

3. Process request

4. Inventory response

5. Response aggregation

6. Inventory response(s)

