

3GPP TS 35.236 V0.2.0 (2024-08)
14
Release 19

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TS 35.236 V0.12.0 (2024-0208)

	[bookmark: spectype2]Technical Specification

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and Security Aspects;
Specification of the MILENAGE-256 algorithm set;
An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5, f5* and f5**;
Document 3: Implementors’ Test Data and Design Conformance Test Data
[bookmark: specRelease](Release 19)

		

	[image:]
	[image:]

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	4
Introduction	5
1	Scope	6
2	References	6
3	Definitions of terms, symbols and abbreviations	6
3.1	Terms	7
3.2	Symbols	8
3.3	Abbreviations	8
3.4	Radix	8
4	Structure of this specification	9
5	Implementors’ test data	9
5.1	MILENAGE-256-R	9
5.1.1	General	9
5.1.2	PRF based on Rijndael-256-256	9
6	Design conformance test data	11
6.1	Test data selection principles	11
6.2	Reference figure for identification of printed data	12
6.3	Milenage-256-R	12
Foreword	4
Introduction	5
1	Scope	6
2	References	6
3	Definitions of terms, symbols and abbreviations	6
4	Structure of this specification	7
5	Implementors’ test data	7
6	Design conformance test data	7
Annex A (informative): Reference implementation (C/C++)	8
Annex B (informative): Change history	9

[bookmark: foreword][bookmark: _Toc175586017]Foreword
[bookmark: spectype3]This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc175586018]Introduction
Editor's Note: This clause contains preface information provided by ETSI SAGE.
[bookmark: scope]The present document contains a 256-bit example of set of algorithms, collectively called MILENAGE-256, which may be used as the authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**. It is not mandatory to use the particular algorithms specified in this document – all eight functions are operator-specifiable rather than being fully standardised. Operators electing to employ this example set can further personalise the algorithms (as described in the text).
The present document is one of four documents, which collectively comprise the entire specification of the example authentication and key generation algorithms. Namely:
-	3GPP TS 35.234 [2]: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 1: MILENAGE-256 General".
-	3GPP TS 35.235 [3]: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 2: MILENAGE-256 Algorithm Specification".
-	3GPP TS 35.236: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 3: Implementors’ Test and Design Conformance Test Data".
-	3GPP TS 35.237 [4]: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 4: Summary and Results of Design and Evaluation".
[bookmark: _Toc175586019][bookmark: references]
1	Scope
Editor's Note: This clause contains scope information from ETSI SAGE for selected option.
The present document …
[bookmark: _Toc175586020]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 35.234: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 1: MILENAGE-256 General".
[3]	3GPP TS 35.235: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 2: MILENAGE-256 Algorithm Specification".
[4]	3GPP TS 35.237: "Specification of the MILENAGE-256 algorithm set: An example set of 256-bit 3GPP authentication and key generation functions f1, f1*, f2, f2, f3, f5, f5, f5* and f5**; Document 4: Summary and Results of Design and Evaluation".
[5]	3GPP TS 33.102: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Security Architecture".
[6]	Rijndael information page, NIST archived AES submissions, https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto- projects/aes-development#rijndael
[7]	The Advanced Encryption Standard (AES), NIST FIPS 197, 2001.
[8]	 J. Daemen and V. Rijmen, "The design of Rijndael", Springer Verlag, 2002.

…
[x]	<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

[bookmark: _Toc175586021]3	Definitions of terms, symbols and abbreviations
[bookmark: _Hlk159174112]Editor's Note: This clause contains notation that applies to the present document.
[bookmark: _Toc2086438][bookmark: _Toc175586022]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Definition format (Normal)
<defined term>: <definition>.
example: text used to clarify abstract rules by applying them literally.
AKA-specific terminology
AMF:	Authentication Management Field
AK: Anonymity key
AK*: Anonymity key used during resynchronisation
CK: 	Cipher Key
f1, f1*, f2, f3, f4, f5, f5*, f5**: Cryptographic functions used to derive AKA parameters
IK:	Integrity Key
K:	Subscriber key
MAC-A: Network Authentication Code
MAC-S: Resynchronisation Authentication Code
RAND	: Random Challenge
RES: Response to Challenge
SQN: Sequence Number

Additional terminology
AKSZ: The length of the anonymity key AK, in octets
ALGONAME: An ASCII character string encoding of a name assigned for a particular instance/application of the MILENAGE-256 algorithm set instance
[bookmark: _Hlk174310427]𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7: 128-bit operator-customisable constants, used during the computation of f1, f1*, f2, f3, f4, f5, f5*, and f5**
CKSZ: The length of the ciphering key response CK, in octets
IN0, 𝐼𝑁1, 𝐼𝑁2, 𝐼𝑁3, 𝐼𝑁4, 𝐼𝑁5, 𝐼𝑁6, 𝐼𝑁7: 256-bit instance-specific input values constructed within the computation of the functions f1, f1*, f2, f3, f4, f5, f5*, and f5**
IKSZ: The length of the integrity key response IK, in octets
KSZ: The length of the subscriber key K, in octets
MACSZ: The length of the message authentication codes MAC-A, and MAC-S, in octets
OP: A 256-bit Operator Variant Algorithm Configuration Field that is a component of the functions f1, f1*, f2, f3, f4, f5, f5* and f5**
OPC: A 256-bit value derived from OP, ALGONAME, KSZ and K, and used within the computations of the functions f1, f1*, f2, f3, f4, f5, f5* and f5**
RESSZ: The length of the response RES, in octets
V: A 256-bit intermediate value constructed from ALGONAME and KSZ, and used in the computation of OPC
NOTE:	Bold variables above are part of the general AKA specification [8]. Additional explanation of the usage of boldface, italics, etc within MILENAGE-256 appears in the MILENAGE-256 Algorithm Specification [xx]. In the printout of test data, values are printed in courier typeface and indices are indicated by an underscore.
EXAMPLE: Values corresponding to KSZ are shown as K_sz.

[bookmark: _Toc2086439][bookmark: _Toc175586023]3.2	Symbols
For the purposes of the present document, the following symbols apply:
Symbol format (EW)
<symbol>	<Explanation>
=	The assignment operator
[bookmark: _Hlk174266771]:=	The definition operator
⊕	The bitwise exclusive-OR operation
{ }	Brackets are used to indicate a value given as a byte-array
EXAMPLE: X = { X[0] X[1] … X[m] }, where each X[j] is a byte
1A	The n-bit binary value 00…001, given as a byte array, i.e. X = { X[0] … X[m] }, with X[0] = 1, and X[j] = 0 for j > 0
2A	The n-bit binary value 00…010, given as a byte-array, i.e. X = { X[0] … X[m] }, with X[0] = 2, and X[j] = 0 for j > 0
∥	The concatenation of two byte arrays.
If X = { X[0] … X[m] } and Y = { Y[0] … Y[n] }, then
X || Y := { X[0] … X[m] Y[0] … Y[n]}.
AES-n	AES with n-bit key (and 128-bit block size)
PRFK	Pseudo-random function defined by key K
Rijndael-b-n	Rijndael block cipher with b-bit block and n-bit key

[bookmark: _Toc2086440][bookmark: _Toc175586024]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
Abbreviation format (EW)
<ABBREVIATION>	<Expansion>
3GPP	3rd Generation Partnership Project
AES	Advanced Encryption Standard
AKA	Authentication and Key Agreement
ETSI SAGE	ETSI Security Algorithms Group of Experts
MAC	Message Authentication Code
MDPH	Merkle-Damgård with Permutation and Hirose compression function
PRF	Pseudo-Random Function

[bookmark: _Toc175586025]3.4	Radix
All test data print-outs below are given in hexadecimal notation, but omitting the usual "0x"-prefix.
EXAMPLE:	A given value a3 corresponds to the decimal value 10*16 + 3 = 163.

[bookmark: definitions][bookmark: _Toc175586026]4	Structure of this specification
[bookmark: _Hlk159174125]Editor's Note: this clause details how the present document is organized.
The test data provided in the present document comes in two categories. First, implementors' test data that can be used to verify the underlying block cipher component of MILENAGE-256, and test data for the PRF kernel constructed from block cipher. This includes also intermediate values produced during the computation of the kernel(s). This is sometimes refered to as "white-box" test data.
NOTE:	For MILENAGE-256-R, the PRF-kernel is identical to the block cipher and thus only one common test-set is needed.
Input values for these test vectors were selected such that they change incrementally from one test to another, this strategy could be helpful for implementors to track possible errors in their implementation. There is also one test vector with pseudo random input values in order to catch other, unforeseen errors.
Next, conformance test data for the algorithm in the complete MILENAGE-256 algorithm set is provided, for different input and output parameter alternatives. This is sometimes refered to as "black-box" test data. The first test data for each input parameter set is more extensive and includes also intermediate values occurring during the computation.
This report is organised as follows:
· Clause 5 provides detailed test data for implementors, including also intermediate values occurring during computation, i.e. related to the cryptographic kernels (PRFs);
· Clause 6 provides design conformance data for MILENAGE-256-R. Principles for selecting test data is provided in sub-clause 6.1.
Source code for a reference implementation is provided in the Annex.
[bookmark: _Toc175586027]5	Implementors’ test data
Editor's Note: this clause provides implementors’ test data from ETSI SAGE.
[bookmark: _Toc175586028]5.1	MILENAGE-256-R
[bookmark: _Toc175586029]5.1.1	General
The kernel of MILENAGE-256-R is a PRF obtained directly as the Rijndael-256-256 block cipher. Therefore, test data for the PRF is identical to test data for Rijndael-256-256. Refer to the Algorithm Specification [3, clause 11] for details.
[bookmark: _Toc175586030]5.1.2	PRF based on Rijndael-256-256
=== PRF-RIJNDAEL-256-256 TEST #1 ===
KEY = { 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }
X = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }
RoundKey0 = { 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
	
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	}

	RoundKey1
	=
	{
	e2
	63
	63
	63
	e2
	63
	63
	63
	e2
	63
	63
	63
	e2
	63
	63
	63
	

	
	
	
	98
	fb
	fb
	fb
	98
	fb
	fb
	fb
	98
	fb
	fb
	fb
	98
	fb
	fb
	fb
	}

	RoundKey2
	=
	{
	ef
	6c
	6c
	25
	0d
	0f
	0f
	46
	ef
	6c
	6c
	25
	0d
	0f
	0f
	46
	

	
	
	
	4f
	8d
	8d
	a1
	d7
	76
	76
	5a
	4f
	8d
	8d
	a1
	d7
	76
	76
	5a
	}

	RoundKey3
	=
	{
	d3
	54
	d2
	2b
	de
	5b
	dd
	6d
	31
	37
	b1
	48
	3c
	38
	be
	0e
	

	
	
	
	a4
	8a
	23
	0a
	73
	fc
	55
	50
	3c
	71
	d8
	f1
	eb
	07
	ae
	ab
	}

	RoundKey4
	=
	{
	1e
	b0
	b0
	c2
	c0
	eb
	6d
	af
	f1
	dc
	dc
	e7
	cd
	e4
	62
	e9
	

	
	
	
	19
	e3
	89
	14
	6a
	1f
	dc
	44
	56
	6e
	04
	b5
	bd
	69
	aa
	1e
	}

	RoundKey5
	=
	{
	f7
	1c
	c2
	b8
	37
	f7
	af
	17
	c6
	2b
	73
	f0
	0b
	cf
	11
	19
	

	
	
	
	32
	69
	0b
	c0
	58
	76
	d7
	84
	0e
	18
	d3
	31
	b3
	71
	79
	2f
	}

	RoundKey6
	=
	{
	74
	aa
	d7
	d5
	43
	5d
	78
	c2
	85
	76
	0b
	32
	8e
	b9
	1a
	2b
	

	
	
	
	2b
	3f
	a9
	31
	73
	49
	7e
	b5
	7d
	51
	ad
	84
	ce
	20
	d4
	ab
	}

	RoundKey7
	=
	{
	83
	e2
	b5
	5e
	c0
	bf
	cd
	9c
	45
	c9
	c6
	ae
	cb
	70
	dc
	85
	

	
	
	
	34
	6e
	2f
	a6
	47
	27
	51
	13
	3a
	76
	fc
	97
	f4
	56
	28
	3c
	}

	RoundKey8
	=
	{
	b2
	d6
	5e
	e1
	72
	69
	93
	7d
	37
	a0
	55
	d3
	fc
	d0
	89
	56
	

	
	
	
	84
	1e
	88
	17
	c3
	39
	d9
	04
	f9
	4f
	25
	93
	0d
	19
	0d
	af
	}

	RoundKey9
	=
	{
	7d
	01
	27
	36
	0f
	68
	b4
	4b
	38
	c8
	e1
	98
	c4
	18
	68
	ce
	

	
	
	
	98
	b3
	cd
	9c
	5b
	8a
	14
	98
	a2
	c5
	31
	0b
	af
	dc
	3c
	a4
	}

	RoundKey10
	=
	{
	cd
	ea
	6e
	4f
	c2
	82
	da
	04
	fa
	4a
	3b
	9c
	3e
	52
	53
	52
	

	
	
	
	2a
	b3
	20
	9c
	71
	39
	34
	04
	d3
	fc
	05
	0f
	7c
	20
	39
	ab
	}

	RoundKey11
	=
	{
	16
	f8
	0c
	5f
	d4
	7a
	d6
	5b
	2e
	30
	ed
	c7
	10
	62
	be
	95
	

	
	
	
	e0
	19
	8e
	b6
	91
	20
	ba
	b2
	42
	dc
	bf
	bd
	3e
	fc
	86
	16
	}

	RoundKey12
	=
	{
	7e
	bc
	4b
	ed
	aa
	c6
	9d
	b6
	84
	f6
	70
	71
	94
	94
	ce
	e4
	

	
	
	
	c2
	3b
	05
	df
	53
	1b
	bf
	6d
	11
	c7
	00
	d0
	2f
	3b
	86
	c6
	}

	RoundKey13
	=
	{
	37
	f8
	ff
	f8
	9d
	3e
	62
	4e
	19
	c8
	12
	3f
	8d
	5c
	dc
	db
	

	
	
	
	9f
	71
	83
	66
	cc
	6a
	3c
	0b
	dd
	ad
	3c
	db
	f2
	96
	ba
	1d
	}

	RoundKey14
	=
	{
	ea
	0c
	5b
	71
	77
	32
	39
	3f
	6e
	fa
	2b
	00
	e3
	a6
	f7
	db
	

	
	
	
	8e
	55
	eb
	df
	42
	3f
	d7
	d4
	9f
	92
	eb
	0f
	6d
	04
	51
	12
	}

	Y
	=
	{
	e6
	2a
	bc
	e0
	69
	83
	7b
	65
	30
	9b
	e4
	ed
	a2
	c0
	e1
	49
	

	
	
	
	fe
	56
	c0
	7b
	70
	82
	d3
	28
	7f
	59
	2c
	4a
	49
	27
	a2
	77
	}

	=== PRF-RIJNDAEL-256-256 TEST
	#2
	===
	
	
	
	
	
	
	
	
	
	

	KEY = { 01 01 01 01 01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	

	01 01 01 01 01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	}

	X = { 01 01 01 01 01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	

	01 01 01 01 01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	01
	}

	Y = { f6 f9 7c 67 72
	f2
	04
	88
	e3
	c0
	ee
	c5
	48
	29
	81
	b2
	

	bd 00 b1 5b bd
	f9
	40
	06
	9f
	bf
	51
	42
	ce
	b3
	96
	88
	}

	=== PRF-RIJNDAEL-256-256 TEST #3 ===

	KEY = { 00 00
	00
	00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	

	00 00
	00
	00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	}

	X = { 00 00
	00
	00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	

	00 00
	00
	00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	}

	Y = { c6 22
	7e
	77 40
	b7
	e5
	3b
	5c
	b7
	78
	65
	27
	8e
	ab
	07
	

	26 f6
	23
	66 d9
	aa
	ba
	d9
	08
	93
	61
	23
	a1
	fc
	8a
	f3
	}

	=== RIJNDAEL-256-256
KEY = { 00 00
	TEST #4 ===
00 00 00 00
	
00
	
00
	
00
	
00
	
00
	
00
	
00
	
00
	
00
	
00
	

	00 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	}

	X = { 80 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	

	00 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	}

	Y = { 15 9a
	08 e4 6e 61
	6e
	6e
	99
	78
	50
	20
	10
	da
	ff
	92
	

	2e b3
	62 e7 7d ca
	af
	02
	ea
	eb
	73
	54
	eb
	8b
	8d
	ba
	}

	=== RIJNDAEL-256-256
	TEST #5 ===
	
	
	
	
	
	
	
	
	
	
	

	KEY = { 00 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	

	00 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	}

	X = { 00 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	

	00 00
	00 00 00 00
	00
	00
	00
	00
	00
	00
	00
	00
	00
	01
	}

	Y = { 4e 76
	ca 69 96 71
	25
	a9
	63
	6f
	35
	54
	22
	95
	56
	f6
	

	e2 b2
	35 1c b4 fd
	10
	b4
	e0
	52
	af
	d8
	5b
	eb
	df
	a8
	}

=== PRF-RIJNDAEL-256-256 TEST #6 ===

	KEY = { ff ff ff
ff ff ff
X = { ff ff ff
ff ff ff
	ff ff
ff ff
ff ff
ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	ff
ff ff ff
	}

}

	Y = { f3 6c b6
	c7 a7
	57
	2f
	19
	30
	7a
	31
	e4
	ec
	4c
	a4
	c8
	

	2d 27 31
	fb 21
	f5
	9c
	af
	13
	3f
	e8
	16
	a5
	44
	24
	a5
	}

	=== PRF-RIJNDAEL-256-256 TEST
	#7
	===
	
	
	
	
	
	
	
	
	
	

	KEY = { 00 01 02 03 04
	05
	06
	07
	08
	09
	0a
	0b
	0c
	0d
	0e
	0f
	

	10 11 12 13 14
	15
	16
	17
	18
	19
	1a
	1b
	1c
	1d
	1e
	1f
	}

	X = { 00 11 22 33 44
	55
	66
	77
	88
	99
	aa
	bb
	cc
	dd
	ee
	ff
	

	10 21 32 43 54
	65
	76
	87
	98
	a9
	ba
	cb
	dc
	ed
	fe
	0f
	}

	Y = { 28 8f a9 d2 3d
	00
	d9
	dc
	0a
	39
	b3
	3f
	a9
	28
	67
	c6
	

	48 8b 5e 0f 18
	a6
	f7
	4c
	07
	20
	78
	ec
	81
	54
	62
	e6
	}

	=== PRF-RIJNDAEL-256-256 TEST KEY = { 0f 3a 40 4e b7
	#8
f3
	=== 49
	
d4
	
7b
	
e0
	
0f
	
1c
	
19
	
df
	
c9
	
0a
	

	3a 04 0a 79 96
	30
	fe
	74
	5f
	e5
	f0
	a9
	dd
	58
	10
	1a
	}

	X = { 56 c8 74 16 30
	0f
	5c
	68
	59
	77
	ba
	ce
	e7
	ce
	f2
	ad
	

	fc bd de 02 ed
	55
	15
	9c
	a3
	eb
	6d
	89
	41
	26
	be
	ce
	}

	Y = { a5 f0 c2 bb a8
	b1
	31
	cb
	82
	ea
	65
	4e
	ba
	b1
	52
	21
	

	3d f5 0b d1 84
	f4
	87
	b2
	2d
	5a
	ea
	b8
	7c
	c3
	b0
	24
	}

[bookmark: _Toc175586031]6	Design conformance test data
Editor's Note: this clause provides background information from ETSI SAGE.

[bookmark: _Toc175586032]6.1	Test data selection principles
[bookmark: _Toc175586033]The overall MILENAGE-256 construct has a huge number of possible instantiations based on exact choices of the parameter sizes (KEYsz, RESsz, …), and it is impossible to provide test vectors for each combination. The strategy has instead been to provide test vectors for a few selections that are, with high confidence, providing assurance in the correctness of an implementation.
[bookmark: _Toc175586034]There are five main test-sets, each first selecting the different inputs, i.e. the input parameter sizes, the input parameter values, and values for the operator configurable constants, having the following structure:

	Set
	KEYsz
	RANDsz
	SQNsz
	c0..c7
	KEY/OP/RAND/ SQN/AMF
	Set characterisation

	#1
	32
	32
	12
	All distinct
	All distinct
	Maximum

	#2
	16
	16
	6
	All distinct
	All distinct
	Minimum

	#3
	32
	22
	9
	All ones
	All ones
	Odd

	#4
	32
	16
	6
	Default values
	All random
	Expected

	#5
	32
	32
	6
	All zeroes
	All random
	Desired

[bookmark: _Toc175586035]Then, for each of the above input selections, the following five sub-tests, selecting the five output parameters sizes, are provided as follows:
	Subset
	RESsz
	CKsz
	IKsz
	MACsz
	AKsz
	Set characterisation

	a
	32
	32
	32
	32
	12
	Maximum (includes also debug info)

	b
	4
	16
	16
	8
	6
	Minimum

	c
	7
	29
	17
	23
	9
	Odd

	d
	8
	32
	32
	8
	6
	Expected

	e
	32
	32
	32
	16
	6
	Desired

[bookmark: _Toc175586036]The sets "Maximum" and "Minimum" adopt the maximum and minimum allowed sizes of the corresponding parameters, respectively. Sets "Odd" check borderline unusual sizes. Sets "Expected" and "Desired" are two variants of what ETSI SAGE anticipates could likely be used in practice.
[bookmark: _Toc175586037]Thus, there are in total 25 test vectors, where five of them, the tests #{1-5}a, additionally include details of intermediate values for debugging purposes.
[bookmark: _Toc175586038]6.2	Reference figure for identification of printed data
[bookmark: _Toc175586039]For the purpose of this clause, the labels employed in the printed data below can be identified by reference to the following figure.
[image:]
Figure 6.2-1: Reference figure for identification of printed data. For simplicity, only f2 is shown.
[bookmark: _Toc175586040]In all cases, data has been produced using ALGONAME = "MILENAGE2.0" as defined in the Algorithm Specification [2].
[bookmark: _Toc175586041]NOTE: 	Some combinations of parameter-values will most likely not be encountered in practice, such as values with SQNsz ≠ AKsz, since these two parameters are typically identical. Nevertheless, such values are provided below for completeness.
[bookmark: _Toc175586042]6.3	Milenage-256-R
[bookmark: _Toc175586043]Tests #{1-5}a contain intermediate values and may be used for debugging purposes, other tests #{1- 5}{b-e} can be seen as conformance tests without intermediate values.
Editor's Note: to complete with data from ETSI SAGE.
[bookmark: _Toc175586044]
Annex A (informative):
Reference implementation (C/C++)
Editor's Note: this clause provides an informal C/C++ implementation example of Milenage-256 defined by ETSI SAGE.

[bookmark: clause4][bookmark: _Toc175586045]Annex B (informative):
Change history
[bookmark: historyclause]
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2024-02
	SA3#115
	S3-240405
	
	
	
	TS skeleton
	0.0.0

	2024-02
	SA3#115
	S3-240819
	
	
	
	TS skeleton using 3GPP template
	0.0.1

	2024-02
	SA3#115
	S3-240409
	
	
	
	Addition of introduction
	0.1.0

	2024-08
	SA3#117
	S3-243424
	
	
	
	Addition of the text based on the selection of Milenage-256-R to specify Milenage-256 algorithm.
	0.2.0

3GPP
image2.png
=

A GLOBAL INITIATIVE

image3.jpeg
K=KEY

PR outl

BRE_K (0P)

2
v

PRE_in2--

BRF_out2-

image1.png
~

5G

