

3GPP Self-evaluation Methodology and Results

"Assumptions"

Tetsushi Abe, NTT DOCOMO 3GPP TSG-RAN1 Vice-Chairman

TM

A GLOBAL INITIATIVE

3GPP Self-evaluation for LTE-Advanced Introduction

- Self-evaluation for LTE-Advanced FDD Radio Interfance Technology (RIT) and TDD RIT was conducted in 3GPP
- The radio system capabilities evaluated here span the radio capabilities from LTE Rel-8 and extend through Rel-10 and beyond (LTE-A).

As such the capabilities represent a range of possible functionalities and solutions that might be adopted by 3GPP in the work on the further specifications

- The ITU-R report, M.2133, M.2134, M.2135 and IMT-ADV/3 were utilized in the preparation of the evaluation
- Following 18 corporate entities participated to the performance evaluation campaign:

Alcatel-Lucent/Alcatel-Lucent Shanghai Bell, CATT, CMCC, Ericsson/ST-Ericsson, Fujitsu, Hitachi, Huawei, LGE, Motorola, NEC, Nokia/Nokia Siemens Networks, NTT DOCOMO, Panasonic, Qualcomm, RITT, Samsung, Texas Instruments, ZTE

Outline

- 1. Frame structure 1.1 FDD 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: LTE Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

Outline

- 1. Frame structure 1.1 FDD 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: LTE Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

1.1 Frame structure: FDD

- 1 radio frame (10 msec) has 10 subframes
- 🔊 1 subframe = 1 msec
- Data packet scheduling unit: One-subframe

- → GP = Guard period
- UpPTS (Uplink Pilot Timeslot) is reserved for uplink transmission
- DwPTS (Downlink Pilot Timeslot) is reserved for downlink transmission

1.3 Frame structure: TDD UL & DL Ratio

1 frame (10msec)

UL-DL	DL-UL		Subframe number											
configuration	periodicity	0		1		2	3	4	5		6	7	8	9
0	5 ms	D		S		U	U	U	D		S	U	U	U
1	5 ms	D		S		U	U	D	D		S	U	U	D
2	5 ms	D		S		U	D	D	D		S	U	D	D
3	10 ms	D		S		U	U	U	D		D	D	D	D
4	10 ms	D		S		U	U	D	D		D	D	D	D
5	10 ms	D		S		U	D	D	D		D	D	D	D
6	5 ms	D		S		U	U	U	D		S	U	U	D

D : Downlink

u <mark>∪</mark> : Uplink S

: DL+GP+UL

(Sect. 4.2, 36211)

Baseline configuration

- 5 msec periodicity
- 4 full DL subframes
- 2 Special subframe: DwPTS 11symbol, GP 1 symbol, UpPTS 2 symbol,
- 4 full UL subframes

Outline

- 1. Frame structure 1.1 FDD 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

2.1. Scenario / Channel model

Evaluation scenario from M. 2135 (ITU-R guideline)

Simulation Scenario / Channel model	CF (GHz)	ISD (meters)	BW (MHz)	Speed (km/h)	Additional Simulation Parameters
Indoor / Indoor hotspot (InH)	3.4	60	FDD:20+20 TDD: 40	3	M.2135
Microcellular / Urban micro-cell (UMi)	2.5	200	FDD:10+10 TDD: 20	3	M.2135
Base coverage urban / Urban macro-cell (UMa)	2.0	500	FDD:10+10 TDD: 20	30	M.2135
High speed / Rural macro-cell (RMa)	0.8	1732	FDD:10+10 TDD: 20	120	M.2135

Antenna configuration (A)

 $| \longrightarrow |$

Antenna configuration (C)

Co-polarized antennas separated 4 wavelengths

Co-polarized antennas separated 0.5 wavelength

Antenna configuration (E)

Cross-polarized +/- 45 (deg) antennas columns separated 0.5 wavelength

Various antenna configurations have been evaluated

2.2 Antenna model at eNB: Tilting

$$A_{e}(\phi) = -\min\left[12\left(\frac{\phi - \phi_{\text{tilt}}}{\phi_{3\text{dB}}}\right)^{2}, A_{m}\right]$$

Channel model	Tilt angle ϕ_{tilt} (degrees)
Indoor / Indoor hotspot (InH)	N/A
Microcellular / Urban micro-cell (UMi)	12
Base coverage urban / Urban macro-cell (UMa)	12
High speed / Rural macro-cell (RMa)	6

2.3 Antenna model at UE

Vertically polarized antennas (Baseline) Cross polarized antennas (Alternative)

Х

d=0.5 λ

© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009>

Outline

- 1. Frame structure 1.1 FDD
 - 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

3.1 DL transmission: LTE Rel-8 SU-MIMO

- Demodulation based on common reference signal (CRS)
- Codebook based precoding

3.1 DL transmission: Rel-8 SU-MIMO

CSI feedback and precoding

CSI at eNB	Wide-band PMI feedback
(via Feedback	• RI
or UL	 Subband CQI (subband size = 6 Physical Resource Block (PRB) for
sounding)	10MHz) with Measurement error: N(0,1) per PRB
	 PMI/CQI feedback periodicity: e.g., 5 msec
	 PMI/CQI feedback delay: e.g., 6 msec
Precoder	Codebook based precoding with 4-bit House holder codebook (TS.36211 Sect. 6.3.4.2.3)

Feedback time line example (5 msec period, 6 msec delay)

3.2 DL transmission for LTE-A: MU-MIMO

Multi-user (MU) MIMO

Demodulation based on UE specific RS

 \rightarrow Various precoding strategies are possible

Precoding-based on CSI feedback and/or UL sounding

3.2 DL transmission for LTE-A: CS/CB-CoMP

Coordinated beamforming and scheduling (CS/CB)-CoMP

- Coordination between multiple Tx points via CSI sharing
 - ✓ Inter-site CoMP
 - \rightarrow Require X2 or fiber connection between points
 - ✓ Intra-site CoMP
 - → Easier CSI sharing
- Use of inter-cell CSI for coordination
- Demodulation based on UE-specific RS

3.2 DL transmission for LTE-A: JP-CoMP

Joint processing (JP) CoMP

- Coordination between multiple Tx points via CSI and data sharing
 - ✓ Inter-site CoMP
 - \rightarrow Require X2 or fiber connection between points
 - ✓ Intra-site CoMP
 - \rightarrow Easier CSI and data sharing
- Use of inter-cell CSI for coordination
- Demodulation based on UE-specific RS
 - \rightarrow Various precoding strategies are possible

A GLOBAL INIT

3.2 DL transmission for LTE-A: MU-MIMO and CoMP

CSI feedback and precoding

CSI at eNB (via feedback or UL sounding)	 Long-term CSI, e.g., ✓ Wideband transmit covariance matrix or its eigen vector (with or w/o quantization)
	Short-term CSI, e.g.,
	✓ Rel-8 compatible (Wideband PMI)
	 Narrow-band channel covariance matrix or its eigen vector
	✓ Channel transfer function
	 Subband CQI (for scheduling and MCS selection)
	 Feedback delay: e.g., 3 – 6 msec
	 Feedback period: e.g., 2 – 5 msec
Precoder	(Regularized) Zero-forcing (ZF)
examples	 Maximum Signal-to-leakage ratio (SLR)
	 Block-diagonalization (BD)
	Eigen-beamforming

Long-term or short-term CSI was assumed for precoder design

3.3 DL Receiver (at UE)

MMSE

Suppress intra-cell interference

MMSE with interference rejection combining (IRC) Typically, received covariance matrix of inter-cell interference is used in computing MMSE filter

Real channel estimation is assumed

Outline

- 1. Frame structure 1.1 FDD 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - **3.6 Uplink power control**
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

- Multiple antenna reception at eNB
- MU-MIMO extension
- Fractional power control

Dual-stream transmission by precoding and rank adaptation

1 x 4 CoMP (2 x 4 CoMP)

- Packet combining from multiple points
- Coordinated scheduling among multiple point

3.6 UL Receiver (at eNB)

MMSE

Suppress intra-cell interference

MMSE with interference rejection capability (IRC) Typically, received covariance matrix of inter-cell interference is used in computing MMSE filter

MMSE-SIC

Cancel the interference replica (MU-MIMO)

Real channel estimation is assumed

3.7 UL power control (PC): Fractional PC

Fractional PC: Lower target Rx power / SIR when path-loss becomes larger

Physical uplink shared channel (PUSCH) power calculation at UE

$$P(i) = \min\{P_{\text{MAX}}, P_0 + \alpha \cdot PL + X + f(i)\} \qquad X = 10\log_{10}(M_{\text{PUSCH}}(i)) + \Delta_{\text{TF}}(i)$$

Open-loop Closed-loop

- P0 : Target receive power (per PRB)
- α : Offset for Po
- f(i) : PC command

 \rightarrow Fill the gap between target and actual received power

P0 and α ($0 \le \alpha \le 1.0$) are fitted to each environment

Example:

α = 0.8 Indoor hotspot: P0 = -80 dBm Urban micro-cell: P0 = -85 dBm Urban macro-cell: P0 = -83 dBm Rural macro-cell: P0 = -84 dBm

Outline

- 1. Frame structure 1.1 FDD 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

4.1 DL overhead: Guard

→ Guard-interval = 6.67 % (Normal CP)

4.1 DL overhead: PBCH and Sync. Signal

BCH resource: = 4 OFDM symbols x 6 RB (RS excluded)

Synchronization Signal resource= 4 OFDM symbols x 6 RB

L= 1, 2, 3 (if system bandwidth > 10 RB)

LTE-A assume demodulation RS (DM-RS)

4.1 DL overhead: + CSI-RS LTE-Advanced

LTE-A supports CSI-RS for CSI measurements.
 CSI-RS is sparse in time and frequency

Example: 0.12% per port per radio frame (10msec)
→ About 400 RE for 4 Tx
(Ref: RP-090745, Sect. 4.2.3.2.4.2)

4.1 DL overhead: MBSFN subframe LTE-Advanced

LTE-A can configure MBSFN subframes to schedule non-MBSFN data (PDSCH)

	Rel-8 SU-MIMO	LTE-A MU-MIMO / CoMP
Guard	Y	Y
PBCH and SS	Y	Y
DL control	Y	Y
Common RS (CRS)	Y	Y
Demodulation RS (DM-RS)	N	Y
CSI-RS	Ν	Y
Use of MBSFN subframes	N	Y

4.2 DL RS and control overhead details: FDD, Rel-8

Rel-8 DL SU-MIMO

Total REs		50 RBs * 12 subcarriers * 10 frames * 14 OFDM symbols = 84000
	DL control	50 * 12 * 10 * L = 6000 (L = 1), 12000 (L = 2), 18000(L = 3)
	CRS	 50 * 20* 10 = 10000 (L=1) (4 antenna ports, first 1 symbol included in DL control) 50 * 16 * 10 = 8000 (L=2, 3) (4 antenna ports, first 2 symbols included in DL control)
	DM-RS	n/a
	SS + PBCH	288 + 240
	CSI RS	n/a
Total control and RS overhead		19.68% (L=1), 24.44% (L = 2), 31.58% (L = 3)

4.2 DL RS and control overhead details: FDD, LTE-A

LTE-A (MU-MIMO/CoMP): With 6 MBSFN subframes per 10ms, 1CRS port

Т	Total REs 50 RBs * 12 subcarriers * 10 frames * 14 OFDM symbols = 84000		
N	Normal subframes: 4 out of 10 subframes (= 33600 REs)		
	DL control	50 * 12 * 4 * L = 2400 (L=1), 4800 (L = 2), 7200 (L = 3)	
	CRS	50 * 6 * 4 = 1200 (1 antenna port, 1 symbol included in DL control)	
	DM-RS	50 * X * 4 = 2400, X = 12 (for up to 2 layers), X = 24 (for more than 2 layers)	
	SS + PBCH	288 + 276	
	CSI-RS	Y (Y depends on number of antenna ports and reporting period)	
MBSFN subframes: 6 out of 10 subframes (=50400 REs)			
	DL control	50 * 12 * 6 * L = 3600 (L=1), 7200 (L = 2), 10800 (L = 3)	
	CRS	0 (included in DL CCH)	
	DMRS	50 * X * 6 = 3600, X = 12 (for up to 2 layers), X = 24 (for more than 2 layers)	
	SS + PBCH	0	
	CSI-RS	0	
To R	otal control and S overhead	16.86% (L = 1, X = 12, Y = 400), 24.00% (L = 2, X = 12, Y = 400) 31.15% (L = 3, X = 12, Y = 400)	

4.2 DL RS and control overhead details: TDD, Rel-8

LTE Rel-8 DL SU-MIMO

Total REs		100 RBs * 12 subcarriers * (4 normal frames * 14 symbols + 2 special frames *11 symbols) = 93600
	DL control	 100 *12* (2 * 1+ 2 * 1) = 7200 (L = 1) 100 * 12 * (4* L+2*2) = 14400 (L = 2), 19200(L = 3)
	CRS	 100*(4*20+2*16) = 11200 (L=1) (4 antenna ports, first 1 symbol included in DL control, DwPTS of 11 sym is counted) 100*(4*16+2*12) = 8800 (L=2, 3: 4 antenna ports, first 2 symbols included in DL control, DwPTS of 11 sym is counted)
	DM-RS	n/a
	SS + PBCH	288 + 240
Total control and RS overhead		20.22%(L = 1), 25.35% (L = 2), 30.48% (L = 3)

4.2 DL RS and control overhead details: TDD, LTE-A

LTE-A (MU-MIMO/CoMP) With 2 MBSFN subframes per 10ms, 1CRS port

Т	otal REs	100 RBs * 12 subcarriers * (2*normal frame*14 + 2 MBFSN subframe*14 + 2*special frame * 11)=93600		
Ν	Normal subframes + Special subframe: 2 + 2 out of 6 subframes			
	DL control	 100 *12* (2 * 1+ 2 * 1) = 4800 (L = 1) 100 *12* (2 * L + 2 * 2) = 9600 (L = 2), 12000 (L = 3 for normal subframe, L=2 for DwPTS) 		
	CRS	100 * (2* 6 + 2*4) = 2000 (1 antenna ports, 1 symbol included in DL CCH)		
	DM-RS	100 * (2*X1+ 2*X2) = 4200, (X1,X2) = (12, 9) for up to 2 layers. For more than t 2 layers (X1,X2) = (24 18).		
	SS + PBCH	288 + 276		
	CSI-RS	n/a		
N	MBSFN subframes: 2 out of 6 subframes			
	DL control	100 * 12 * 2 * L = 2400 (L = 1), 4800 (L = 2), 7200 (L = 3)		
	CRS	0 (included in DL CCH)		
	DM-RS	100 * 2 * X = 2400, X = 12 (for up to 2 layers). For more than 2 layers, X = 24		
	SS + PBCH	0		
	CSI-RS	0		
T a o	otal control nd RS overhead	17.48 % (L = 1, X1 = 12, X2 = 9), 25.18 % (L = 2, X1 = 12, X2 = 9) 30.30 % (L = 3, X1 = 12, X2 = 9)		

Outline

- 1. Frame structure 1.1 FDD
 - 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details

4.3 Uplink overhead

- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

→ Guard-interval = 6.67 % (Normal CP)

4.3 UL overhead

CQI / ACK/NCK on PUCCH: e.g., 4 PRB / 10 MHz
 DM-RS: 2 symbols per subframe (~14.3%)
 SRS: e.g., full-bandwidh, 10 msec period (~0.7%)
 PRACH: e.g., 6RB bandwidh and 10msec period (1.2 %)

PUCCH: Physical uplink control channel SRS: Sounding reference signal PRACH: Physial random access channel

Outline

- 1. Frame structure 1.1 FDD
 - 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

5. VoIP evaluation assumption

PDCCH limitation	 Included, e.g., 3 (2 for DwPTS) OFDM symbols Max. 8 (4) PDCCH for UL (4) PDCCH for UL (DL) Max. 10 Control channel element (CCE) for UL and DL (FDD) Max. 38 CCE for normal UL and DL, 26CCE for special UL and DL (TDD)
Antenna configuration	UL 1 x 4 DL 1 x 2, or 4 x 2
TDD configuration	DL:UL = 3:2, DwPTS=12, GP=1, UpPTS =1
VoIP scheduler	Semi-persistent, Dynamic

6. Other simulation parameters

Network synchronization	Synchronized
Handover margin	1.0 dB
Downlink scheduler	Proportional fairness / Channel dependent
Downlink HARQ	Incremental redundancy / Chase combining
UL scheduler	Proportional Fairness / Channel dependent
UL HARQ	Incremental redundancy / Chase combining
Scheduling bandwidth for mobility evaluation	4 – 5 RB

A GLOBAL INITIATIVE

© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009>

Outline

- 1. Frame structure
 - 1.1 FDD
 - 1.2 TDD
- 2. Deployment scenario
 - 2.1 Channel model
 - 2.2 Antenna model at eNB
 - 2.3 Antenna model at UE
- 3. Transmitter and receiver
 - 3.1 Downlink transmission: LTE Rel-8
 - 3.2 Downlink transmission: LTE-A
 - 3.3 Downlink receiver (at eNB)
 - 3.4 Uplink transmission: Rel-8
 - 3.5 Uplink transmission: LTE-A
 - 3.6 Uplink power control
 - 3.7 UL receiver (at UE)

- 4. Overhead assumption
 - 4.1 Downlink overhead
 - 4.2 Downlink overhead details
 - 4.3 Uplink overhead
- 5. VoIP evaluation assumption
- 6. Other simulation assumption
- 7. Annex Table of parameters

Parameter	Values used for evaluation
Deployment scenario / channel model	Indoor (InH) , Microcellular (UMi), Base Coverage Urban (UMa), High Speed (RMa)
Duplex method and bandwidths	 FDD: 10+10 MHz except 20+20 MHz for indoor TDD: 20 MHz also 40 MHz for indoor Baseline asymmetry during 5 subframes period: 2 full DL subframes, Special subframe: DwPTS 11sym, GP 1 sym, UpPTS 2 sym, 2 full UL subframes
Antenna configuration eNB	A) Co-polarized, separated 4 wavelengths C) Co-polarized, separated 0.5 wavelength E) Cross-polarized (+-45deg), separated 0.5 wavelength
Antenna tilt at eNB	InH=N.A, UMi=12, UMa=12, RMa=6 (degrees)
Antenna configuration UE	 Vertically polarized, 0.5 wavelength separation (baseline) Cross polarized orthogonal antennas (alternative)
Network synchronization	Synchronized
Handover margin	1.0 dB

Annex Table of parameters (2)

Parameter	Values used for evaluation
DL transmission scheme	LTE Rel-8 • SU-MIMO with closed loop precoded spatial multiplexing (transmission mode 4 in TS36211) • Single stream beamforming (transmission mode 7 in TS36211) Baseline: 4 x 2 SU-MIMO LTE-A • MU-MIMO • Coordinated scheduling / Beamforming (CS/CB)-CoMP • Joint processing (JP)-CoMP
DL scheduler	Propotional fair / Channel dependent
DL link adaptation	Baseline (LTE Rel-8): A) Non-frequency selective PMI and frequency selective CQI report with 5ms periodicity, subband CQI with measurement error: N(0,1) per PRB B) Sounding-based precoding, frequency selective CQI report with 5ms periodicity, subband CQI with measurement error: N(0,1) per PRB
DL HARQ scheme	Incremental redundancy / Chase combining
DL channel estimation	Real
DL receiver type	MMSE (with / without IRC)

Parameter	Values used for evaluation
UL transmission scheme	LTE Rel-8 •Rel-8 SIMO with and without MU-MIMO Baseline: 1 x 4 SIMO LTE-A • SU-MIMO / MU-MIMO • UL CoMP
UL scheduler	Proportional fair / channel dependent
UL power control	Baseline : Fractional power control Alternative : Other Rel-8 specified Power control parameters (P0 and α) are chosen according to the deployment scenario (IoT reported with simulation results)
UL link adaptation	Non-ideal based on delayed SRS-based measurements: MCS based on LTE transport formats and SRS period and bandwidths according to TS36211
UL HARQ scheme	Incremental redundancy / Chase combining
UL channel estimation	Real
UL receiver type	MMSE / MMSE-SIC (MU-MIMO)

Annex Table of parameters (4)

Parameter	Values used for evaluation
Rel-8 overhead	 Guard band (10%), Guard interval (6.67%), (DL and UL) Downlink PBCH and Sync. signal DL control channel L OFDM symbols (=1,2,3) CRS (4 ports for SU-MIMO, 1 port for single layer BF) DM-RS (for single layer BF) Uplink UL CCH according to CQI/PMI reporting mode SRS RACH
LTE-A overhead	 Guard band (10%), Guard interval (6.67%), (DL and UL) Downlink: 6 MBSFN subframes per DL radio frame (FDD), 2 MBSFN subframes per DL radio frame (TDD) PBCH and Sync. signal DL control channel L OFDM symbols (=1,2,3) CRS (1 port) DM-RS CSI-RS Uplink UL CCH according to CQI/PMI reporting mode SRS RACH