3GPP TSG T2, SWG1 (MExE)

T2-99730

Helsinki, 6-9 Spetember, 1999

Source: Vodafone

(This document is offered to MExE delegates for information, to assist understanding of certificate formats)

Contribution to USECA D09 on:

PKI standards and technologies

Prof. Chris Mitchell, Royal Holloway, University of London

29th July 1999

1 Application security

1.1 PKI standards and technologies

1.1.1 Introduction

1.1.1.1 Scope of this section

The main purpose of this section is to review the main features of certain existing certificate formats, with a particular focus on those features which are likely to be most useful in encoding information necessary for use in WAP and MExE.

1.1.1.2 On ASN.1 and its encoding

Much of the discussion on certificate formats requires a basic level of understanding of ASN.1 and its encoding. As a result, we give a very short introduction here to ASN.1 and its encoding.

Abstract Syntax Notation One (ASN.1) is widely used for the specification of ITU-T and ISO communication protocols. The purpose of ASN.1 is to have a standardised and platform independent language with which to express data structures, and to have a standardised set of rules for the transformation of values of a defined type into a stream of bytes. This stream of bytes can then be sent on a communication channel set up by the lower layers in the stack of communication protocols, e.g. TCP/IP, or encapsulated within UDP packets. As a result, two different applications written in two completely different programming languages running on different computers with different internal representation of data can exchange instances of structured data types. This frees the programmer from a great deal of work, since no code has to be written to process the transport format of the data.

When the first recommendation on ASN.1 was released in 1988, it was accompanied by the Basic Encoding Rules (BER) as the only option for encoding. BER is a somewhat verbose protocol. It adopts a so-called TLV (type, length, value) approach to encoding, in which every element of the encoding carries some type information, some length information and then the value of that element. Where the element is itself structured, then the Value part of the element is itself a series of embedded TLV components, to whatever depth is necessary. In summary BER is not a compact encoding but is fairly fast and easy to produce.

The Basic Encoding Rules come in three variants:

· BER – which allows options for the encoder,

· DER (Distinguished Encoding Rules) – which resolves all options in a particular direction, and

· CER (Canonical Encoding Rules) – which resolves all options in the other direction.

That is DER and CER are unambiguous, since there are no encoding options.

Note that there are three forms of length encoding used in BER, called short form, long form, and indefinite form. It is not always possible to use all three forms but, where it is, it is an encoder’s option which to use. This is one of the main sources of optionality in BER, and the main area addressed by DER and CER. The short form can only be used if the number of octets (bytes) in the ‘value’ part of the TLV encoding is at most 127, and uses one octet to encode the length.

A more compact encoding is achieved with the Packed Encoding Rules (PER) which was introduced with the revised recommendation in 1994. PER takes a rather different approach from that taken by BER. The first difference is that the T (Type) part is omitted from the encodings, and any tags in the notation are completely ignored. The potential ambiguities are resolved as follows.

· A CHOICE is encoded by first encoding a choice index which identifies the chosen alternative by its position in the notation.

· The SET and SEQUENCE are treated with the elements transmitted in order. When a SET or SEQUENCE has OPTIONAL or DEFAULT elements, the encoding of each the elements is preceded by a bit map to identify which OPTIONAL or DEFAULT elements are present.

A second difference is that PER takes full account of the sub-typing information while BER completely ignores it. PER uses the sub-typing information, for example, to omit length fields whenever possible.

In summary, use of PER results in compact encodings which require much more computation to produce than does BER.

1.1.1.3 Contents

We start in Section 1.1.2 by considering the syntax of the X.509 version 3 certificate. This is followed in Section 1.1.3 by a brief summary of those features of X.509 which are likely to be of particular interest to WAP and MExE. Section 1.1.4 is concerned with the syntax of the ANSI X9.68 ‘compact certificate’, and is followed by Section 1.1.5 in which those features of X9.68 which are likely to be of particular interest to WAP and MExE. The final part, Section 1.1.6, contains a very brief mention of the SPKI certificate format.

1.1.2 Main elements of the X.509 version 3 certificate

Much of this introductory discussion of CX.509 certificates is derived from Internet RFC 2459, [RFC2459].

Note that X.509 version 3 uses the term CA certificate to mean a certificate for one CA issued by another CA.

1.1.2.1 X.509 formal syntax

We start this description of the X.509 certificate by giving the ASN.1 specification. The X.509 v3 certificate basic syntax is as given in Figure 1. For signature calculation, the certificate is encoded using the ASN.1 distinguished encoding rules (DER) [X.208]. ASN.1 DER encoding is a tag, length, value encoding system for each element.

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

 TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version shall be v3

 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

 Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

 Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

Figure 1 – X.509 version 3 certificate basic syntax

1.1.2.2 Fields within an X.509 certificate

The Certificate is a SEQUENCE of three required fields. The fields are as follows.

· tbsCertificate. This field contains the names of the subject and issuer, a public key associated with the subject, a validity period, and other associated information. The tbsCertificate may also include extensions.

· signatureAlgorithm. The signatureAlgorithm field contains the identifier for the cryptographic algorithm used by the CA to sign this certificate. An algorithm identifier is defined by the ASN.1 structure in Figure 2.

 AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm OPTIONAL }

Figure 2 – AlgorithmIdentifier syntax

The algorithm identifier is used to identify a cryptographic algorithm. The OBJECT IDENTIFIER component identifies the algorithm (such as DSA with SHA-1). The contents of the optional parameters field will vary according to the algorithm identified. This field must contain the same algorithm identifier as the signature field in the sequence tbsCertificate.

· signatureValue. The signatureValue field contains a digital signature computed upon the ASN.1 DER-encoded tbsCertificate. The ASN.1 DER encoded tbsCertificate is used as the input to the signature function. This signature value is then ASN.1-encoded as a BIT STRING and included in the Certificate's signature field.

1.1.2.3 The TBSCertificate

We focus on the first of the three fields within an X.509 v3 certificate since this is the field containing the elements of interest to us here. The sequence TBSCertificate contains information associated with the subject of the certificate and the CA who issued it. Every TBSCertificate contains the names of the subject and issuer, a public key associated with the subject, a validity period, a version number, and a serial number; some may contain optional unique identifier fields.

· Version. This field describes the version of the encoded certificate. When extensions are used, this field will need to indicate ‘X.509 version 3’, for which the value is 2. If no extensions are present, but a UniqueIdentifier is present, this field will need to indicate ‘X.509 version 2’, for which the value is 1. If only basic fields are present, this field can indicate ‘X.509 version 1’, in which case the value is omitted from the certificate as the default value.

· Serial number. The serial number is an integer assigned by the CA to each certificate. It must be unique for each certificate issued by a given CA (i.e., the issuer name and serial number identify a unique certificate). This is especially useful when constructing Certificate Revocation Lists (CRLs), where the serial number can be used to uniquely identify the certificate being revoked. The syntax of CRLs is also defined in X.509, although we do not consider them here,

· Signature. This field contains the algorithm identifier for the algorithm used by the CA to sign the certificate. This field must contain the same algorithm identifier as the signatureAlgorithm field in the sequence Certificate. The contents of the optional parameters field will vary according to the algorithm identified.

· Issuer. The issuer field identifies the entity who has signed and issued the certificate. The issuer field must contain a non-empty distinguished name (DN). The issuer field is defined as the X.501 type Name, which is a complex, hierarchical, ASN.1 structure (for further details see, for example, [RFC2459]).

· Validity. The certificate validity period is the time interval during which the CA warrants that it will maintain information about the status of the certificate. The field is represented as a SEQUENCE of two dates: the date on which the certificate validity period begins (notBefore), and the date on which the certificate validity period ends (notAfter).

· Subject. The subject field identifies the entity associated with the public key stored in the subject public key field. The subject name may be carried in the subject field and/or the subjectAltName extension. If the subject is a CA (e.g., the basic constraints extension (see below) is present and the value of cA is TRUE) then the subject field must be populated with a non-empty distinguished name matching the contents of the issuer field in all certificates issued by the subject CA. If subject naming information is present only in the subjectAltName extension (e.g., a key bound only to an email address or URI), then the subject name must be an empty sequence and the subjectAltName extension must be critical.

Where it is non-empty, the subject field must contain an X.500 distinguished name (DN). The DN must be unique for each subject entity certified by the one CA as defined by the issuer name field. A CA may issue more than one certificate with the same DN to the same subject entity. The subject name field is defined as the X.501 type Name. Implementation requirements for this field are those defined for the issuer field.

· Subject Public Key Info. This field is used to carry the public key and identify the algorithm with which the key is used. The algorithm is identified using the AlgorithmIdentifier structure (see Figure 2).

· Unique Identifiers. These fields may only appear if the X.509 certificate version is 2 or 3. The subject and issuer unique identifiers are present in the certificate to handle the possibility of reuse of subject and/or issuer names over time.

· Extensions. This field may only appear if the X.509 certificate version is 3. If present, this field is a SEQUENCE of one or more certificate extensions (described in detail immediately below). The extensions are the most important element from the point of view of this document, since they are the elements which allow the encoding of policy information within a certificate.

1.1.2.4 Algorithm identifiers

The AlgorithmIdentifier fields are used to identify a combination of a signature algorithm (such as RSA) and the hash/redundancy scheme used. In fact they also identify the precise formatting rules for signature computation. We now present some examples of ‘standardised’ AlgorithmIdentifier OIDs.

· A combination of MD2 and the RSA encryption algorithm is defined in PKCS #1 [RFC 2313]. As defined in RFC 2313, the ASN.1 OID used to identify this signature algorithm is as in Figure 3.

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-1(1) 2 }

Figure 3 – RSA with MD2 AlgorithmIdentifier
· A combination of MD5 and the RSA encryption algorithm is defined in PKCS #1 [RFC 2313]. As defined in RFC 2313, the ASN.1 OID used to identify this signature algorithm is as in Figure 4.

 md5WithRSAEncryption OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-1(1) 4 }

Figure 4 – RSA with MD5 AlgorithmIdentifier
· A combination of SHA-1 and the RSA encryption algorithm is defined in PKCS #1 [RFC 2313]. The ASN.1 object identifier used to identify this signature algorithm is as in Figure 5.

 sha-1WithRSAEncryption OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-1(1) 5 }

Figure 5 – RSA with SHA-1 AlgorithmIdentifier

· The Digital Signature Algorithm (DSA) is specified in FIPS 186 [FIPS 186]. The ASN.1 OIDs used to identify this signature algorithm (which is used with the SHA-1 hash-function) are:

 id-dsa-with-sha1 ID ::= {

 iso(1) member-body(2) us(840) x9-57 (10040)

 x9cm(4) 3 }

Figure 6 – DSA with SHA-1 AlgorithmIdentifier

When signing, the DSA algorithm generates two values. These values are commonly referred to as r and s. To easily transfer these two values as one signature, they shall be ASN.1 encoded using the following ASN.1 structure:

 Dss-Sig-Value ::= SEQUENCE {

 r INTEGER,

 s INTEGER }

Figure 7 – DSA signature encoding
1.1.2.5 Standard Certificate Extensions

The extensions defined for X.509 v3 certificates provide methods for associating additional attributes with users or public keys, and for managing the certification hierarchy. The X.509 v3 certificate format also allows communities to define private extensions to carry information unique to those communities. Each extension in a certificate may be designated as critical or non-critical. A certificate-using system must reject the certificate if it encounters a critical extension it does not recognise; however, a non-critical extension may be ignored if it is not recognised. The following sections present recommended extensions used within Internet certificates and standard locations for information.

Each extension includes an OID and an ASN.1 structure. When an extension appears in a certificate, the OID appears as the field extnID and the corresponding ASN.1 encoded structure is the value of the octet string extnValue. Only one instance of a particular extension may appear in a particular certificate. For example, a certificate may contain only one authority key identifier extension. An extension includes the boolean critical, with a default value of FALSE. The text for each extension specifies the acceptable values for the critical field.

CAs conforming to the requirements specified in Internet RFC 2459, [RFC2459], must support the following extensions:

· key identifiers,

· basic constraints,

· key usage, and

· certificate policies.

Also, if the CA issues certificates with an empty sequence for the subject field, the CA must support the subject alternative name extension. Support for the remaining extensions is optional.

Those certificate extensions defined in [X.509] are associated with an OID defined in [X.509]. These OIDs are members of the id-ce arc, which is defined by the following:

 id-ce OBJECT IDENTIFIER ::= {joint-iso-ccitt(2) ds(5) 29}

We now consider some of the most important extension types.

1.1.2.5.1 Authority Key Identifier

The authority key identifier extension provides a means of identifying the public key corresponding to the private key used to sign a certificate. This extension is used where an issuer has multiple signing keys (either due to multiple concurrent key pairs or due to changeover). The identification may be based on either the key identifier (the subject key identifier in the issuer’s certificate) or on the issuer name and serial number.

The keyIdentifier field of the authorityKeyIdentifier extension must be included in all certificates generated by conforming CAs to facilitate chain building. There is one exception; where a CA distributes its public key in the form of a ‘self-signed’ certificate, the authority key identifier may be omitted. In this case, the subject and authority key identifiers would be identical.

The value of the keyIdentifier field should be derived from the public key used to verify the certificate’s signature or a method that generates unique values. Two common methods for generating key identifiers from the public key are described in [RFC2459].

 id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

 AuthorityKeyIdentifier ::= SEQUENCE {

 keyIdentifier [0] KeyIdentifier OPTIONAL,

 authorityCertIssuer [1] GeneralNames OPTIONAL,

 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }

 KeyIdentifier ::= OCTET STRING

Figure 8 – AuthorityKeyIdentifier syntax

1.1.2.5.2 Subject Key Identifier

The subject key identifier extension provides a means of identifying certificates that contain a particular public key.

To facilitate chain building, this extension must appear in all RFC 2459-conforming CA certificates, that is, all certificates including the basic constraints extension where the value of cA is TRUE. The value of the subject key identifier must be the value placed in the key identifier field of the Authority Key Identifier extension of certificates issued by the subject of this certificate.

For CA certificates, subject key identifiers should be derived from the public key or a method that generates unique values. Two common methods for generating key identifiers from the public key are:

1. The keyIdentifier is composed of the 160-bit SHA-1 hash of the value of the BIT STRING subjectPublicKey (excluding the tag, length, and number of unused bits).

2. The keyIdentifier is composed of a four bit type field with the value 0100 followed by the least significant 60 bits of the SHA-1 hash of the value of the BIT STRING subjectPublicKey.

One common method for generating unique values is a monotonically increasing sequence of integers.

For end entity certificates, the subject key identifier extension provides a means for identifying certificates containing the particular public key used in an application. Where an end entity has obtained multiple certificates, especially from multiple CAs, the subject key identifier provides a means to quickly identify the set of certificates containing a particular public key. To assist applications in identifying the appropriate end entity certificate, this extension should be included in all end entity certificates.

For end entity certificates, subject key identifiers should be derived from the public key. Two common methods for generating key identifiers from the public key are identified above.

 id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }

 SubjectKeyIdentifier ::= KeyIdentifier

Figure 9 – SubjectKeyIdentifier syntax

1.1.2.5.3 Key Usage

The key usage extension defines the purpose (e.g., encipherment, signature, certificate signing) of the key contained in the certificate. The usage restriction might be employed when a key that could be used for more than one operation is to be restricted. For example, when an RSA key should be used only for signing, the digitalSignature and/or nonRepudiation bits would be asserted. Likewise, when an RSA key should be used only for key management, the keyEncipherment bit would be asserted. When used, this extension should be marked critical.

 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }

 KeyUsage ::= BIT STRING {

 digitalSignature (0),

 nonRepudiation (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5),

 cRLSign (6),

 encipherOnly (7),

 decipherOnly (8) }

Figure 10 – Key Usage syntax

Bits in the KeyUsage type are used as follows:

· The digitalSignature bit is asserted when the subject public key is used with a digital signature mechanism to support security services other than non-repudiation (bit 1), certificate signing (bit 5), or revocation information signing (bit 6). Digital signature mechanisms are often used for entity authentication and data origin authentication with integrity.

· The nonRepudiation bit is asserted when the subject public key is used to verify digital signatures used to provide a non-repudiation service which protects against the signing entity falsely denying some action, excluding certificate or CRL signing.

· The keyEncipherment bit is asserted when the subject public key is used for key transport. For example, when an RSA key is to be used for key management, then this bit shall asserted.

· The dataEncipherment bit is asserted when the subject public key is used for enciphering user data, other than cryptographic keys.

· The keyAgreement bit is asserted when the subject public key is used for key agreement. For example, when a Diffie-Hellman key is to be used for key management, then this bit shall asserted.

· The keyCertSign bit is asserted when the subject public key is used for verifying a signature on certificates. This bit may only be asserted in CA certificates.

· The cRLSign bit is asserted when the subject public key is used for verifying a signature on revocation information (e.g., a CRL).

· The meaning of the encipherOnly bit is undefined in the absence of the keyAgreement bit. When the encipherOnly bit is asserted and the keyAgreement bit is also set, the subject public key may be used only for enciphering data while performing key agreement.

· The meaning of the decipherOnly bit is undefined in the absence of the keyAgreement bit. When the decipherOnly bit is asserted and the keyAgreement bit is also set, the subject public key may be used only for deciphering data while performing key agreement.

1.1.2.5.4 Private Key Usage Period

The private key usage period extension allows the certificate issuer to specify a different validity period for the private key than the certificate. This extension is intended for use with digital signature keys. This extension consists of two optional components, notBefore and notAfter. The private key associated with the certificate should not be used to sign objects before or after the times specified by the two components, respectively.

 id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }

 PrivateKeyUsagePeriod ::= SEQUENCE {

 notBefore [0] GeneralizedTime OPTIONAL,

 notAfter [1] GeneralizedTime OPTIONAL }

Figure 11 – PrivateKeyUsagePeriod syntax

1.1.2.5.5 Certificate Policies

A certificate policy is a named set of rules that indicates the applicability of a certificate to a particular community and/or class of application with common security requirements. For example, a particular certificate policy might indicate applicability of a type of certificate to the authentication of electronic data interchange transactions for the trading of goods within a given price range.

The CertificatePolicies extension contains a sequence of one or more policy information terms, each of which consists of an object identifier (OID) and optional qualifiers. These policy information terms indicate the policy under which the certificate has been issued and the purposes for which the certificate may be used. Optional qualifiers, which may be present, are not expected to change the definition of the policy.

Applications with specific policy requirements are expected to have a list of those policies which they will accept and to compare the policy OIDs in the certificate to that list. If this extension is critical, the path validation software must be able to interpret this extension (including the optional qualifier), or must reject the certificate.

To promote interoperability, the Internet certification profile, [RFC2459], recommends that policy information terms consist of only an OID. Where an OID alone is insufficient, the Internet profile strongly recommends that use of qualifiers be limited to those identified below.

Internet RFC 2459 defines two policy qualifier types for use by certificate policy writers and certificate issuers. The qualifier types are the CPS Pointer and User Notice qualifiers (note that a choice must be made between the two types).

· The CPS Pointer qualifier contains a pointer to a Certification Practice Statement (CPS) published by the CA. The pointer is in the form of a URI.

· User notice is intended for display to a party relying on the verification of a certificate when this certificate is used. The application software should display all user notices in all certificates of the certification path used, except that if a notice is duplicated only one copy need be displayed. To prevent such duplication, this qualifier should only be present in end-entity certificates and CA certificates issued to other organisations.

The user notice has two optional fields: the noticeRef field and the explicitText field.

· The noticeRef field, if used, names an organization and identifies, by number, a particular textual statement prepared by that organization. For example, it might identify the organization ‘CertsRUs’ and notice number 1. In a typical implementation, the application software will have a notice file containing the current set of notices for CertsRUs; the application will extract the notice text from the file and display it. Messages may be multilingual, allowing the software to select the particular language message for its own environment.

· An explicitText field includes the textual statement directly in the certificate. The explicitText field is a string with a maximum size of 200 characters.

If both the noticeRef and explicitText options are included in the one qualifier and if the application software can locate the notice text indicated by the noticeRef option then that text should be displayed; otherwise, the explicitText string should be displayed.

 id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }

 certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {

 policyIdentifier CertPolicyId,

 policyQualifiers SEQUENCE SIZE (1..MAX) OF

 PolicyQualifierInfo OPTIONAL }

 CertPolicyId ::= OBJECT IDENTIFIER

 PolicyQualifierInfo ::= SEQUENCE {

 policyQualifierId PolicyQualifierId,

 qualifier ANY DEFINED BY policyQualifierId }

 -- policyQualifierIds for Internet policy qualifiers

 id-qt OBJECT IDENTIFIER ::= { id-pkix 2 }

 id-qt-cps OBJECT IDENTIFIER ::= { id-qt 1 }

 id-qt-unotice OBJECT IDENTIFIER ::= { id-qt 2 }

 PolicyQualifierId ::=

 OBJECT IDENTIFIER (id-qt-cps | id-qt-unotice)

 Qualifier ::= CHOICE {

 cPSuri CPSuri,

 userNotice UserNotice }

 CPSuri ::= IA5String

 UserNotice ::= SEQUENCE {

 noticeRef NoticeReference OPTIONAL,

 explicitText DisplayText OPTIONAL}

 NoticeReference ::= SEQUENCE {

 organization DisplayText,

 noticeNumbers SEQUENCE OF INTEGER }

 DisplayText ::= CHOICE {

 visibleString VisibleString (SIZE (1..200)),

 bmpString BMPString (SIZE (1..200)),

 utf8String UTF8String (SIZE (1..200)) }

Figure 12 – CertificatePolicies syntax

Policy Mappings

The PolicyMappings extension is used in CA certificates. It lists one or more pairs of OIDs; each pair includes an issuerDomainPolicy and a subjectDomainPolicy. The pairing indicates the issuing CA considers its issuerDomainPolicy equivalent to the subject CA's subjectDomainPolicy.

The issuing CA's users may accept an issuerDomainPolicy for certain applications. The policy mapping tells the issuing CA's users which policies associated with the subject CA are comparable to the policy they accept.

 id-ce-policyMappings OBJECT IDENTIFIER ::= { id-ce 33 }

 PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 issuerDomainPolicy CertPolicyId,

 subjectDomainPolicy CertPolicyId }

Figure 13 – PolicyMappings syntax

1.1.2.5.6 Subject Alternative Name

The subject alternative names extension allows additional identities to be bound to the subject of the certificate. Defined options include an Internet electronic mail address, a DNS name, an IP address, and a uniform resource identifier (URI). Other options exist, including completely local definitions. Multiple name forms, and multiple instances of each name form, may be included. Whenever such identities are to be bound into a certificate, the subject alternative name (or issuer alternative name) extension must be used.

Because the subject alternative name is considered to be definitively bound to the public key, all parts of the subject alternative name must be verified by the CA.

Further, if the only subject identity included in the certificate is an alternative name form (e.g., an electronic mail address), then the subject distinguished name MUST be empty (an empty sequence), and the subjectAltName extension MUST be present. If the subject field contains an empty sequence, the subjectAltName extension must be marked critical.

When the subjectAltName extension contains an Internet mail address, the address MUST be included as an rfc822Name. The format of an rfc822Name is an ‘addr-spec’ as defined in RFC 822 [RFC 822]. An addr-spec has the form "local-part@domain". Note that an addr-spec has no phrase (such as a common name) before it, has no comment (text surrounded in parentheses) after it, and is not surrounded by ‘<’ and ‘>’. Note that while upper and lower case letters are allowed in an RFC 822 addr-spec, no significance is attached to the case.

When the subjectAltName extension contains a iPAddress, the address MUST be stored in the octet string in "network byte order," as specified in RFC 791 [RFC 791]. The least significant bit (LSB) of each octet is the LSB of the corresponding byte in the network address. For IP Version 4, as specified in RFC 791, the octet string MUST contain exactly four octets. For IP Version 6, as specified in RFC 1883, the octet string MUST contain exactly sixteen octets [RFC 1883].

When the subjectAltName extension contains a domain name service label, the domain name MUST be stored in the dNSName (an IA5String). The name MUST be in the "preferred name syntax," as specified by RFC 1034 [RFC 1034]. Note that while upper and lower case letters are allowed in domain names, no significance is attached to the case. In addition, while the string ‘ ’ is a legal domain name, subjectAltName extensions with a dNSName ‘ ’ are not permitted. Finally, the use of the DNS representation for Internet mail addresses (wpolk.nist.gov instead of wpolk@nist.gov) is not permitted; such identities are to be encoded as rfc822Name.

When the subjectAltName extension contains a URI, the name MUST be stored in the uniformResourceIdentifier (an IA5String). The name MUST be a non-relative URL, and MUST follow the URL syntax and encoding rules specified in [RFC 1738]. The name must include both a scheme (e.g., ‘http’ or ‘ftp’) and a scheme-specific-part. The scheme-specific-part must include a fully qualified domain name or IP address as the host.

As specified in [RFC 1738], the scheme name is not case-sensitive (e.g., ‘http’ is equivalent to ‘HTTP’). The host part is also not case-sensitive, but other components of the scheme-specific-part may be case-sensitive. When comparing URIs, conforming implementations MUST compare the scheme and host without regard to case, but assume the remainder of the scheme-specific-part is case sensitive.

Subject alternative names may be constrained in the same manner as subject distinguished names using the name constraints extension.

If the subjectAltName extension is present, the sequence MUST contain at least one entry. Unlike the subject field, conforming CAs MUST NOT issue certificates with subjectAltNames containing empty GeneralName fields. For example, an rfc822Name is represented as an IA5String. While an empty string is a valid IA5String, such an rfc822Name is not permitted by this profile. The behaviour of clients that encounter such a certificate when processing a certification path is not defined by this profile.

Finally, the semantics of subject alternative names that include wildcard characters (e.g., as a placeholder for a set of names) are not addressed by this specification. Applications with specific requirements may use such names but shall define the semantics.

 id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

 SubjectAltName ::= GeneralNames

 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

 GeneralName ::= CHOICE {

 otherName [0] OtherName,

 rfc822Name [1] IA5String,

 dNSName [2] IA5String,

 x400Address [3] ORAddress,

 directoryName [4] Name,

 ediPartyName [5] EDIPartyName,

 uniformResourceIdentifier [6] IA5String,

 iPAddress [7] OCTET STRING,

 registeredID [8] OBJECT IDENTIFIER}

 OtherName ::= SEQUENCE {

 type-id OBJECT IDENTIFIER,

 value [0] EXPLICIT ANY DEFINED BY type-id }

 EDIPartyName ::= SEQUENCE {

 nameAssigner [0] DirectoryString OPTIONAL,

 partyName [1] DirectoryString }

Figure 14 – SubjectAltName syntax

1.1.2.5.7 Issuer Alternative Names

As with Subject Alternative Names, this extension is used to associate Internet style identities with the certificate issuer. Issuer alternative names must be encoded in the same way as Subject Alternative Names.

 id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }

 IssuerAltName ::= GeneralNames

Figure 15 – IssuerAltName syntax

1.1.2.5.8 Basic Constraints

The basic constraints extension identifies whether the subject of the certificate is a CA and how deep a certification path may exist through that CA.

The pathLenConstraint field is meaningful only if cA is set to TRUE. In this case, it gives the maximum number of CA certificates that may follow this certificate in a certification path. A value of zero indicates that only an end-entity certificate may follow in the path. Where it appears, the pathLenConstraint field must be greater than or equal to zero. Where pathLenConstraint does not appear, there is no limit to the allowed length of the certification path.

This extension must appear as a critical extension in all CA certificates. This extension should not appear in end entity certificates.

 id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }

 BasicConstraints ::= SEQUENCE {

 cA BOOLEAN DEFAULT FALSE,

 pathLenConstraint INTEGER (0..MAX) OPTIONAL }

Figure 16 – BasicConstraints syntax

1.1.2.5.9 Name Constraints

The name constraints extension, which can only be used in a CA certificate, indicates a name space within which all subject names in subsequent certificates in a certification path shall be located. Restrictions may apply to the subject distinguished name or subject alternative names. Restrictions apply only when the specified name form is present. If no name of the type is in the certificate, the certificate is acceptable.

Restrictions are defined in terms of permitted or excluded name subtrees. Any name matching a restriction in the excludedSubtrees field is invalid regardless of information appearing in the permittedSubtrees. This extension must be critical.

Within this profile, the minimum and maximum fields are not used with any name forms, thus minimum is always zero, and maximum is always absent.

For URIs, the constraint applies to the host part of the name. The constraint may specify a host or a domain. Examples would be ‘foo.bar.com’ and ‘.xyz.com’. When the constraint begins with a full stop, it may be expanded with one or more subdomains. That is, the constraint ‘.xyz.com’ is satisfied by both abc.xyz.com and abc.def.xyz.com. However, the constraint ".xyz.com" is not satisfied by ‘xyz.com’. When the constraint does not begin with a full stop, it specifies a host.

A name constraint for Internat mail addresses may specify a particular mailbox, all addresses at a particular host, or all mailboxes in a domain. To indicate a particular mailbox, the constraint is the complete mail address. For example, ‘root@xyz.com’ indicates the root mailbox on the host ‘xyz.com’. To indicate all Internet mail addresses on a particular host, the constraint is specified as the host name. For example, the constraint ‘xyz.com’ is satisfied by any mail address at the host ‘xyz.com’. To specify any address within a domain, the constraint is specified with a leading period (as with URIs). For example, ‘.xyz.com’ indicates all the Internet mail addresses in the domain "xyz.com", but not Internet mail addresses on the host ‘xyz.com’.

DNS name restrictions are expressed as foo.bar.com. Any subdomain satisfies the name constraint. For example, www.foo.bar.com would satisfy the constraint but bigfoo.bar.com would not. Legacy implementations exist where an RFC 822 name is embedded in the subject distinguished name in an attribute of type EmailAddress. When rfc822 names are constrained, but the certificate does not include a subject alternative name, the rfc822 name constraint MUST be applied to the attribute of type EmailAddress in the subject distinguished name.

Restrictions of the form directoryName MUST be applied to the subject field in the certificate and to the subjectAltName extensions of type directoryName. Restrictions of the form x400Address must be applied to subjectAltName extensions of type x400Address.

When applying restrictions of the form directoryName, an implementation MUST compare DN attributes. CAs issuing certificates with a restriction of the form directoryName should not rely on implementation of the full ISO DN name comparison algorithm. This implies name restrictions shall be stated identically to the encoding used in the subject field or subjectAltName extension.

The syntax and semantics for name constraints for otherName, ediPartyName, and registeredID are not defined by this specification.

 id-ce-nameConstraints OBJECT IDENTIFIER ::= { id-ce 30 }

 NameConstraints ::= SEQUENCE {

 permittedSubtrees [0] GeneralSubtrees OPTIONAL,

 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

 GeneralSubtree ::= SEQUENCE {

 base GeneralName,

 minimum [0] BaseDistance DEFAULT 0,

 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

Figure 17 – NameConstraints syntax

1.1.2.5.10 Policy Constraints

Before discussing this extension we first need to introduce the notion of Policy mapping. Policy mapping applies when a CA in one domain certifies a CA in another domain. Policy mapping allows a particular certificate policy in the second domain to be considered by the authority of the first domain to be equivalent (but not necessarily identical in all respects) to a particular certificate policy in the first domain.

The PolicyConstraints extension can be used in certificates issued to CAs. The PolicyConstraints extension constrains path validation in two ways. It can be used to prohibit policy mapping, or require that each certificate in a path contain an acceptable policy identifier.

If the inhibitPolicyMapping field is present, the value indicates the number of additional certificates that may appear in the path before policy mapping is no longer permitted. For example, a value of one indicates that policy mapping may be processed in certificates issued by the subject of this certificate, but not in additional certificates in the path.

If the requireExplicitPolicy field is present, subsequent certificates shall include an acceptable policy identifier. The value of requireExplicitPolicy indicates the number of additional certificates that may appear in the path before an explicit policy is required. An acceptable policy identifier is the identifier of a policy required by the user of the certification path or the identifier of a policy which has been declared equivalent through policy mapping.

CAs conforming to the Internet profile (in RFC 2459) must not issue certificates where policy constraints is a null sequence. That is, at least one of the inhibitPolicyMapping field or the requireExplicitPolicy field must be present.

 id-ce-policyConstraints OBJECT IDENTIFIER ::= { id-ce 36 }

 PolicyConstraints ::= SEQUENCE {

 requireExplicitPolicy [0] SkipCerts OPTIONAL,

 inhibitPolicyMapping [1] SkipCerts OPTIONAL }

 SkipCerts ::= INTEGER (0..MAX)

Figure 18 – PolicyConstraints syntax

1.1.2.5.11 Extended key usage field

This field indicates one or more purposes for which the certified public key may be used, in addition to or in place of the basic purposes indicated in the key usage extension field. This field is defined as follows:

 id-ce-extKeyUsage OBJECT IDENTIFIER ::= {id-ce 37}

 ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId

 KeyPurposeId ::= OBJECT IDENTIFIER

Figure 19 – ExtKeyUsage syntax

Key purposes may be defined by any organization with a need. Object identifiers used to identify key purposes shall be assigned in accordance with IANA (the Internet Assigned Numbers Authority) or ITU-T Rec. X.660 | ISO/IEC 9834-1, [X.660].

This extension may, at the option of the certificate issuer, be either critical or non-critical. If the extension is flagged critical, then the certificate MUST be used only for one of the purposes indicated. If the extension is flagged non-critical, then it indicates the intended purpose or purposes of the key, and may be used in finding the correct key/certificate of an entity that has multiple keys/certificates. It is an advisory field and does not imply that usage of the key is restricted by the certification authority to the purpose indicated. Certificate using applications may nevertheless require that a particular purpose be indicated in order for the certificate to be acceptable to that application.

If a certificate contains both a critical key usage field and a critical extended key usage field, then both fields must be processed independently and the certificate must only be used for a purpose consistent with both fields. If there is no purpose consistent with both fields, then the certificate must not be used for any purpose.

The key usage purposes listed in Figure 20 are defined by [RFC2459].

 id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }

 id-kp-serverAuth OBJECT IDENTIFIER ::= {id-kp 1}

 -- TLS Web server authentication

 -- Key usage bits that may be consistent: digitalSignature,

 -- keyEncipherment or keyAgreement

 --

 id-kp-clientAuth OBJECT IDENTIFIER ::= {id-kp 2}

 -- TLS Web client authentication

 -- Key usage bits that may be consistent: digitalSignature and/or

 -- keyAgreement

 --

 id-kp-codeSigning OBJECT IDENTIFIER ::= {id-kp 3}

 -- Signing of downloadable executable code

 -- Key usage bits that may be consistent: digitalSignature

 --

 id-kp-emailProtection OBJECT IDENTIFIER ::= {id-kp 4}

 -- E-mail protection

 -- Key usage bits that may be consistent: digitalSignature,

 -- nonRepudiation, and/or (keyEncipherment

 -- or keyAgreement)

 --

 id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }

 -- Binding the hash of an object to a time from an agreed-upon time

 -- source. Key usage bits that may be consistent: digitalSignature,

 -- nonRepudiation

Figure 20 – Key usage purposes defined in RFC 2459

1.1.2.5.12 Other extensions

The above descriptions are by no means an exhaustive list of the extension types defined in X.509, [X.509], which contains a number of other extension types.

1.1.3 Using features of the X.509 certificate

1.1.3.1 Encoding policy information in X.509 certificates

Encoding policy information in X.509 certificates can be achieved using the certificate policies extension. This allows policy OIDs to be included in certificates. Where certificate chains are constructed, mappings can be set up using the Policy mappings extension to indicate where two different policy OIDs, used in two different domains, can be regarded as equivalent. The application of policy mappings can be controlled through the use of the Policy constraints extension.

1.1.3.2 Controlling certification paths using X.509 certificates

Controlling certification paths using X.509 certificates can be achieved using a combination of the Name constraints, Basic constraints and the Policy constraints extensions. These three extensions combine to offer a sophisticated degree of control over the construction and interpretation of certification paths.

1.1.4 The ‘ANSI X9.68’ certificate format

As stated in clause 6 of ANSI X9.68, [X9.68], the short certificate syntax attempts to satisfy the needs of mobile, wireless, account based, and high volume transaction systems. It is specifically designed so that the certificates are more compact than X.509 version 3 certificates.

1.1.4.1 ANSI X9.68 ‘short certificate’ formal syntax

We start this description of the X9.68 ‘short certificate’ certificate by giving the ASN.1 specification. The X9.68 short certificate basic syntax is as given in Figure 21.

The certificate is encoded using ASN.1 Distinguished Encoding Rules (DER) or ASN.1 Packed Encoding Rules (PER) – see Section 1.1.1.2. Use of the PER may yield substantial compression of certificate size. A restriction stated in [X9.68] is that ‘all X9.68 fields must fit in ASN.1 definite short encoding’ – this is presumably a reference to the short form of the length encoding used in BER, which means that all ‘value’ fields can contain at most 127 bytes.

Certificate ::= SIGN { EncodedUnsignedCertificate }

SIGN { ToBeSigned } ::= SEQUENCE {

toBeSigned
ToBeSigned,

signature
BIT STRING

} (CONSTRAINED BY {

 -- SIGN is a sequence containing the value of any ASN.1

 -- type in its encoded form (an open type, toBeSigned)

 -- and a digital signature on that value. The signature

 -- is the bit string result of applying a digital signature

 -- procedure, whose algorithm and any associated parameters

 -- are assumed known or easily determined, to a value of

 ToBeSigned })

-- The signature algorithm is encoded with the root CA parameters and would be
-- redundant elsewhere (there is a one-to-one mapping between an instance of a CA and
-- {public key system type, algorithm, key}).

EncodedUnsignedCertificate ::= TYPE-IDENTIFIER.&Type (UnsignedCertificate)

UnsignedCertificate ::= CHOICE {

compactRootCertificate
[0]
CompactRootCertificate,

compactCACertificate
[1]
CompactCACertificate,

compactCertificate
[2]
CompactCertificate,

compactCrossCertificate
[3]
CompactCrossCertificate

}

Figure 21 – X9.68 short certificate basic syntax

It should be clear from the ASN.1 specification in Figure 21 that X9.68 ‘compact certificates’ come in four types, as follows.

· Root certificates, see Figure 22, contain ‘trusted’ CA public keys held by a user. These public keys will be used to verify other certificates. Presumably (although it does not seem to be stated in [X9.68]), all such certificates will be ‘self-signed’.

· CA certificates, see Figure 23, contain CA public keys.

· Compact certificates, see Figure 24, contain end-user public keys.

· Cross certificates, see Figure 25, are not really explained.

CompactRootCertificate ::= SEQUENCE {

version

Version DEFAULT vs1,

rootFlags
DomainRootFlags,

issueDate

IssueDate,

notBefore

[0] NotBefore
OPTIONAL,

notAfter

NotAfter,

rootIdentifier
DescriptiveIdentifier,

domainKey

RootPublicKeyInfo,

policyID

PolicyID
OPTIONAL,

payloads

Payloads

}

PolicyID ::= DOMAIN-HASH { DomainPolicy }

Figure 22 – X9.68 root certificate basic syntax

CompactCACertificate ::= SEQUENCE {

version

Version DEFAULT vs1,

caFlags

CAFlags,

issueDate

IssueDate
OPTIONAL,

notBefore

[0] NotBefore
OPTIONAL,

notAfter

[1] NotAfter,

issuer

IssuerIdentifier,

subject

SubjectIdentifier,

domain-authority
[0] DomainAuthority
OPTIONAL,

caKey

CAPublicKeyInfo,

payloads

Payloads

}

DomainAuthority ::= CertHashAndIdentifier

Figure 23 – X9.68 CA certificate basic syntax

CompactCertificate ::= SEQUENCE {

version

Version DEFAULT vs1,

flags

Flags,

issueDate

IssueDate
OPTIONAL,

notBefore

[0] NotBefore
OPTIONAL,

notAfter

[1] NotAfter
OPTIONAL,

issuer

IssuerIdentifier,

subject

SubjectIdentifier,

domain-authority
[0] DomainAuthority
OPTIONAL,

payloads

Payloads

}

Figure 24 – X9.68 compact certificate basic syntax

CompactCrossCertificate ::= {

version

Version DEFAULT vs1,

certifier

DomainAuthority,

issued

IssueDate,

begins

NotBefore,

expires

NotAfter,

crossCertified
RootCertificateID,

policyID

PolicyID
OPTIONAL,

payloads

Payloads

}

RootCertificateID ::= CHOICE {

domain-authority
[0]
DomainAuthority,

rootCertificate
[1]
CompactRootCertificate

}

Figure 25 – X9.68 cross certificate basic syntax

1.1.4.2 Terminology

Before proceeding we need to define some terminology used in the X9.68 draft standard.

· An attribute is information (excluding the public key, key identities and algorithm identifier), which is provided by the entity, CA, or AA and certified by a CA or AA in an X9.68 certificate. Examples include the CA’s liability limitations and binding information.

· An attribute certificate is a certificate containing a set of attributes along with a public key certificate identifier. The attributes are bound to the public key certificate by the signature of the AA on the attribute certificate.

· An Attribute Authority (AA) is an entity trusted by one or more entities to create and assign attribute certificates. For the compact certificate management infrastructure an AA is viewed as a collection of Domain AAs, each domain AA being tied to a key-pair and the associated algorithms and parameters of the domain. Unlike a CA, an AA may only assign attributes, it may not issue public key certificates.

1.1.4.3 Version and SerialNumber

The default version is 0 and is encoded as an integer rather than a context specific type. Note that if the default value is used, then the version is implicit and does not actually appear in the encoding.

Version ::= INTEGER { vs1 (0) }

Figure 26 – Version syntax

The serial number is not explicitly included in the Certificate object. It is interpreted as the hash of the Certificate and is therefore implicitly included. The hash algorithm used is that defined for signatures in the domain root CA certificate.

SerialNumber ::= DOMAIN-HASH { EncodedUnsignedCertificate }

DOMAIN-HASH { ToBeHashed } ::= OCTET STRING (SIZE(16..127)) (CONSTRAINED BY {

-- DOMAIN-HASH is the value returned as a result of --

-- applying the domain digest procedure to -- ToBeHashed })

Figure 27 – SerialNumber syntax

1.1.4.4 DomainRootFlags

The DomainRootFlags indicate certain properties of a root CA certificate. The property is active if the indicated bit in the BIT STRING is set (1) and inactive if it is not set (0). The bit string encoding forces that even the not set (0) alternative is indicated explicitly by defining the size to be the full number of defined bits.

· Unfortunately the description in the text of [X9.68] is inconsistent with the ASN.1 specification, and hence the meaning of the first two properties (AA-does-not-delegate-AAs and AA-delegates-AAs) is unclear.
· If the delegates-CAs flag is not set then the domain has no hierarchy of CAs; if the delegates-CAs flag is set the domain has at least one level of CA hierarchy.

· If set the online-validation-required flag indicates that an entity should not accept this certificate unless it has been verified online with the issuing CA.

DomainRootFlags ::= BIT STRING {

AA-does-not-delegate-AAs
(0),

AA-delegates-AAs

(1),

delegates-CAs

(2),

online-validation-required
(3)

} SIZE((4))

Figure 28 – DomainRootFlags syntax

1.1.4.5 CAFlags

CAFlags indicate certain properties of a CA certificate. The property is active if the indicated bit in the BIT STRING is set (1) and inactive if it is not set (0). The bit string encoding forces that even the not set (0) alternative is indicated explicitly by defining the size to be the full number of defined bits.

· If the delegated-AA flag is set the subject CA also issues attribute certificates.

· If the delegated-AA-may-delegate flag is set this indicates that the subject CA issues attribute certificates and also delegates AA functionality for the specified attributes.

· If the delegates-CAs flag is set this indicates that the subject CA may further delegate CA functionality.

· If set the granted-inheritable-attributes flag means that the subject CA is granted all the inheritable attributes owned by the issuer. If this flag is not set then only the attributes explicitly indicated as payloads are granted.

· If set the identifier-relative-to-issuer flag indicates that the full subject descriptive identifier is obtained by concatenation with the issuer descriptive identifier.

· If set the online-validation-required flag indicates that an entity should not accept this certificate unless it has been verified online with the issuing CA.

CAFlags ::= BIT STRING {

delegated-AA

(0),

delegated-AA-may-delegate

(1),

delegates-CAs

(2),

granted-inheritable-attributes
(3),

identifier-relative-to-issuer

(4),

online-validation-required

(5)

} SIZE((6))

Figure 29 – CAFlags syntax

1.1.4.6 Flags

Flags indicate certain properties of a compact certificate. The property is active if the indicated bit in the BIT STRING is set (1) and inactive if it is not set (0). The bit string encoding forces that even the not set (0) alternative is indicated explicitly by defining the size to be the full number of defined bits
. If set the delegated-AA flag indicates that the subject is being granted the right to assign the attributes contained as payloads in this certificate. If the delegated-AA-may-delegate flag is set this indicates that the subject may further delegate AA functionality for the specified attributes. No restrictions on the number of hierarchy levels are imposed, although a system architect must be aware of the impact on complexity and certificate validation chain length each new level adds to a system. Payloads restricting the delegation authority and/or limiting the number of levels of hierarchy may be included in a certificate. If the registration-authority flag is set this indicates that this entity has been granted rights to access a CA for certificate generation, modification (re-issue), or revocation. Restrictions on these rights may be implicit in CA policy or explicit in payloads included in the certificate.

If set the granted-inheritable-attributes flag means that the subject is granted all the inheritable attributes owned by the issuer. If this flag is not set then only the attributes explicitly indicated as payloads are granted. If set the member-key-certificate flag indicates the certificate contains a subject public key. If set the identifier-relative-to-issuer flag indicates that the full subject descriptive identifier is obtained by concatenation with the issuer descriptive identifier. If set the online-validation-required flag indicates that an entity should not accept this certificate unless it has been verified online with the issuing CA.

Flags ::= BIT STRING {

delegated-AA

(0),

delegated-AA-may-delegate

(1),

registration-authority

(2),

member-key-certificate

(3),

granted-inheritable-attributes
(4),

identifier-relative-to-issuer

(5),

online-validation-required

(6)

} (SIZE (7))

Figure 30 – Flags syntax

1.1.4.7 DomainAuthority

This field indicates the identifier of the Domain Root Certification Authority at the root of the certification chain needed to verify this certificate. This identifier is of type CertHashIdentifier and consists of the hash of the domain root certificate and a descriptive identifier. An implementer should be aware that if this field is present in a certificate then if the root key certificate changes the certificate must be re-issued. For some systems it may be possible to insulate lower hierarchy levels from key changes in upper levels somewhat by providing a secure means to update upper level certificates. In this case it may be desirable not to include the domain authority explicitly in the certificate. The domain authority field is included as an option for compact certificates to accommodate systems that require full re-keying in the case of root compromise.

1.1.4.8 Dates (IssueDate, NotBefore, and NotAfter)

The IssueDate field is an encoded date that represents the date of issue of this certificate. This field is required for domain root certificates but is optional for domain member certificates.

The optional NotBefore date represents the earliest valid date for the certificate.

The notAfter date represents the latest valid date for the certificate. The field is required for CA certificates but is optional for domain member certificates.

CompressedDate ::= OCTET STRING (SIZE(2..7))

IssueDate ::= CompressedDate

NotBefore ::= CompressedDate

NotAfter ::= CompressedDate

Figure 31 – Dates syntax

1.1.4.9 DescriptiveIdentifier

This represents an identifier in a form similar to that defined in ANSI X9.55 for GeneralName. The RelativeDistinguishedName type has been included, some types have been removed and lengths have been constrained. In addition four types have been added: StringName, IntegerID, BinaryID, and HashID.

Note that descriptive identifiers may be locally valid names, addresses, account numbers, or other types of identification.

DescriptiveIdentifier ::= CHOICE {

distinguishedName
[3]
RDNSequence,

relativeDName
[4]
RelativeDistinguishedName,

rfc822Name

[5]
Rfc822Name,

dnsName

[6]
DnsName,

ediPartyName
[7]
EdiPartyName,

uri

[8]
Uri,

ipAddress

[9]
IpAddress,

telcoNumber

[10]
TelcoNumber,

registeredID
[11]
RegisteredID,

integerID

[12]
IntegerID,

stringName

[13]
StringName,

binaryID

[14]
BinaryID,

numericID

[15]
NumericID,

x509CertHash
[16]
X509CertHash

}

Rfc822Name ::= IA5String (SIZE(0...127))

DnsName ::= IA5String (SIZE(0...127))

EdiPartyName ::= EDIPartyName

-- Need to re-define this for this standard.

Uri ::= VisibleString (SIZE(0...127))

-- Must be legal URI character set.

IpAddress ::= OCTET STRING
(SIZE(1...127))

-- 1 is minimum because it can be relative.

RegisteredID ::= OBJECT IDENTIFIER

IntegerID ::= INTEGER (0...264-1)

StringName ::= UTF8String (SIZE(0...127))

BinaryID ::= BIT STRING (SIZE(0...120))

X509CertHash ::= OCTET STRING (SIZE(16…127))

NumericID ::= NumericString (SIZE(0…16))

TelcoNumber ::= NumericString (SIZE(0…40))

Figure 32 – DescriptiveIdentifier syntax

1.1.4.10 IssuerIdentifier

An issuer may be a Domain Root Certification Authority, a lower level Domain Certification Authority, or a Domain Attribute Authority. An issuer identifier includes some form of key identifier (key hash, certificate hash, or integer key identifier) along with a descriptive identifier.

The IssuerIdentifier type is a choice between a CertHashAndIdentifier, a KeyHashAndIdentifier, and a KeyIDAndIdentifier type. Domain root certification authorities must use type CertHashAndIdentifier (DomainAuthority) in cross-certificates. In addition the DomainAuthority type is used to indicate a domain.

IssuerIdentifier ::= CHOICE {

keyHashAndIdentifier
[0]
KeyHashAndIdentifier,

certHashAndIdentifier
[1]
CertHashAndIdentifier,

keyIDAndIdentifier
[2]
KeyIDAndIdentifier

}

Figure 33 – IssuerIdentifier syntax

1.1.4.11 SubjectIdentifier

This is an identifier for the subject of the certificate. A SubjectIdentifier may either be a KeyHashAndIdentifier, which is a hash of the subjects’ public key along with an optional descriptive identifier, or just a descriptive identifier.

SubjectIdentifier ::= CHOICE {

keyHashAndIdentifier

[2]
KeyHashAndIdentifier,

descriptiveIdentifier

DescriptiveIdentifier

}

Figure 34 – SubjectIdentifier syntax

1.1.4.12 KeyHashAndIdentifier

A KeyHashAndIdentifier is defined to be the hash of a public key along with an optional descriptive identifier. The hash is computed using the digest algorithm specified for signatures in the domain.

KeyHashAndIdentifier ::= SEQUENCE {

keyHash

KeyHash,

descriptiveIdentifier
DescriptiveIdentifier
OPTIONAL

}

KeyHash ::= DOMAIN-KEYHASH { KeyByteString }

DOMAIN-KEYHASH { ToBeHashed } ::= OCTET STRING (SIZE(16..127)) (CONSTRAINED BY {

-- DOMAIN-KEYHASH is the value returned as a result of --

-- applying the domain digest procedure to

-- ToBeHashed (CONSTRAINED BY {

-- For RSA, the hash is to be done on the byte string representation of the –

-- public modulus [PKCS1]. For ECC, the hash is to be done on the byte –

-- string representation of the x-coordinate of the elliptic curve point [X9.62] -- })

})

Figure 35 – KeyHashAndIdentifier syntax

1.1.4.13 CertHashAndIdentifier

A CertHashAndIdentifier is defined to be the hash of a public key certificate along with an optional descriptive identifier. The hash is computed using the digest algorithm specified for signatures in the domain. The hash shall be done over the encoded unsigned certificate. The domain root certification authority must use the entire hash output.

The encoding of the root key certificate hash in the domain authority identifier creates an explicit binding between root key certificate and the DRCA. It separates the CA concept from the organization because, whereas an organization is a physical entity, a key and the certificate it is embedded in are temporary (although possibly long-lived) identifiers for an organization. A CA (root CA) can be viewed as being a collection of one or more DCAs (DRCAs). Since the security of the system can be traced to the root key if this key must be changed then the DCA has effectively been changed. Binding a DCA to a key also means that a single organization using multiple algorithms will have a DRCA and hierarchy for each of these, although they may be physically co-located and under the same administration. In practice this must be the case as security depends on maintaining a hierarchy from root to end entity; binding the key bearing certificate hash to the DRCA explicitly acknowledges this fact and is intended to make design and management of system’s easier and increase security.

CertHashAndIdentifier ::= SEQUENCE {

certHash

CertificateHash,

descriptiveIdentifier
DescriptiveIdentifier
OPTIONAL

}

CertificateHash ::= DOMAIN-HASH { EncodedUnsignedCertificate }

Figure 36 – CertHashAndIdentifier syntax

1.1.4.14 KeyIDAndIdentifier

The KeyIDAndIdentifier type is the preferred type for CAs and AAs under the domain root. This allows these entities to have uniquely identifiable multiple outstanding keys under the same descriptive identifier with a minimum of overhead. The identifier is defined as an integer that should monotonically increase from zero (0) as new keys are activated. The maximum number of keys before identifier wraparound is set at 264-1. The system must not have any outstanding certificates issued by old keys when wraparound occurs.

KeyIDAndIdentifier ::= SEQUENCE {

keyID

KeyIdentifier,

descriptiveIdentifier
DescriptiveIdentifier

}

KeyIdentifier ::= INTEGER (SIZE(0…264-1))

Figure 37 – KeyIDAndIdentifier syntax

1.1.4.15 RootPublicKeyInfo

RootPublicKeyInfo ::= SEQUENCE {
-- usage is sign and verify only.

parameters

DomainParameters,

rootPublicSignKey
BIT STRING

}

DomainParameters ::= CHOICE {

systemECzpParameters

[0]
SystemECzpParameters,

systemECf2nParameters

[1]
systemECf2nParameters,

systemIFParameters

[2]
SystemIFParameters,

systemDLParameters

[3]
SystemDLParameters

} (CONSTRAINED BY { -- domain public key system type. -- DomainSystemType })

SystemECParameters ::= CHOICE {

ecSignatureAlgorithm
[0]
SignatureAlgorithm,

ecMultiParams

[1]
MultipleParameters

}

SystemIFParameters ::= CHOICE {

ifSignatureAlgorithm
[0]
SignatureAlgorithm,

ifMultiParams

[1]
MultipleParameters

}

SystemDLParameters ::= CHOICE {

dlSignatureAlgorithm
[0]
SignatureAlgorithm,

dlMultiParams

[1]
MultipleParameters

}

MultipleParameters ::= SEQUENCE {

signatureAlgorithm

SignatureAlgorithm,

keyAgreementAlgorithm
[0]
KeyAgreementAlgorithm
OPTIONAL,

keyEncipherAlgorithm
[1]
keyEncipherAlgorithm
OPTIONAL,

dataEncipherAlgorithm
[2]
DataEncipherAlgorithm
OPTIONAL

}

SignatureAlgorithm ::= RegisteredAlgorithm (CONSTRAINED BY {

-- algorithm must be

-- consistent with domain system type (EC, DL, IF) })

KeyAgreementAlgorithm ::= RegisteredAlgorithm (CONSTRAINED BY {

-- algorithm must

-- be consistent with domain system type (EC, DL, IF) })

DataEncipherAlgorithm ::= RegisteredAlgorithm (CONSTRAINED BY {

-- algorithm must be

-- consistent with domain system type (EC, DL, IF) })

RegisteredAlgorithm ::= AlgorithmIdentifier { {…} }

Figure 38 – RootPublicKeyInfo syntax

1.1.4.16 CAPublicKeyInfo

CAPublicKeyInfo ::= SEQUENCE {
-- usage is sign and verify only.

parameters

DomainParameters
OPTIONAL,

caPublicSignKey
BIT STRING

}

Figure 39 – CAPublicKeyInfo syntax

1.1.4.17 PolicyID

The policy identifier is an optional hash of the cross-certification agreement (for a cross-certificate) or the domain policies (for a root certificate). The actual representation (encoding) of the text is not specified in X9.68 but must be agreed upon for cross-certification and encoding specified deterministically for root policies.

1.1.4.18 Payloads

This is a sequence of payloads, each payload being a context-specific type. The payload types are encoded as IMPLICIT sequences. The X9.68 standard allows X9.68 specific, organizational specific, and domain specific payloads to be defined.

Payloads ::= SEQUENCE (1...MAX) OF Payload

Payload ::= CHOICE {

subjectPublicKeyInfo
[0] CompactPublicKeyInfo,

compactPayload

[1] CompactPayload,

organizationPayload
[2] OrganizationPayload

-- Defined org. x9.68 payload

domainPayload

[3] DomainPayload

-- Defined in local domain

}

Figure 40 – Payloads syntax

1.1.4.19 CompactPublicKeyInfo

The format of the subjectPublicKey must be consistent with that expected by the domain algorithm for this type of key use. If multiple uses are indicated, and domain parameters are provided for more than one use, the key formats must be consistent. If domain parameters are optional and are not given for a particular use, the parameters used shall be the signature parameters.

There may be multiple keys per certificate, although generally only one of these is for digital signature. It would not be uncommon, however, to have a separate key for data enciphering or key agreement. Note that the format of the key must be as specified for the domain algorithm parameters. Using the same key for multiple purposes may have security implications.

CompactPublicKeyInfo ::= SEQUENCE {

keyUsage

KeyUsage,

subjectPublicKey
BIT STRING})

}

KeyUsage ::= BIT STRING {

digital-signature
(0),

key-encipherment

(1),

data-encipherment

(2),

key-agreement

(3)

} SIZE((4))

Figure 41 – CompactPublicKeyInfo syntax

1.1.4.20 CompactPayload

CompactPayload ::= SEQUENCE {

payloadFlags
PayloadFlags,

compactPayload
X968CompactPayload

}

PayloadFlags ::= BIT STRING {

critical

(0),

inheritable-attribute

(1),

non-inheritable-attribute
(2)

} (SIZE(3))

Figure 42 – CompactPayload syntax

1.1.4.21 OrganizationPayload

The orgIdentifier must be included in the first organization payload but may be omitted from following organization payloads if all such payloads in the compact certificate are defined by the same organization.

OrganizationPayload ::= SEQUENCE {

payloadFlags
PayloadFlags,

orgIdentifier
OBJECT IDENTIFIER

OPTIONAL,

-- Required for 1st payload.

payloadID

RELATIVE OBJECT IDENTIFIER,

-- Relative to orgIdentifier.

extValue

OCTET STRING

}

RELATIVE OBJECT IDENTIFIER ::= [TBD]

Figure 43 – OrganizationPayload syntax

1.1.4.22 DomainPayload

DomainPayload ::= SEQUENCE {

payloadFlags
PayloadFlags,

extValue
OCTET STRING

-- Contents encoding and type defined in local domain.

}

Figure 44 – DomainPayload syntax

1.1.5 Using features of the X9.68 certificate

1.1.5.1 Encoding policy information in X9.68 certificates

Encoding policy information in X9.68 certificates can be achieved using the following elements of the X9.68 syntax.

· Flags. This parameter indicates properties of a ‘compact certificate’.

· PolicyID. Note, however, the encoding of the policy is not defined in ANSI X9.68.

1.1.5.2 Controlling certification paths using X9.68 certificates

Controlling the construction of X9.68 certification paths can be achieved using the following elements of the X9.68 syntax.

· DomainRootFlags. This is a parameter in root certificates. This controls what the subject CA of the root certificate is permitted to issue certificates for, and can also be used to specify the CA structure within the domain.

· CAFlags. This is a parameter in CA certificates. This controls what the subject CA of the root certificate is permitted to issue certificates for.

1.1.6 Simple Public Key Certificates

A series of draft Internet documents, [SPKI], specify a rather different certificate format known as Simple Public Key Certificates. The definition of these certificates does not use ASN.1; instead they use something called S-expressions.

Most critically, these certificates do not appear to incorporate any policy identifiers on other mechanisms for inserting policy information.

References

[FIPS 186] Federal Information Processing Standard (FIPS PUB) 186, Digital Signature Standard. April 1995.

[RFC822] D. Crocker, Standard for the format of ARPA Internet text messages. Internet Request For Comments 822, August 1982.

RFC2313] B. Kaliski, PKCS #1: RSA encryption Version 1.5. Internet Request For Comments 2313, March 1998.

[RFC2459] R. Housley, W. Ford, W. Polk, and D. Solo, Internet X.509 public key infrastructure certificate and CRL profile. Internet Request For Comments 2459, January 1999.

[SPKI] C.E. Ellison, B. Frantz, B. Lampson, R. Rivest, B.M. Thomas, and T. Ylonen, Simple Public Key Certificate. Internet draft (draft-ietf-spki-cert-structure-05.txt), September 1998.

[X.208] CCITT Recommendation X.208, Specification of Abstract Syntax Notation One (ASN.1). 1988.

[X.509] ITU-T Recommendation X.509 (1997), Information technology – Open Systems Interconnection – The Directory: Authentication framework. June 1997.

[X.660] ISO/IEC 9834-1, Information technology – Open Systems Interconnection – Procedures for the operation of OSI registration authorities: General procedures. 1993.

[X9.68] American National Standard X9.68-199x, Digital certificates for mobile, account based, and high transaction volume financial systems. Draft, March 1999.

� The encoder will not encode bits that are not set in a BIT STRING if possible, the size restriction forces them to be encoded.

1

