3GPP TSG T WG2, SWG1 (MExE)
Tdoc T2-99652
Helsinki, Finland

6-10 september, 1999

From:
Alcatel Business Systems

Subject:
Interoperability and storage of key in SIM

References :

1. [PKCS15]
PKCS #15 “Cryptographic Token Information Standard” version 1.0, RSA Laboratories, April 1999
URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
2. [WAPWTLS] “Wireless Application Protocol Transport Layer Security Specification”, WAP Forum, 30-April-1998
URL: http://www.wapforum.org/
3. [WAPWIM] “Wireless Application Protocol Identity Module Specification”, WAP Forum, draft version 05-Jul-1999
URL: http://www.wapforum.org/
4. [RFC 2459] Internet X.509 Public Key Infrastructure January 1999

Object

For interoperability reason we need to define in MExE :

· Which type of information is stored in SIM: key with addition information or certificate

· Abstract syntax of this information (semantic)

· Coding of this information

Contents

References :

Object

Contents

1
WTLS messages syntax extract to exchange key or certificates

2
X509 certificate syntax extract from RFC 2459

Internet extension

3
PKCS#15 object structure

Object Classes

PKCS#15 certificate object attributes

4
PKCS#15 object structure and file structure

Card File Structure

EF(ODF)

File relationships in the IC card case

Example of a whole PKCS15 application

5
SIM storage study conclusion

1 WTLS messages syntax extract to exchange key or certificates

The coding of syntax is define in [WAPWTLS] document.

struct {

select (PublicKeyType) {

case ecdh: ECPublicKey;

case ecdsa: ECPublicKey;

case rsa: RSAPublicKey;

} PublicKey;

struct {

uint8 certificate_version;

SignatureAlgorithm signature_algorithm;

Identifier issuer;

uint32 valid_not_before;

uint32 valid_not_after;

Identifier subject;

PublicKeyType public_key_type;

ParameterSpecifier parameter_specifier;

PublicKey public_key;

} ToBeSignedCertificate;

select(SignatureAlgorithm)

{

case anonymous: { };

case ecdsa_sha:

digitally-signed struct {

opaque sha_hash[20]; /* SHA-1 hash of data to be signed */

}

case rsa_sha:

digitally-signed struct {

opaque sha_hash[20]; /* SHA-1 hash of data to be signed */

}

} Signature;

struct {

ToBeSignedCertificate to_be_signed_certificate;

Signature signature;

} WTLSCertificate;

struct {

CertificateFormat certificate_format;

select (certificate_format) {

case WTLSCert: WTLSCertificate;

case X509Cert: X509Certificate;

case X968Cert: X968Certificate;

}

} Certificate;
2 X509 certificate syntax extract from RFC 2459

 The X.509 v3 certificate basic syntax is as follows. For signature calculation, the certificate is encoded using the ASN.1 distinguished encoding rules (DER) [X.208]. ASN.1 DER encoding is a tag, length, value encoding system for each element.

 Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

 TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version shall be v3

 }

Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

 Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

 Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING

X509 certificate V3 version provides an easy way to create PKI specific extensions as above.

 Internet extension

The PKI internet [RFC 2459] do not use issuerUniqueID and SubjetUniqueID v2,v3 parameters but it defines several extension : Authority key identifier, Subject key identifier based on hash value in order to facilitate chain building, key usage…

 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }

 KeyUsage ::= BIT STRING {

 digitalSignature (0),

 nonRepudiation (1),

 keyEncipherment (2),

 dataEncipherment (3),

 keyAgreement (4),

 keyCertSign (5),

 cRLSign (6),

 encipherOnly (7),

 decipherOnly (8) }

PKCS#15 object structure

Object Classes

This document defines four general classes of objects: Keys, Certificates, Authentication Objects and Data Objects. All these object classes have sub-classes, e.g. Private Keys, Secret Keys and Public Keys, whose instantiations become objects actually stored on tokens.

The following is a figure of the PKCS #15 object hierarchy:

Figure 1: PKCS #15 Object hierarchy (instances of abstract object classes does not exist on tokens).

PKCS#15 certificate object attributes

Object common attributes :

· Label

human name

· Flags

private (CHVi authentication request) , modifiable

· Authentication object identifier

reference to CHVi

Certificate common attributes :

· Key identifier
used for correlation between certificate and private/public key : idem X509 certificates (may be a key hash)

· Authority

Issued by a CA

· Request identifier
Issuer and serial number SHA-1 hash or issuer public key SHA-1 hash

Certificate attributes

· Type of certificate
WTLS, X509, SPKI, PGP, X9.68

· Value

direct value or indirect file path or URL, value is coded according to the related standard.

WAP WIM support all these attributes, it use only SHA-1 public key hash as certificate identifier.

PKCS#15 object structure and file structure

Card File Structure

Figure 2: Typical PKCS #15 Card Layout.

The general file structure is shown above. The contents of the PKCS #15 Application Directory is somewhat dependent on the type of IC card and its intended use, but the following file structure is believed to be the most common:

Figure 3: Contents of DF(PKCS15) (Example).

EF(ODF)

The mandatory Object Directory File (ODF) is an elementary file, which contains pointers to other EFs (PrKDFs, PuKDFs, SKDFs, CDFs, DODFs and AODFs), each one containing a directory over PKCS #15 objects of a particular class.

Figure 4: EF(ODF) points to other EFs. Dashed arrows indicate cross-references.

· Private Key Directory Files (PrKDFs) : These elementary files can be regarded as directories of private keys known to the PKCS #15 application..

· Public Key Directory Files (PuKDFs) : These elementary files can be regarded as directories of public keys known to the PKCS #15 application.
· Secret Key Directory Files (SKDFs) : These elementary files can be regarded as directories of secret keys known to the PKCS #15 application.

· Certificate Directory Files (CDFs) : These elementary files can be regarded as directories of certificates known to the PKCS #15 application. They are optional, but at least one CDF must be present on an IC card which contains certificates (or references to certificates) known to the PKCS #15 application. They contain general certificate attributes such as labels, identifiers, etc. When a certificate contains a public key whose private key also resides on the card, the certificate and the private key must share the same identifier (this is indicated with a dashed-arrow in Figure 4). Furthermore, certificate directory files contain pointers to the certificates themselves. There can be any number of CDFs in a PKCS #15 DF, but it is anticipated that in the normal case there will only be one or two (one for trusted certificates and one which the cardholder may update). The certificates themselves may reside anywhere on the card (or even outside the card, see Section 8).

Figure 5: EF(CDF) contains certificate attributes and pointers to the certificates

File relationships in the IC card case

The purpose of the following figure is to show the relationship between certain files (EF(ODF), EF(PrKDF), EF(AODF) and EF(CDF)) in the DF(PKCS15) directory.

Note that it is possible for PKCS15Path pointers in EF(ODF) to point to locations inside the EF(ODF) itself. For example, if a card issuer intends to ‘lock’ EF(ODF), EF(PrKDF) and EF(AODF), they can all be stored within the same (physical) EF, EF(ODF). The advantage of this is that fewer ‘SELECT’ and ‘READ’ operations need to be done in order to read the contents of these files. There should be no need for host side applications to be modified due to this fact, however, since ordinary path pointers should be used anyway.

Figure 6: IC card file relationships in DF(PKCS15). Dashed arrows indicate cross-references.

Example of a whole PKCS15 application

The IC card in this example has on-chip support for RSA and DES-EDE-CBC algorithm computation in addition to pseudo-random number generation. It is assumed that this information can be deduced from the card’s ATR string. As a consequence of this, the TokenInfo file contains no supportedAlgorithms field. The PKCS15 application is profiled for use in an electronic identification environment, and has two RSA key pairs and two certificates. One private key is for digital signature purposes only and is protected with a separate authentication object (a PIN

Value notation:

{

 x509Certificate : {

 commonObjectAttributes {

 label "CERT1",

 flags {}, -- Not private, read-only

 },

 classAttributes {

 iD '45'H

 -- By default not an authority

 },

 typeAttributes {

 value indirect : path : {

 path '4331'H -- Reference by file identifier

 }

 }

 },

 x509Certificate : {

 commonObjectAttributes {

 label "CERT2",

 flags {}, -- Not private, read-only

 },

 classAttributes {

 iD '46'H

 -- By default not an authority

 },

 typeAttributes {

 value indirect : path : {

 path '4332'H -- Reference by file identifier

 }

 }

 }

}
DER encoding (as specified, outermost SEQUENCE OF omitted):

301B300A 0C054345 52543103 01003003 040145A1 08300630 04040243 31301B30 0A0C0543 45525432 03010030 03040146 A1083006 30040402 4332

Files 3F00/5015/4331 and 3F00/5015/4332 should contain DER-encoded certificate structures in accordance with ISO/IEC 9594-8. The size of the data is 58 bytes (two records of 29 bytes each).

3 SIM storage study conclusion

SIM already use indirect structure for big object for image storage. This structure permits to provide SIM and WIM interface without duplicate certificate itself.

MExE could add other information than TTP in a similar structure and other attributes may be add to TTP path, so we need to move TTP path information outside MExE SST file.

For descriptor MExE may use PKCS#15 format (ASN1 encoding in DER) or use a GSM format. PKCS#15 format includes attributes already defined in GSM file attributes (private, CHV used for privacy, modifiable). PKCS#15 format do not provide a record access to each descriptor.

SIM shall support a two level structure completed by MExE SST : a file to store data descriptors (GSM format) and files to store data themselves.

CCM builds hash value on WTLS signed certificate value in network transmission format, and on X509, X9.68 signed certificate ASN1 encoded value.

CCM signature algorithm refers to administrator signature algorithm, so SIM shall store administrator signature algorithm

SIM shall support storage of the complete TTP and administrator certificate.

SIM file already support PKCS#15 Flags, Authentication object identifier attributes. Does SIM shall support addition of PKCS#15 attributes (Type of certificate, Label, authority, Key identifier, Authority Key identifier, Request identifier).

“Type of certificate” attribute is mandatory in order to support several certificate formats.

In future MExE will support certificate and private key for client authentication, MExE can retain WIM for all technology to support this feature. “ Key identifier” attribute is mandatory to correlate certificate with associated private key.

 “Key identifier” and “Authority key identifier” attributes are useful to facilitate chain building but “Authority key identifier” is not used for root certificates.

“Request identifier” provide an easy way to identify a certificate. It could be used to correlate CCM hash value and certificate.

A “validity” attribute provide an easy way to know the status of certificate. But this attribute has no interest when file is read only.

“Label” attribute is an interesting information for end user interface.

“authority” attribute informs if certificate is an authority certificate which provide public key of this authority.

In WAP “key and request identifiers” [WAPWIM] are based on hash on public key and issuer public key.

In internet [RFC 2459], “key and authority key identifiers” X509 certificate extensions are based on public key and issuer public key (For CA public key, authority key identifier is the same as key identifier, so it is not provided). Authority name and serial number may be add to authority identification extension.

Alcatel propose to retain all attributes : Type of certificate, Label, authority, Key identifier, Request identifier (at least TTP) attributes.

What is the aim of CCM :

· Revoke one specific certificate : revoked certificates could be identify by issuer name and serial number.

· Revoke one public key whatever the certificate which contain it: revoked certificates could be identify by key identifier

· Revoke all certificate provided by a issuer: : revoked certificates could be identify by issuer key identifier

Can we base certificate identification in CCM on public key issuer or issuer name plus serial number in order to be compatible with PKCS#15 Request identifier attribute definition

Can we request to WAP forum to used the same method as CCM to build “request identifier” attribute.

Request identifier attribut shall be consistent with CCM certificate identification method.

SIM descriptor shall support new attributes definition

PKCS #15 Top Object (abstract)

PIN Object (structural)

Authentication Object (abstract)

External data objects (structural)

Data Object (abstract)

X.509 Certificate (structural)

Other Certificates (structural)

Certificate Object (abstract)

Public Key (structural)

Private Key (structural)

Secret Key (structural)

Key Object (abstract)

MF

DF(PKCS #15)

EF(DIR)

Other DFs/EFs…

PKCS #15

EF(ODF)

EF(PrKDF)

EF(CDF)

EF(AODF)

EF(TokenInfo)

EF(PrKDF)

EF(AODF)

EF(CDF)

EF(DODF)

EF(ODF)

PuKDF pointer

PrKDF pointer

CDF pointer

AODF pointer

DODF pointer

EF(PuKDF)

PIN 1 info

PIN 2 info

Cert 1 info

Cert 2 info

Key 1 info

Key 2 info

Private key 2

Private key 1

AODF

PrKDF

CDF

Cert 1

EF(AODF)

Information about certificate #1

Information about certificate #2

Information about certificate #n

Certificate #2

Certificate #1

EF(CDF)

EF(PrKDF)

EF(ODF)

Cert 2

