
3GPP TSG-SA WG6 Meeting #20
S6-171640
Reno, Nevada, USA, 27th Nov – 1st Dec 2017
(revision of S6-17xxxx)
Source:
Samsung
Title:
Pseudo-CR on API Guidelines
Spec:
3GPP TS 23.222
Agenda item:
8.8
Document for:
Approval
Contact:
Basavaraj (Basu) Pattan, basavarajjp@samsung.com
1. Introduction
The document provides API consistency guidelines for API frameworks developed utilizing CAPIF.
2. Reason for Change
1.
API consistency guidelines are required to avoid poorly designed APIs.

2.
Following EN:
Editor's note:
Describe common definitions and guidelines for consistent northbound APIs development.

3. Proposal

It is proposed to agree the following changes to 3GPP TS 23.222.
* * * First Change * * * *

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Editor's note:
Removing definitions not used in this specification is FFS.

API: The means by which an API invoker can access the service.

API invoker: The entity which invokes the CAPIF or service APIs.
API invoker profile: The set of information associated to an API invoker that allows that API invoker to utilize CAPIF APIs and Service APIs.
API exposing function:  The entity which provides the service communication entry point for the service APIs.

Common API framework: A framework comprising common API aspects that are required to support service APIs.

Northbound API: A service API exposed to higher-layer API invokers.

Onboarding: One time registration process that enables the API invoker to subsequently access the CAPIF and the service APIs.
Resource: Any component, function, enabler, or application that can send, receive, or process requests.
Service API: The interface through which a component of the system exposes its services to API invokers by abstracting the services from the underlying mechanisms.

For the purposes of the present document, the following terms and definitions given in 3GPP TS 32.240 [4] apply: 

Offline charging

Online charging

* * * Next Change * * * *

9
API consistency guidelines


9.1
General
This clause specifies the API consistency guidelines for sets of service APIs utilizing CAPIF architecture. The guidelines are categorized in 3 categories:

-
fundamental API guidelines, applicable to all sets of APIs utilizing CAPIF;

-
architecture design considerations, suggesting architecture design considerations for all sets of APIs utilizing CAPIF; and 

-
RESTful API development guidelines, applicable to all sets of APIs utilizing CAPIF, conforming to RESTful architecture.
9.2
Fundamental API Guidelines

Set of service APIs defined utilizing Common API Framework should adhere to the following fundamental API guidelines:

1.
the function of the API;

2.
the resource(s) involved;

3.
list of supported methods and their usage;

4.
list of input and output parameters along with applicable schemas, as required;

5.
list of supported response codes;

6.
the behavior of the network functional entities (such as, CAPIF core function or the API exposing function) for each supported method;

7.
the policy and access control list; 

8.
the criteria to facilitate charging
9.
list of applicable data types; and

10.
nomenclature for the methods and the resources;

Set of service APIs defined utilizing the Common API Framework should be:

1.
scalable, such that it is possible to accommodate future requirements;

2.
testable, to ensure the API is stable; and

3.
backward and forward compatible with versions of the same API. 

9.3
Architecture design considerations
Set of service APIs defined utilizing Common API Framework should adhere to RESTful architecture, whenever possible and should:

1.
have a uniform interface:

a.
a resource in system should have only one logical URI, and should provide way to fetch related or additional data as required;

b.
any single resource should not be too large and contain each and everything in its representation. Whenever relevant, a resource should contain links (HATEOAS) pointing to relative URIs to fetch related information;

c.
the resource representations across system should follow certain guidelines such as naming conventions, link formats or data format; and

d.
all resources should be accessible through a common approach such as HTTP GET, and similarly modified using consistent approach;

2.
allow the client (such as, API invoker) and server (such as, CAPIF core function or the API exposing function) to evolve independently, i.e. client (such as, API invoker) should know only resource URIs and should not be aware of the execution of the APIs on the server (such as, CAPIF core function and the API exposing function);

3.
be stateless and each request from client (such as, API invoker) to server (such as, CAPIF core function or the API exposing function) must contain all of the information necessary for the server (such as, CAPIF core function and the API exposing function) to understand the request; and

4.
apply caching when applicable and allow resources, requests and responses to be declared as cacheable. Caching should be possible at both client (such as, API invoker) and server (such as, CAPIF core function and the API exposing function).

9.4
RESTful API development guidelines

Set of service APIs defined utilizing Common API Framework should adhere to the following RESTful API development guidelines:

1.
terminologies such as Resource, URI and Operations etc. should be clearly defined;

2.
every resource should be uniquely identified by a URI and a URI structure should be specified;

3.
URIs should contain only resources names (nouns) and not actions (verbs);

4.
resources are either individual resources, or collection resources that can contain child resources of the same type;

5.
URIs should contain the resource identifier to access an instance of a specific resource;

6.
usage of HTTP methods should be defined as required, such as, GET, PUT, POST, DELETE, HEAD, OPTIONS, PATCH;

7.
service operations can use custom API operations (RPC-style interaction), when it is seen a better fit for the style of interaction to model, e.g. non-CRUD service operations;

8.
HTTP response codes should be reused, whenever possible;

9.
dataset queries should be defined as actions (verbs) and redundant set of APIs to handle these actions should be avoided, e.g. searching, sorting, filtering and pagination should be appended as query parameters with the GET method API;

10.
maintain version control and include version number in the request;

11.
URIs should not reveal the implementation technique used. It should be possible to change ther server (such as, CAPIF core function or the API exposing function) implementations without impacting the clients (such as, API invokers);

12.
to improve network efficiency, it should be possible to label responses as cacheable or non-cacheable;

13.
APIs should be side-effect free i.e. invocation of the resources should not result in unwanted modification of the resource; and

14.
a vocabulary providing the description of the resources defined by CAPIF and the relationship between such resources should be provided using a description language, such as, JSON or XML.
* * * Next Change * * * *

[image: image1.jpg]Y




