BroadbandForum 2009.703.00

Project:

TR-196

Title:

TR-196 annex “theory of operation”
Source:

Taka Yoshizawa

Thomson

taka.yoshizawa@thomson.com

	

Date:

Sept. 4, 2009
Distribution:

Broadband Home Technical Working Group

Abstract:

Additional Annex to TR-196.

Notice:

This contribution has been prepared to assist the DSL forum. It is offered to the Forum as a basis for discussion and is not a binding proposal on the author(s), parent companies or any other company. The requirements are subject to change after further study. The author reserves the right to add, amend or withdraw any and all statements made herein.

1 Background

TR-196 [1] was published in April 2009. Due to the nature of the data model document, it was felt to be beneficial to describe and explain how the objects and parameters are intended to be used. Common understanding of the data model will help eliminate ambiguities and variations of interpretations, which is important from interoperability perspective. In this respect, the following section titled “theory of operation” is proposed to be added as an annex at the end of the document [1].
Reference
[1] TR-196 Femto Access Point Service Data Model, Issue 1, April. 2009.

2 Proposed changes

Note: In the following texts, the red strikethrough texts are to be removed, and blue font texts are to be added.

Begin Change Text

Annex D
Theory of Operation
D.1
Table of Content
D.1
Table of Content

D.2
Introduction

D.3
Management Connection Establishment

D.4
SecGW, FAPGW Discovery and Connection Establishment

D.5
Location Verification

D.6
Self-Configuration

D.7
Radio Environment Measurement (REM) Process

D.8
Neighbor List Configuration

D.9
State Management

D.10
Fault Management

D.2
Introduction
This informative annex describes the “theory of operation” of TR-196 data model. This explains the intended usage of the objects and parameters to achieve the desired operation on the FAP. Note that the actual implementation are influenced by factors external to the TR-069 or TR-196 data model itself – such as operator policy, vendor implementation decision, variations of FAP products, etc. Therefore, variations of implementations will exist and there is no single right answer to accomplish the desired end-goal (i.e. self-configuration). However, objects and parameters in TR-196 are complex enough to warrant some explanations of the intended usage. Under this circumstance, this appendix illustrates, as a guideline, the intended usage of objects and parameters in TR-196 to achieve such goals. It is certainly possible for a FAP vendor to invent and implement mechanisms above and beyond the existing objects and parameters in TR-196. However it is outside the scope of this annex.
Note 1: In the rest of this annex, whenever the object name for FAP data model is referenced by the string starting with “.FAPService.{i}….”, the full path is as follows:
· InternetGatewayDevice.Service.FAPService.{i}…

Note 2: In all of the figures in this annex, arrows pointing to the ACS indicate the “get” action (GetParameterValues) and arrows pointing away from the ACS indicate the “set” action (SetParameterValues) by the ACS.
D.3
Management Connection Establishment

There are two possible scenarios where the TR-069 CWMP session is established with the ACS and it is the operator-dependent policy:
1. Outside the IPsec tunnel
2. Over the IPsec tunnel

In the first case, no specific explanation is needed. Security of the management connection is provided by the TLS/SSL as the TR-069 native method. Identity of the ACS is already defined in TR-098, and is expected to exist as the factory-default setting of the FAP:
· ACS identify and associated parameters:

· InternetGatewayDevice.ManagementServer.URL

· InternetGatewayDevice.ManagementServer.Username

· InternetGatewayDevice.ManagementServer.Password

In the second case, IPsec tunnel needs to be established with the SecGW before the TR-069 session is established with the ACS. In this case, in addition to the parameters listed above, the SecGW identity and associated security parameters are expected to exist as the factory-default setting of the FAP:
· SecGW identity

· .FAPService.{i}.FAPControl.UMTS.Gateway.SecGWServer1

· Object and subtending sub-objects and parameters necessary to establish the IPsec tunnel under:

· .FAPService.{i}.Transport.Tunnel.

· .FAPService.{i}.Transport.Security.

D.4 SecGW, FAPGW Discovery and Connection Establishment
Figure 1 below illustrates the process in which the FAP establishes the signaling connection with FAPGW over the IPsec connection with SecGW when the ACS is outside of the IPsec tunnel.
[image: image1.png]FAPGW

SecGW

FAP

Transport
function

_FAPService. {i}.FAPControl UMTS. Gateway.

SecGWID L.
FAPGWID 1
FAPGW port

-FAPService.{i} Transport.SCTP.

HBinterval,
MaxassociationRetransmit, etc.

—

'
FAPService. i} Transport. Tunnel. irtualinterface. {i}.

IPsec <_,
function

CryptoProfile, etc.

FAPService.{i}. Transport. Security. CryptoProfile {i}.

ACS

Figure 1: SeGW, FAPGW connection esetablishment
Based on the description in the previous section, if TR-069 session with the ACS is established through the IPsec tunnel, then the necessary IPsec related parameters are expected to be already set in the FAP as factory-default. In this case, the ACS can modify the IPsec related parameter values if needed.

If the FAP is provided with more than 1 identity for SecGW, it tries to establish an IPsec tunnel with them in the sequential order they are provided (SecGWID1, 2…). In case the IPsec tunnel is not successfully established, FAP tries the next on the list. After the FAP successfully establishes an IPsec, it moved on to establish signaling connection with the FAPGW in the similar manner with the SecGW.

If ACS decides that the FAP should establish with a SecGW that is different from what it is currently connected, then the ACS can overwrite the SecGW identity. Then the FAP first tears down the existing IPsec tunnel and re-establishes with the new one.

When FAP fails to establish connection with either SecGW or FAPGW for all of the identities provided, then the FAP goes back to the ACS for re-provisioning of SecGW and/or FAPGW.
D.5
Location Verification
Location verification can be done using one or more of the following type of information:

1. REM process using macrocell information

2. GPS

3. Others (e.g. fixed broadband related information)

Figure 2 below shows the list of objects available for this purpose.
[image: image2.png]pr

-

£

UARFCNDL,
PrimaryscramblingCode, etc.

APService. {i}. REM.WCDMAFDD. Cell (i}

BCCH!

PLMNID, LAC, RAC, CeliD, etc.

-FAPService. {i}. REM.WCDMAFDD. Cell.{i}.

Latitude, Longitude, etc

APService. {i}.REM.GSM. Cell.{i}.

ARFCH, LAC, RAC, €1, etc.

(FAPService.{i}.GPS

LockedLatitude, LockedLongitude, etc.

|
BCCH ReferencePosition

InternetGatewayDevice. WANDevice {i}. WAN Connecti

onDevice.{i}.WANIPConnection.{i}. or

InternetGatewayDevice. WANDevice {i}. WAN Connecti

ExternallpAddress

i
I
I
I
| onDevice. {i}. WANPPP Connection. {i).
I
i
I
"

ACS

Figure 2: Location information

D.6
Self-Configuration
D.6.1
General Description
This section describes the self-configuration aspect of the FAP. This topic includes multiple aspects and can mean different things to different people. Even for the same aspect (e.g. configuration of radio related parameters or neighbor list), it is possible to design more than one way to accomplish the goal. In this respect, even though there is no “right” or “wrong” way in an absolute sense, it is desirable to define a model on which the mechanism is based. To this end, the section illustrates the fundamental concept and approach to the self-configuration.
Note that Radio Environment Measurement (REM) and Neighbor List (NL) configuration require special attention. Therefore, these two topics are discussed separately.
D.6.2
General Approach to Self-Configuration

Self-configuration is a process in the CM where the FAP determines a specific parameter value among more than one possible choices under the guidance of the ACS as opposed to the latter providing a specific parameter value to the former. The following is the general high-level “theory” of self-configuration of FAP:

1. The ACS acts as the master of the overall self-configuration behavior of the FAP and explicitly instructs the FAP with which aspect of the self-configuration it is requested to perform (or not to perform).

2. FAP behaves under the guidance of the ACS for self-configuration and perform self-configuration for the aspect it is requested to perform within the limitation and boundary set by the ACS.
3. The ACS can provide more than one possible choice of value (or range of values) from which the FAP selects one based on criteria including its local knowledge (e.g. environmental information).

4. The ACS can query the choice made by the FAP and has the right to override the value that the FAP has selected during this process.
5. Once the FAP is overridden by the ACS with any specific parameter, the former accepts it unconditionally (as long as the value is valid).
D.6.3
General Process Flow

Figure 3 illustrates an example of the general process flow for the self-configuration. Note that this is a “general” flow and variations exist depending on the exact type of self-configuration. For example, in step (3) in the figure, the ACS provides a list of choices from which the FAP selects. However, in the case of neighbor list configuration, this does not necessarily apply and is addressed separately. See the separate section for the self-configuration of the neighbor list.
[image: image3.png]FAP ACS

(1) ACS queries the FAP’s self-config capability

(2) ACS determines
the self-config rule
based on the received
capability and
operator policy

(3) ACS instructs the FAP to execute self-config
based on the determined policy, and provide a
list of choices for the FAP to selectfrom.

(4) FAP executes
the self-config

(5) ACS queries the choicesmade by the FAP and
take further action asneeded

T I

Figure 3: General process flow of self-configuration

D.6.4
Use of “Active Notification”

In some cases, self-configuration activity can take a period of time beyond a single TR-069 session. In this case, self-configuration process continues within the FAP independent from the TR-069 session. This implies that a new session needs to be re-established when the FAP is ready to continue with the self-configuration process but no TR-069 session exists at that time.

In this case, one way to facilitate this is to use “active notification.” It is one of the attributes in the parameters. A parameter that has “active notification” turned on triggers TR-069 establishment when its value changes (e.g. self-configuration status change to indicate that the FAP is ready to continue to the next step). This implies that a certain set of parameters needs to have the “notification” attribute to be set appropriately.
The example of parameters that can utilize this mechanism includes the followings:

Table 1: Example Parameters for Active Notification

	Parameter
	Description

	.FAPService.{i}.REM.WCDMAFDD.ScanStatus
	Indicates the current REM status of the UMTS cells (FDD). The change of value from “InProgress” to “Success” or “Error_TIMEOUT” indicates that the FAP has completed the REM process and ready to proceed to the next step with the FAP.

	.FAPService.{i}.REM.GSM.ScanStatus
	Indicates the current REM status of the GSM cells. The change of value from “InProgress” to “Success” or “Error_TIMEOUT” indicates that the FAP has completed the REM process and ready to proceed to the next step with the FAP.

D.6.5
Default Values

There are writable parameters that are used to enable self-configuration function in the FAP. By default, they are set to be “disabled” implying that no self-configuration is allowed until the ACS explicitly sets them to enable them.
This applies to all parameters located under:

· .FAPService.{i}.FAPControl.UMTS.SelfConfig.

D.6.6
Discovery of Device Capabilities and Activation of Self-Configuration
Activation of self-configuration is shown in Figure 4 below. The ACS first reads what self-configuration functionalities the FAP supports by reading …Config parameters under .FAPService.{i}.Capabilities.UMTS.SelfConfig. Based on this information, the ACS enables the appropriate …ConfigEnable parameters under .FAPService.{i}.FAPControl.UMTS.SelfConfig to activate that specific aspect of the self-configuration. The FAP in turn starts the internal self-configuration function.
[image: image4.png](FAP

-

FAPService.{i}. Capabilities. UMTS. Self Config.

abeConfig
xyzConfig, etc.

FAPService.{i}.FAPControl.UMTS. SelfConfig.

Self-config <j
function

abcConfigEnable,
xyzConfigEnable, etc.

«—t

ACS

Figure 4: Discovery of device capabilities and activation of self-configuration
D.6.7
Deactivation of Self-Configuration
Deactivation of self-configuration is done in the following way as shown in Figure 5 below. The ACS disables the appropriate …ConfigEnable parameter under .FAPService.{i}.FAPControl.UMTS.SelfConfig to de-activate that specific aspect of the self-configuration. FAP in turn stops the internal self-configuration function.
[image: image5.png](FaP

.FAPService.{i}.FAPControl. UMTS. SelfConfig.

Self-config abcConfigEnable,
function xyzConfigEnable...

ACS

Figure 5: Deactivation of self-configuration

D.6.8
Self-Configuration Operation
There are two types of self-configuration operation. The first type applies to individual parameter and the second type applies to a group of parameters. In Figure 6 below, these are shown as two horizontal groups. In addition, the figure also shows the relationship of objects and parameters to illustrate the process or flow of events. This is shown by 4 columns moving from left to right.
[image: image6.png]FAP announcesits self-
configuration capal

.FAPService.{i}.Capabilities.U
MTS.SelfConfig.

UARFCNConfig

PrimaryScramblingCodeConfig

MaxFAPTxPowerConfig
PCPICHPowerConfig
MaxULTxPowerConfig
LACRACURACoNfig

ACS to turn on/off particular
self-configuration in FAP

.FAPService.{i}.FAPControl.UMTS.
SelfConfig.

Individual P
UARFCNSelfConfigEnable

PrimaryScramblingCodeSelfConfigEnal
le

MaxFAPTxPowerSelfConfigénable
PCPICHPowerSelfConfiginable
MaxULTxPowerSelfConfigEnable
LACRACURASelfConfigEnable

ACS provides one or
more choices of value

_FAPService {i}.CellConfig.
UMTS.RAN.FDDFAP.

ameter
RF.UARFCNDL

RF.PrimaryScramblingCode

RF.MaxFAPTxPower
RF.PCPICHPower
RF.MaxULTxPower
FAPSenvice.{i}.CellConfig.

FAP announces the final
selected value

.FAPService.{i}.CellConfig.
UMTS.RAN.FDDFAP.

RF.UARFCNDLInUse,
RF.UARFCNULInUse

RF.PrimaryScramblingCodelnU
se

RF.MaxFAPTxPowerlnUse
RF.PCPICHPowerInUse
RF.MaxULTxPowerInUse
FAPService.i.CellConfig.

parameter

UMTS.CN.LACRAC UMTS.CN.LACInUse,
RACInUse
NeighborListConfig NeighborListselfConfigEnable NeighborList. NeighborListinUse.
Group of Pafdmeters. o

CellReSelectionConfig CellReSelectionselConfigenable Cellselection. Same s the left column 33
IntraFreqMeasConfig IntraFreqMeasSelfConfigEnable IntraFreqMeas. Same as the left column E 3
InterFreqMeasConfig InterFreqMeasSelfConfigEnable InterFreqMeas. Same as the left column 3 i
InterRATMeasConfig InterRATMeasSelfConfigEnable InterRATMeas. Same as the left column Z‘t s
UElnternalMeasConfig UElnternalMeasConfigEnable UElnternalMea ame as the left column J

Figure 6: Self-configuration operation – object relationship
For the first type that applies to the individual parameter (the upper horizontal group in the figure), the self-configuration operation is simple – the respective …ConfigEnable flag turns on or off the self-configuration of that particular parameter (e.g. UARFCN).

For the second type that applies to a group of parameters (the lower horizontal group in the figure), the self-configuration operation is done as follows:

1. If a value to a particular parameter in the group is explicitly provided by the ACS during the configuration, the FAP takes it as is and consider that self-configuration action of that parameter is not requested.

2. If a value to a particular parameter in the group is not explicitly provided by the ACS during the configuration, the FAP considers it as a request by the ACS that those “missing” parameters require self-configuration. The FAP initiates the self-configuration action for those “missing” parameters.

D.7
Radio Environment Measurement (REM) Process
There are two main purposes for the REM process and they are functionally separate:

1. Location verification

The surrounding cell information (e.g. macrocells) can be used as a “fingerprint” of the area the FAP is located in order for the O&M system to verify its location against the location the FAP owner subscribed the service with (e.g. street address of the owner). This is covered in the previous section that discusses location verification.
2. Neighbor list (NL) configuration

The scanning of the DL information (physical radio level information and broadcast information) is gathered from the nearby cells to build the neighbor list. This is a part of the FAP configuration so that it can broadcast appropriate set of NL to the UEs. This is covered in the next section.
This section discusses the general aspect of the REM process to facilitate these two purposes.

D.7.1 Execution of REM
The REM process is expected to be executed at the following timings:

· Very first (i.e. “out-of-the-box”) initialization

· Subsequent initialization (i.e. reboot/reset)

· At periodic interval during the normal operation

D.7.2 Configuration of Periodic Measurement
The periodic interval of the REM process is configured by the ACS by setting one or more of the parameters shown in Figure 7 below.
[image: image7.png]FAP

.FAPService.{i}.REM.WCDMAFDD.

ScanPeriodically,
Periodicinterval,
PeriodicTime

.FAPService.{i}.REM.GSM.

ScanPeriodically,
Periodicinterval,
PeriodicTime

N\

ACS

Figure 7: REM Periodic Configuration

D.7.3 Configuration of Selective Measurement
The REM activity can be made so that only a selected subset of the possible measurements is to be done. This helps to optionally speed up the REM process in the FAP by possibly ignoring other cell(s) that the system operator chooses not to consider (e.g. cells that belong to other PLMNs, or cells under a specific UARFCN). This can be done by using one or more of the following parameters shown in Figure 8 below. By default, no selective measurement is assumed by the FAP. In other words, all parameter values in Figure 8 are “<empty>” by default.
[image: image8.png](" Fap

.FAPService.{i}.REM.GSM.

.FAPService.{i}.REM.WCDMAFDD.

InServiceHandling,
ScanOnBoot,
REMPLMNList,
REMBandList,
ARFCNList,
ScanTimeout

InServiceHandling,
ScanOnBoot,
REMPLMNList,
REMBandList,
UARFCNDLList,
ScanTimeout

ACS

Figure 8: REM Selective Measurement Configuration
D.7.4 Storage and Retrieval the Measurement Result
The storage and retrieval of the REM information is shown in Figure 9 below. When the FAP indicates that the information is available (ScanStatus), ACS can read the content. See table 1 for the use of “Active Notification” attribute discussed earlier in this annex.
[image: image9.png].FAPService.{i}.REM.WCDMAFDD.

FAPService. {i}.REM.GSM.

ScanStatus,
CellNumberOfEntries

ScanStatus,
CellNumberOfEntries

FAPService.{i}.REM.WCDMAFDD. Cell.{i}.

RF

-FAPService. {i}.REM.GSM. Cell.{i}.

FAPService.{i}.REM.WCDMAFDD. Cell.{i}.

BCCH

ACS

Figure 9: Retrieval of REM Result
Two ScanStatus parameters shown in the above figure indicate the current REM status as defined in Table 2 below (this applies to both WCDMAFDD and GSM cells).

Table 2: ScanStatus Definition
	Value
	Description

	Indeterminate
	REM has not been executed and there is no valid scan results available. This is the initial (default) value (i.e. out-of-the-box state).

	InProgress
	REM process is currently in progress and the corresponding …Cell.{i}. objects are being populated and thus not yet ready to be read.

	Success
	REM process has completed successfully and corresponding …Cell.{i}. objects are ready to be read.

	Error
	REM process has resulted in error and corresponding …Cell.{i}. objects does not contain valid information.

	Error_TIMEOUT
	REM process was terminated due to timeout set by the ScanTimeOut parameter. However, the corresponding …Cell.{i}. objects up to the entries indicated by CellNumberOfEntries do contain valid information and are ready to be read.

D.8
Neighbor List Configuration
There are two methods for the neighbor list configuration:
1. Fixed-configuration

2. Self-configuration
D.8.1 Fixed-configuration

In fixed-configuration, the entire neighbor list configuration is provided by the ACS without consideration of the detected neighbors by the FAP as a result of the REM process. In this case, the detected neighbor list from the REM process can be used specifically for the location verification purpose only, but not for the neighbor list configuration purpose. Or ACS can, if so desired, optionally turn-off the entire REM process by setting ScanOnBoot parameter to be “false.”
[image: image10.png]FAP FAPService.{i}.FAPControl. UMTS.SelfConfig.

NeighborListselfConfigEnable

.FAPService.{i}. CellConfig.UMTS.RAN.FDDFAP.NeighborList.IntraFreqCell.{i}.

FAPService.{i}. CellConfig.UMTS.RAN.FDDFAP.NeighborList.InterFreqcCell {i}.

FAPService.{i}. CellConfig. UMTS.RAN.FDDFAP.NeighborList.InterRATC2Il. GSM.{i}.

ACS

Figure 10: Neighbor List – Fixed-configuration
D.8.2 Self-configuration
In self-configuration, the result from the REM process is taken into account for the final neighbor list configuration. Based on the REM result, the ACS takes additional step to configure the neighbor list.

[image: image11.png].FAPService. {i}.FAPControl.UMTS. SelfConfig.

! 1
! il
! 1
: NeighborListselfConfigenable : «—t -
L u

-FAPService.{i}.REM.WCDMAFDD. -FAPService.{il.REM.GSM.

ScanStatus, CellNumberOféntries Scanstatus, CellNumberOfEntries

——f— | ACS

| -FAPService i} CellConfig UMTS.RAN.FDDFAP. Neighborist Intrafreqell i)
1 |

|

| -FAPService {i}. CellConfig. UMTS.RAN.FDDFAP. N eighborlist.InterfraqCell.(i}.
1 |

1
I .FAPService.{i}.Cellconfig. UMTS.RAN.FDDFAP.Neighborist.InterRATCel. GSM.{i}.
| $

Figure 11: Neighbor List – Self-configuration

Upon obtaining the detected neighbor list through the REM process, the ACS has two options to take for each detected neighbor in order to derive the final neighbor list configuration:
1. Keep it.

2. Remove it (ignore it).

In addition, if the ACS wishes to add any cell that is not in the reported neighbor list, it can add it to the final neighbor list.

The decisions made by the ACS mentioned above is communicated to the FAP by MustInclude parameter under the following objects:

· .FAPService.{i}.CellConfig.UMTS.RAN.FDDFAP.NeighborList.IntraFreqCell.{i}.
· .FAPService.{i}.CellConfig.UMTS.RAN.FDDFAP.NeighborList.InterFreqCell.{i}.
· .FAPService.{i}.CellConfig.UMTS.RAN.FDDFAP.NeighborList.InterRATCell.GSM.{i}.
Upon receiving the neighbor list in the above object, the FAP obeys the request by the ACS expressed in MustInclude parameter (see Table 3).

Table 3: MustInclude Definition
	MustInclude value
	Description

	True
	ACS requests FAP to include this particular neighbor to the final neighbor list.

	False
	ACS requests FAP to exclude this particular neighbor to the final neighbor list.

D.9
State Management
The following Figure 12 shows the State Management.

[image: image12.png](FAP

State
Mgmt

.FAPService {i} FAPControl.

Adminstate

OpState,
RF State

<]

.FAPService {i} FAPControl.

ACS

Figure 12: State Management
There are 3 parameters that controls the FAP state and operation.

1. Administrative State (.FAPService.{i}.FAPControl.AdminState)

2. Operational State (.FAPService.{i}.FAPControl.OpState)

3. RF Tx Status (.FAPService.{i}.FAPControl.RFTxStatus)

When the FAP (re-)initializes, it changes the status of these parameters to the following value as default regardless of the current value (see Table 4).
Table 4: SM parameter Definition
	Parameter
	Default value

	Administrative State
	false (i.e. locked)

	Operational State
	false (i.e. disabled

	RF Tx Status
	false (i.e. RF off)

D.10
Fault Management
D.10.1
Introduction

There are 4 types of alarm event handling:

1. Expedited Event – alarm event is immediately notified to the ACS with the use of Active Notification mechanism
2. Queued Event – alarm event is notified to the ACS at the next opportunity with the use of Passive Notification mechanism
3. Logged Event – alarm event is stored locally in the FAP but not notified to the ACS

4. Disabled Event – alarm event is ignored by the FAP and no action is taken
Table 5 shows the multi-instance objects for FM to manage the alarm events.

Table 5: FM Object Definition
	Object name (FAPService.{i}.FaultMgmt.)
	Table size
	Content
	Purpose and usage

	SupportedAlarm.{i}.
	Fixed
	Static & fixed content
	Defines all alarms that the FAP supports. ReportedMechanism defines how the alarm is to be handled within the FAP: 0 – Expedited, 1 – Queued, 2 – Logged, 3 – Disabled
The table size is fixed and its content is static in order to drive the alarm handling behavior in the FAP.

	ExpeditedEvent.{i}.
	Fixed
	Dynamically updated
	Contains all “Expedited” type alarm events since the last FAP initialization. This includes events that are already reported or not yet reported to the ACS. One entry exists for each event. In other words, raising and clearing of the same alarm are two separate entries. As the table size is fixed (vendor defined), new alarm event overwrites the oldest entry in FIFO fashion after the table becomes full.

	QueuedEvent.{i}.
	Fixed
	Dynamically updated
	Contains all “Queued” type alarm events since the last FAP initialization. This includes events that are already reported or not yet reported to the ACS. One entry exist for each event. In other words, raising and clearing of the same alarm are two separate entries.

As the table size is fixed (vendor defined), new alarm event overwrites the oldest entry in FIFO fashion after the table becomes full.

	CurrentAlarm.{i}.
	Variable
	Dynamically updated
	Contains all the currently active alarms (i.e. outstanding alarms that are not yet cleared) since the last FAP initialization. When an outstanding alarm is cleared, that entry is deleted from this table. Therefore, only 1 entry exists for a given unique alarm.

ACS can retrieve the content of this table to get the entire view of the currently outstanding alarms.

As this is a variable size table, the size changes as alarm event is raised and cleared.

	HistoryEvent.{i}.
	Fixed
	Dynamically updated
	Contains all alarm events as a historical record keeping purpose. One entry exist for each event. In other words, raising and clearing of the same alarm are two separate entries.

ACS can retrieve the content of this table to get the entire chronological history of the alarm events on the FAP.

As the table size is fixed (vendor defined), new alarm event overwrites the oldest entry in FIFO fashion after the table becomes full.

Table 6 shows the timing of when an entry to be created/updated/deleted, and the entire table to be cleared.

Table 6: FM Object Usage

	Object name (FAPService.{i}.FaultMgmt.)
	Timing of a new entry to be created
	Timing of an existing entry to be updated
	Timing of an existing entry to be deleted
	Timing of the entire table to be cleared

	ExpeditedEvent.{i}.
	When a new event of “Expedited” type occurs (i.e. raise a new alarm or clear an existing alarm)
	Never (i.e. once an entry is made, the content is not changed)
	Never (i.e. once created, the content is never deleted)
	FAP reboot

	QueuedEvent.{i}.
	When a new event of “Queued” type occurs (i.e. raise a new alarm or clear an existing alarm)
	Never (i.e. once an entry is made, the content is not changed)
	Never (i.e. once created, the content is never deleted)
	FAP reboot

	CurrentAlarm.{i}.
	When a new alarm (all types except Disabled events) is raised
	When the alarm status changes
	When the alarm is cleared
	FAP reboot

	HistoryEvent.{i}.
	When a new event of all types except Disabled type occur (i.e. raise a new alarm or clear an existing alarm)
	Never (i.e. once an entry is made, the content is not changed)
	Never (i.e. once created, the content is never deleted)
	Never (i.e. content is maintained across reboot)

D.10.2
Expedited Event
Figure 13 shows the expedited event handling. All alarms in the “expedited” type are stored in FAPService.{i}.FaultMgmt.ExpeditedEvent.{i}. multi-instance object and notified to the ACS using Active Notification mechanism by immediately establishing a TR-069 session with the ACS.
Alarms are also stored in FAPService.{i}.FaultMgmt.CurrentAlarm.{i}. and FAPService.{i}.FaultMgmt.HistoryEvent.{i}.
[image: image13.png][FAPService {i} FaultM gmt ExpeditedEvent {i}.
[] —

[FAPService {i} FaultM gmt.CurrentAlarm {i}.
|]

[FAPService {i} FaultM gmt HistoryEvent {i}.

ACS

Figure 13: Expedited Event Handling
D.10.3
Queued Event
Figure 14 shows the queue event handling. All alarms in the “queued” type are stored in FAPService.{i}.FaultMgmtQueuedEvent.{i}. multi-instance object. It is notified to the ACS using Passive Notification mechanism. In this case, the event is notified to the ACS at the next periodic TR-069 session establishment.
Alarms are also stored in FAPService.{i}.FaultMgmt.CurrentAlarm.{i}. and FAPService.{i}.FaultMgmt.HistoryEvent.{i}.
[image: image14.png]4 FAPService {i} FaultM gmt QueuedEvent {i.
>

\ FAPService {it FaultM gmt CurrentAlarm {i}. ACS
(H | |
\ FAPService {i} FaultM gmt HistoryEvent {i}.
-—' |
"

Figure 14: Queued Event Handling
D.10.4
Logged Event
Figure 15 shows the logged event handling. All alarms in the “logged” type are stored only in the FAPService.{i}.FaultMgmt.CurrentAlarm.{i}. and FAPService.{i}.FaultMgmt.HistoryEvent.{i}. Alarms of this type are not reported to the ACS.

[image: image15.png]ACS

\ FAPService {it FaultM gmt CurrentAlarm {i}.

G\ '

\ [FAPService {i} FaultM gmt HistoryEvent {i}.

- |]

Figure 15: Logged Event Handling

End Change Text

2

