3GPP TSG-SA5 (Telecom Management)
S5-092420
Meeting SA5#65, 11-15 May 2009, Tallinn, Estonia
revision of S5-09xyzw
Source:
Ericsson
Title:
Modeling techniques supporting SuM
Document for:
Discussion
Agenda Item:
6.02 New Work Item proposals
1
Decision/action requested

Discuss modeling techniques to solve challenges for an evolved SuM information model.
2
References

-

3
Rationale

· Propose modeling techniques, particularily aimed to solve challenges for an evolved SuM information model
4
Detailed proposal

4.1
Naming vs. containment

The name-containment relationship is a composition type of relationship that implies that a child object is deleted when the containng parent is deleted.

To allow flexible data manipulation, aggregation relationships with hollow diamond can be used for containment. The naming of the objects can be done in a separate naming tree.
We can let all SuM classes be name-contained directly under SubNetwork. Hence, a SubNetwork instance that name-contains SuM class object instances constitutes a namespace, and for an instantiated object model there may be one or more namespaces, where each object's name belongs to one namespace and one namespace only. SubNetwork may also be instantiated in a hierarchy of self-containment, hence obtaining a hierarchy of namespaces, if desirable (operator's choice).

Doing this for the SuM model is illustrated in the following two figures.

[image: image1.emf]This proxy class represents

the following IOCs:

ServiceProviderFunction

SubscriptionFunction

SuMSubscriberProfile

SuMUser

SuMService

SuMSubscribedService

SuMServiceProfile

SuMIOCs

<<ProxyClass>>

ManagedElement

(from TS 132 622)

<<InformationObjectClass>>

SubNetwork

(from TS 132 622)

<<InformationObjectClass>>

0..n

1

0..n

1

<<names>>

1

0..n

1

0..n

<<names>>

0..n

0..1

0..n

<<names>>

0..1

Figure 1: Naming tree

[image: image2.emf]SuMServiceProfile

(from TS 132 172)

<<InformationObjectClass>>

SuMSubscribedService

(from TS 132 172)

<<InformationObjectClass>>

0..1

0..n

+specification

0..1

+service

0..n

description

SuMSubscriberProfile

(from TS 132 172)

<<InformationObjectClass>>

0..n

0..1

0..n

0..1

SuMUser

(from TS 132 172)

<<InformationObjectClass>>

0..n

0..1

0..n

0..1

0..n

0..n

0..n

0..n

SuMService

(from TS 132 172)

<<InformationObjectClass>>

0..n

0..1

+contract

0..n

+offer

0..1

agreement

SubscriptionFunction

(from TS 132 172)

<<InformationObjectClass>>

0..n

0..1

0..n

0..1

0..n

0..1

0..n

0..1

ServiceProviderFunction

(from TS 132 172)

<<InformationObjectClass>>

0..n

0..1

0..n

0..1

ManagedElement

(from TS 132 622)

<<InformationObjectClass>>

0..1

1

0..1

1

0..1

1

0..1

1

Figure 2: Containments and regular associations

4.2
Representation of relationships over an interface

Containment

In an XML Schema definition document, a class represented with an XML element can be hooked into its parent by defining the zzzOptionallyContainedNRMClass XML element of the parent as a SubstitutionGroup of the element to be contained.

Here is an example showing how ManagedElement contains SubscriptionFunction.
NOTE: Naming is not relevant for this example; only the containment portion of the ManagedElement-SubscriptionFunction relationship is of relevance here.
In TS 32.625:

 <element name="ManagedElement">

 <complexType>

 <complexContent>

 <extension base="xn:NrmClass">

 <sequence>

 <element name="attributes" minOccurs="0">

...
 </element>
 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="xn:IRPAgent"/>

 <element ref="xn:ManagedElementOptionallyContainedNrmClass"/>

 <element ref="xn:VsDataContainer"/>

 </choice>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 </element>

In TS 32.175:

 <element

 name="SubscriptionFunction"

 substitutionGroup="xn:ManagedElementOptionallyContainedNrmClass"

 >

 <complexType>

 ...

 </complexType>

 </element>
Using this technique on XML level, on the IS level no additional attribute is demanded when extending a model with a new containment.
On IS level, one can define that this relationship is unidirectional in either direction or bidirectional. The direction imposes a requirement on the implementation to be capable of storing/retrieving the relation in defined direction. The arrow of the relationship defines the direction of which the relationship is known. This means, if the direction is from parent-to-child, the implementation shall know which are the children of an object. Opposite, if the direction is from child-to-parent, the child shall know its parent(s) (often in information models, we allow a child only to have one parent). If there is no arrow tip, then both directions apply.
How this relation is expressed over an interface depends on the operations for the interface. Examples:
· In passing an XML document over an interface, this containment relationship can be expressed in the XML document by the structure of an element containing another element, according to the XSD. For the reader of such an XML document, the relationship is navigable in either direction.
· The IRP manager demands of a IRP agent to receive a list of the identities of all contained objects of a particular object. The response contains a list of the contained objects.

Name-containment

Name-containment has the properties of containment as discussed above. In addition, the name of a name-contained object, being the DN, specifies the naming path of the object back to the root of the naming tree. However, the actual passing of the containment relationship information is as described generally for containment above.

Association

When using CRUD based operations, as in the Basic CM IRP, the technique applied for passing association information over the interface is to represent the association with a relationship atribute which value is the DN of the related object.

If only non-CRUD operations were used, the association would not need to be expressed as an attribute. An example on this we can find in the Alarm IRP, where getAlarmList returns the list of alarms without there being any relationship attribute for the relationship between the AlarmIRP and the AlarmList or for the relationship between AlarmList and the AlarmInformation.
From this discussion, we see that the applied interface mechanisms determine how the association is represented over the interface.

4.3
Generic and Applied model

In many of our NRMs, we use abstract classes. A diagram with abstract clases represents a generic structure, and by sub-classing the abstract classes we create an applied model.

We can extend this principle into relationships. As much as an abstract class can be sub-classed into a concrete class, a kind of "abstract" relationship can serve to tell "this abstract relationship allows you to create a concrete relationship". Since UML uses the word "abstract" we should refrain from exending its meaning, so we can instead call it "template relationship".

We can define a <<template relationship>> stereotype and specialize the stereotypes into for example <<template association>> to allow only an association type of relationsip to be created, or <<template contains>> to allow only a containment type of relationship to be created.

The stereotypes template relationship and template contains could be defined as the following:

<<template relationship>>

The template relationship stereotype is not a real relationship of its own; instead it serves as a template indicating a possibility to create a relationship. In particular, the template relationship stereotype allows for creating a relationship of UML type; association, aggregation or composition, between a specialized pair of classes of the relationship endpoints, where at least one of the classes in the pair is specialized. Per this definition, a relationship of such conforms to the framework provided by the template and its endpoints.
<<template contains>>

The template contains stereotype is not a real relationship of its own; instead it serves as a template indicating a possibility to create a relationship of aggregation type. In particular, the template contains stereotype allows for creating a relationship of aggregation type between a specialized pair of classes of the relationship endpoints, where at least one of the classes in the pair is specialized. The aggregate (hollow diamond end) is indicated. Per this definition, a relationship of such conforms to the framework provided by the template and its endpoints.
The following diagram illustrates an application of these stereotypes to form a generic model from where applied models can be derived.

[image: image3.emf]SuMUser

(from TS 132 172)

<<InformationObjectClass>>

SuMService

(from TS 132 172)

<<InformationObjectClass>>

SuMSubscribedService

(from TS 132 172)

<<InformationObjectClass>>

SuMServiceProfile

(from TS 132 172)

<<InformationObjectClass>>

SuMIdentity

<<InformationObjectClass>>

SuMServiceParameters

<<InformationObjectClass>>

0..n

0..1

agreement

+contract

0..n

+offer

0..1

<<template relationship>>

0..n

0..1

description

+service

0..n

+specification

0..1

0..1

0..n

<<contains>>

0..1

0..n

<<template relationship>>

0..n

0..1

<<template contains>>

0..n

0..1

<<template relationship>>

<<template relationship>>

<<template relationship>>

<<template relationship>>

<<template relationship>>

<<template relationship>>

4.4
Interface class

An information object class (IOC) can contain an interface to be used by any, as opposed to specifying a relationship including also the far end. This is illustrated in the following diagram with the interface class called ExternalConnectionPoint.
[image: image4.emf]SuMServiceProfile

(from TS 132 172)

<<InformationObjectClass>>

ExternalConnectionPoint

0..n

11

0..n

The interface class can have a relationship attribute for pointing to any other objects. The interface class needs no name. It belongs to the containing IOC and merely provides the containing IOC with the capability of connecting to any other class. For a relation in opposite direction, the other object's reference is the parent class.
Such a facility allows for model extensions or connection to external models, as illustrated in the following diagram.
[image: image5.emf]SuMServiceProfile

(from TS 132 172)

<<InformationObjectClass>>

ClassFromExternalModel

<<InformationObjectClass>>

ExternalConnectionPoint

1

0..n

1

0..n

4.5
Association of attributes

To relate an attribute in one class with an attribute in another class (or even same class), we can apply the following technique:
(1) create a relationship between the two classes that contain the attributes to be related,
(2) let the relationship description specify a relation between these attributes only and not the other attributes contained in the classes.
Then it is the relationship description that filters on attribute level, although this filtering is not expressed in UML.
4.6
Views of the model

It could be possible to offer views of IM so to allow slim implementations such as "provisioning only".

TISPAN NOSIs or SOA interfaces provides such a view on interface level. One could offer such view concept on IM level (in contranst to i/f level). Less elegant and less standardized would be to use support qualifier optional on IOCs.
