ETSI TISPAN#10bis

10bTDXXX
3GPP SA5 #62
S5-082274r1
Miami,, Florida, USA, 17-21 November 2008

3GPP TSG-SA5 (Telecom Management)
S5-082274r1
Meeting SA5#62, 17-21 November 2008, Miami, Florida, USA

Source:
Ericsson
Title:
Import and names of namespaces
Document for:
Approval
Agenda Item:
6.03 OAM Maintenance and Rel-8 small Enhancements
1
Decision/action requested

Discuss and agree on the proposal.
2
References

This is related to the following contributions in to this meeting:

· creation of SOAP solution sets, S5-082254,

· the proposals for correction of URIs, S5-082153, S5-082154, S5-082155, S5-082156,

· the proposal on WSDL file location, S5-082159
3
Rationale

The intention with this contribution is to propose a solution with regards to import and file location in XSD and WSDL. Secondly, a discussion is provided on a naming convention for namespaces.
4
Detailed proposal

· For the XSD, use import in order to get access to definitions in other namespaces. This is given by the XSD standard, and there is no optionality on this point.
· Do not use schemaLocation in the import for XSD, which is optional by the XSD standard. Indicate only the namespace in the import.

· For the WSDL, use import.
· Use location in the import for WSDL, in addition to the indicating namespace.
· The above proposals are according to the current practice for the existing XSD and WSDL documents.
· Reasoning for the above proposals:

The development tool Altova XMLSpy requires an import in order to get access to other namespaces, this for WSDL as well as for XSD, while
the WSDL 1.1 standard states that an import can be used for specifying file location. Since the above mentioned widely used development tool requires import also for WSDL, the suggestion is to include import for WSDL. Since the WSDL standard indicates this above mentioned purpose of an import, the suggestion is to include file location in the import for WSDL.
For XSD, we see no need to include file location in the import, and therefore the suggestion is to exclude file location in the import for XSD.

5
For discussion

For discussion, we provide here the following naming rules for XSD and WSDL respectively:

· For XSD: Let the name of the namespace be a concatenation of the URL path to the directory of the specification, the # character, and the first name of the file, for example http://www.3gpp.org/ftp/specs/archive/32_series/32.625#genericNrm

· For WSDL: Let the name of the namespace be a concatenation of the URL path to the directory of the specification, the # character, and a descriptive extension, for example http://www.3gpp.org/ftp/Specs/archive/32_series/32.111-7#AlarmIRPData

· For soapActions: Let the name of the soapAction be a concatenation of the URL path to the directory of the specification, the # character, and a descriptive extension, for example
http://www.3gpp.org/ftp/Specs/archive/32_series/32.111-7#acknowledgeAlarms
· The SOAP SSs and XSDs are designed to work with other SOAP SSs and XSD of the same release only.
Reasoning for the above naming rules:

The naming rule must accommodate the current practice of that in an XSD, we define one targetNamespace only, while in WSDL we define multiple targetNamespace. Therefore, the rule makes the difference between WSD and WSDL of that the XSD uses first name of the file, while the WSDL uses another descriptive text.

It is error prone and implies a lot of administration at updates to indicate specification version in the namespace. In this case you update one specification and then have to update all other specifications that use the namespace of that specification. Therefore the above naming rules exclude the version from the name of namespaces. We make the same rule also soapAction.
How then to indicate which versions of the various specifications work together? One could simply say that the latest version of all specification shall work together. However, one can argue that it is impossible for an external party to know when upload of such a set of latest versions is complete and stable. Therefore we see a need to identify the set of specification versions that work together, but still we want to avoid having to edit the content of files just for versioning.

Conceptual idea: A possibility to accommodate this need of identifying a set of specification versions is to use the common approach in software development of using tags for build versions. This would involve that we after having completed all the updates for some XSD and WSDL files, we then tag the set of all the latest XSD and WSDL files within the release. The user of the specifications will then be able to fetch the specifications of interest with the particular tag, and hence the user can be confident that she/he has got a version of the specifications that work together.

Implementation possibility of conceptual idea: We create and maintain a TS with a table of versions that work together for each release starting with release 8. The table could look like the following, where the tag name indicates sub-release (SR8_n) and empty cell means previous highest version:

	
	SR8_1
	SR8_2
	SR8_3
	SR8_4

	32.111-5
	V8.0.0
	
	V8.1.0
	

	32.111-7
	V8.0.0
	V8.1.0
	
	

	32.175
	V8.0.0
	
	
	

	32.305
	V8.0.0
	
	
	

	32.307
	V8.0.0
	
	V8.1.0
	V8.2.0

	32.317
	V8.0.0
	
	
	

	32.325
	V8.0.0
	V8.1.0
	
	

	32.335
	V8.0.0
	
	
	

	32.345
	V8.0.0
	
	
	

	32.365
	V8.0.0
	
	
	

	32.385
	V8.0.0
	
	
	

	32.395
	V8.0.0
	
	
	

	32.415
	V8.0.0
	
	
	V8.1.0

	32.435
	V8.0.0
	
	
	

	32.445
	V8.0.0
	
	
	

	32.607
	V8.0.0
	
	
	

	32.615
	V8.0.0
	
	
	

	32.625
	V8.0.0
	
	
	

	32.635
	V8.0.0
	
	
	

	32.645
	V8.0.0
	
	
	

	32.655
	V8.0.0
	
	
	

	32.665
	V8.0.0
	
	
	

	32.667
	V8.0.0
	
	
	

	32.675
	V8.0.0
	
	
	

	32.695
	V8.0.0
	
	
	

	32.715
	V8.0.0
	
	
	

	32.725
	V8.0.0
	
	
	

	32.735
	V8.0.0
	
	
	

	32.745
	V8.0.0
	
	
	

Page 2 of 3

