- 2 -

METHODOLOGY ALIGNMENT LIVING LIST (MALL)
TABLE OF CONTENTS

21.
Introduction

22.
Document history

23.
Contact information

24.
Conventions

25.
General issues and normative text

25.1
Summary

35.2
SOA

35.3
UML

36.
Requirements template

36.1
Summary

36.2
Requirements overview

47.
Analysis | IS template

47.1
Summary

47.2
Type definitions

57.3
Common notification traceability

67.4
Attribute constraints

67.5
Attribute type table

67.6
Visibility

68.
Design | Solution Set template

68.1
Summary

79.
UML style guide

79.1
Summary

1. Introduction

This document is a compilation of proposed changes to ITU-T and 3GPP management interface methodologies.
2. Document history

	Version
	Comment
	Date

	1.0
	Initial version based on M.3020 status document
	2008-01-20

	2.0
	Updated based on agreements at the joint meeting 2008-01-21
	2008-02-11

3. Contact information

	ITU-T SG4
	Knut Johannessen

Telenor

Norway
	Tel: +47 90 10 18 10

Email: knut.johannessen[at]telenor.com

	3GPP SA5
	Thomas Tovinger
Ericsson

Sweden
	Tel: +46 31 7473010

Email: <firstname.familyname>@ericsson.com

	
	
	

4. Conventions

The status of each change:

· Level 1: Agreement between involved organizations and final text for the change is available. Given the differences in document templates, “final text” must be understood to allow for the organization specific documentation guidelines.

· Level 2: Agreement between involved organizations but final text to be provided.

· Level 3: Agreement within one organization but no inter-organization agreement

· Level 4: Change suggested by one organization but currently without agreement within the organization.

5. General issues and normative text

5.1 Summary
	Source
	Status
	Subject Matter
	Document Id

	SG4
	Level 3
	SOA
	ITU-T Rec. M.3020 (07/07) (also 5.2)

	SG4
	Level 3
	UML
	ITU-T Rec. M.3020 (07/07) (also 5.3)

	
	
	
	

	
	
	
	

	
	
	
	

5.2 SOA

The approval of ITU-T Recommendation M.3060 (Principles for the Management of Next Generation Networks) signalled a change from an Object Oriented to a Service Oriented approach to management. The impact of this change will need to be studied to identify any changes required in future revisions of this Recommendation (M.3020).
5.3 UML

This version of methodology references UML version 1.5 in order to maintain alignment with corresponding 3GPP specifications. A revised methodology should reference later versions of UML:

· The OMG MOF meta-meta model integrates UML 2.x as a meta-model which is supported by the mainstream industry tool vendors. Prior to UML 2.0 there was no overarching meta-meta model and UML itself was not standard. MOF supports the addition and creation of other new meta-models defined in a precise way via OCL which is a predicate calculus language.
· Both industry (telecoms, governments and military) and tool vendors are converging on the OMG MOF model.
· The benefits of the MOF meta-meta model are that it supports a family of meta-models which can be used to define object models, HCI relationships, various technology specific implementations and allows transforms between models to be undertaken in a standard way. This is not achievable in UML 1.5 since UML 1.5 exists in isolation of a higher meta-model.

6. Requirements template
6.1 Summary
	Source
	Status
	Subject Matter
	Document Id

	SG4
	Level 3
	Requirements overview
	ITU-T TD 353 (PLEN/4) (also 6.2)
3GPP SA5 S5-071940 | TD 500 (GEN/4)

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

6.2 Requirements overview

In Annex A, add a sub-clause named “Requirements overview” to the template to list all requirements defined in the document, also provide the qualifier for each provided requirement. With notes field, the priority of the requirements or other additional information can also be described.

	Requirement name
	Qualifier
	Notes

	
	
	

The qualifier will use a subset of the value set defined for the support qualifier in Annex B, i.e.
· Mandatory (M)
· Optional (O)
· Conditional-Mandatory (CM)
· Conditional-Optional (CO)
The qualifier is also applied to use cases and supported by the following modification to section A.2.2.2.3.a

A.2.2.2.3.a UseCaseName

is replaced with

A.2.2.2.3.a UseCaseName (qualifier)
where the qualifier has the value set defined above.
Comments by 3GPP SA5 ftp://ftp.3gpp.org/TSG_SA/WG5_TM/TSGS5_56/Docs/S5-071940.zip
7. Analysis | IS template
7.1 Summary

	Source
	Status
	Subject Matter
	Document Id

	SG4
	Level 3
	Type definitions
	ITU-T TD 353 (PLEN/4) (also 7.2)
3GPP SA5 S5-071940 | TD 500 (GEN/4)

	SG4
	Level 3
	Common notification traceability
	ITU-T TD 353 (PLEN/4) (also 7.3)
3GPP SA5 S5-071940 | TD 500 (GEN/4)

	SG4
	Level 3
	Attribute constraint
	ITU-T TD 353 (PLEN/4) (also 7.4)
3GPP SA5 S5-071940 | TD 500 (GEN/4)

	SG4
	Level 3
	Attribute type table
	ITU-T TD 353 (PLEN/4) (also 7.5)
3GPP SA5 S5-071940 | TD 500 (GEN/4)

	
	
	
	

7.2 Type definitions
When writing new document using M.3020 as template, it is needed to specify the types of parameters and attributes. But the specification for type definition is absent in M.3020, so the definition of type might be different and inconsistent for the same meaning in different documents, e.g. for an array of integer, it might be defined as list of integer, or sequence of integer, or set of integer.
It is suggested to define a protocol-neutral methodology to be added as ANNEX E in M3020 for the type definitions that can be used to define attributes and parameters.

It is suggested to add a new section as “B.2.2.5.2 type definitions”, to define new constructed complex types in the new written document.
The proposed Annex E is included (here).

[image: image1.emf]Type definitions -

Annex E v1.doc

B.2.2.5.2 type definitions
This section defines the compound types referenced in attribute and parameter definition that needs more description or be referenced more than once.

Using the following template:

	Type Name
	Description
	Type Definition

	AssignableCoSBWType
	Indicates the assignable bandwidth per CoS. Where the Name is a pointer to // ETHServiceClassProfile object.
	Struct

{

serviceClass: Name,

bandwidth: Integer //Units: bits per second
}

	CtrlProtocolProcType
	Indicates the layer 2 control protocol processing.
	Struct

{
controlProtocol : String,

destMAC :String,

processing: ENUM { discard, peer, pass, peer&pass },

fDFrEVCPtr: Name // used only when xxx is set to Pass and Peer&Pass

}

Comments by 3GPP SA5 ftp://ftp.3gpp.org/TSG_SA/WG5_TM/TSGS5_56/Docs/S5-071940.zip
7.3 Common notification traceability

Add the “Requirement Ids” to B.2.2.6 Common Notifications as a table field after the field “Notes".

Common Notifications can originate from many requirements and traceability should be described.

The new table will be as follows:

	Name
	Qualifier
	Notes
	Requirement Ids

	
	
	
	

Comments by 3GPP SA5 ftp://ftp.3gpp.org/TSG_SA/WG5_TM/TSGS5_56/Docs/S5-071940.zip

7.4 Attribute constraints

Section B.2.2.4.a.3 has no formal structure for specification of attribute constraints. It is suggested to add a table that allow easier mapping of constraints to attributes.
	Attribute name
	Constraint

	
	

Comments by 3GPP SA5 ftp://ftp.3gpp.org/TSG_SA/WG5_TM/TSGS5_56/Docs/S5-071940.zip
7.5 Attribute type table

Add an Attributes Description Table in B.2.2.4.a.2 Attributes to capture the attributes’ type and description to enhance the readability of description about IOC’s attributes:

	Attribute Name
	Type
	Description

	
	
	

The current format has three disadvantages:

1) It is inconvenient for readers to master the IOC’a attributes, as they must go to the Information Attributes Definition part (usually it is located on another page) to check each attribute’s type definition. Actually, for the IOC’s attribute information, reader first want to know is the attribute’s type definition and description, not the qualifier information, they must first know what it is, and then they can know how to do with it. So to provide an attributes description table here will enhance the readability of the document.

2) If we provide the attributes definition in the Information Attributes Definition part, it will be difficult to describe the type information of the attribute that comes from different IOC and has different type value scope, e.g. the “operationState” in different IOC will has different value scope.

3) If we provide the attributes definition in the Information Attributes Definition part, it will be difficult to describe the type information of the attribute that comes from different IOC and has different type. e.g. the “aEnd” in TopologicalLink will be defined as TerminationPoint type, but in SubnetworkConnection will be defined as TPData type. TPData type will contains TerminationPoint and other information, so it can’t be defined in the same attribute name following the current format definition of M.3020, to distinguish this, we must provide different names, but it will force the writer to do more work on the IOC attribute naming.
Comments by 3GPP SA5 ftp://ftp.3gpp.org/TSG_SA/WG5_TM/TSGS5_56/Docs/S5-071940.zip
7.6 Visibility

It has been suggested that the default the default visibility should be private for attributed and public for operations in order to promote data encapsulation and reduce time and effort in defining the implementation model.
Comments by 3GPP SA5 ftp://ftp.3gpp.org/TSG_SA/WG5_TM/TSGS5_56/Docs/S5-071940.zip
8. Design | Solution Set template

8.1 Summary
	Source
	Status
	Subject Matter
	Document Id

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

9. UML style guide

9.1 Summary
	Source
	Status
	Subject Matter
	Document Id

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

_1262366083.doc
Annex E - Type definitions - guideline for attributes and parameters

It is needed to specify a type for attributes and parameters definitions. This section define types that can be use in attributes and parameters definitions, including basic types, which can be used directly, and complex types, which must be defined before using to define attributes and parameters.

E.1 Basic types

Basic types are simple types that can be used directly to define attributes and parameters. Basic types can also be used to construct complex types. Basic types including the following types:

E.1.1 Integer

Integer represents an Integral number, including positive, zero, and negative values. It can be infinitive or ranged. The ranging notation using ‘[]’ and ‘()’, which ‘[’ means greater or equal , ‘]’ means less or equal , ‘(’ means greater, ‘)’ means less .

For example:

		Attribute Name

		Definition

		Legal Values

		a

		Integer

		

		b

		Integer

		[0,100]

E.1.2 Real

Real represents a real number. It can be infinitive or ranged. The ranging notation is defined in E.1.1 Integer.

For example:

		Attribute Name

		Definition

		Legal Values

		a

		Real

		

		b

		Real

		(0.15,100.43]

E.1.3 String

String represents a string of characters, the character set is not restricted.

E.1.4 Boolean

Boolean represents an enumerated value that only including true and false.

E.1.5 Enum

Enum represents enumerated values. All values that may be used by a specific attribute or parameter shall be listed in the Legal Value column. If the number of these values is more than 50, it is recommended to define them in appendix or an independent document.

The values listed can be in three different styles as following, but for a specific type definition , it can only be one style.

1) Listed names

2) Listed names with number in parenthesis.

3) Listed character strings in quotation.

The string length measuring method is implementation dependent and is out of the scope of this document.

For example:

		Attribute Name

		Definition

		Legal Values

		a

		Enum

		on

off

		b

		Enum

		“xxx”

“yyy”

		c

		Enum

		protected(1)

Unprotected(2)

E.1.6 BitString

BitString represents a string of binary bits, which only has two values : 0 and 1.

E.1.7 Null

Null represents a single value as null.

E.1.8 Any

Any represents an indetermined value that may be determined in later processing.

For example:

		Attribute Name

		Definition

		Legal Values

		a

		ANY

It will be determined after Function A.

		

E.1.9 Name

Name represents a exclusive name of an object instance in name space. It might including object containment tree hierarchy information, but it is implementation dependent and is out of the scope of this document

For example:

		Attribute Name

		Definition

		Legal Values

		affectedObject

		Name

		

E.2 Complex type definitions

Complex type are defined using basic types, by means of construction ,selection or sub-typing . Complex type can be used to represent complex data information . The leading character of new defined type name shall be upper case.

E.2.1 Struct

Struct represents a list of fields, each fields has a values type that may different from others. The types of these fields may be basic types or complex types. The symbol ‘{ }’ are used to including all these fields, commas are used to separate between fields, and ‘:’ are used to separate between field name and file type. The leading character of field name shall be lower case. The fields may be declared as OPTIONAL. Comments shall started with symbol // .

For example:

Struct {

 fieldname1: FieldType1,

 fieldname2: FieldType2 OPTIONAL, //if supported

 …..

}

E.2.2 Choice

Choice represents a selection from a list of fields, each fields has a values type that may different from others. The types of these fields may be basic types or complex types. The symbol { } are used to including all these fields, and commas are used to separate between fields. The leading character of field name shall be lower case. Comments shall started with symbol // .

For example:

Choice {

 fieldname1: FieldType1,

 fieldname2: FieldType2,

 …..

}

E.2.3 SetOf

SetOf represents an array of value of the same component type.

For example:

SetOf ComponentType

E.3 Useful types

E.3.1 ObjectIdentifier

ObjectIdentifier ::= SetOf Integer

E.3.2 Time

Time is a string represents a time in certain format. The format is identical as that defined in ASN.1 GeneralizedTime.

Time ::= String
