
 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 1

MTOSI Versioning and Extensibility

Abstract

This document addresses Versioning and Extendibility support for MTOSI. Through the versioning mechanism

it is possible to evolve the interfaces in a controlled manner maintaining backward and forward compatibility for

a class of changes considered minor. The extension mechanism allows a vendor (and\or an MTOSI architect)

to tailor the specification to deal with future or specific concerns not addressed in MTOSI V1.0.

Table of Contents
1 Introduction 2
2 Forward and Backward compatibility 2
3 Minor and Major version compatibility 3
4 Version Identifiers 4
5 Marking the XSD and XML messages 4
6 XSD namespace 6
7 Achieving minor version interoperability 6

7.1 Backward compatibility 7
7.2 Forward compatibility 7

7.2.1 Planned extensions 7
7.2.2 Validation by projection 7

7.3 MTOSI minor version mechanism 7
7.3.1 Minor Version Interoperability Use case set 8

8 Major Version Interoperability Transition 10
8.1.1 Major Version Interoperability Use Cases 11

9 MTOSI Schema Extensions 13
9.1 MTOSI Objects and Notifications 13

9.1.1 Definition of Vendor Extensions 13
9.1.2 Versioning the vendor extensions 15
9.1.3 How to use the vendor extensions. 15
9.1.4 Bridge pattern 16
9.1.5 Brute force 17

9.2 MTOSI Attributes 17
9.2.1 Definition of Attribute Extensions 18

9.3 Extendable Type Extension 20
9.3.2 Attribute Extension Examples 22

9.4 MTOSI Vendor Objects and Notifications 22
9.4.1 Definition of MTOSI Vendor Object 23
9.4.2 Definition of MTOSI Vendor Notification 24

9.5 MTOSI Extensions Usage Recommendations 25
9.5.1 Namespace 26
9.5.2 Extending an MTOSI Object vs. Using Vendor Object 26
9.5.3 Examples of XML Messages with Extensions 26

10 Advanced versioning features 27
11 MTOSI Requirements trace 27
12 Summary 29
13 Revision History 30
14 Acknowledgements 30
15 How to comment on the document 30

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 2

1 Introduction

Versioning entails rules and conventions for updating and supporting the MTOSI XML from one version to the

next. Two classes of versions are identified each with different compatibility implications: minor and major

versions. This contribution describes the mechanism for MTOSI versioning in order to guarantee the

compatibility of minor versions and the possible migration strategies between major releases. The extensions

mechanism is also addressed in order to allow a vendor (and/or an MTOSI architect) to extend the MTOSI

specification with structures needed in any future or specific MTOSI deployment.

2 Forward and Backward compatibility
MTOSI defines a set of interfaces exposed as services.

An interface consists of a set of operations, which in turn consist of a set of messages

E.g., getTP operation in the managedElementMgr interface has:

• getTP, the request message

• getTPResponse, the response message

All interface messages are XML instance documents with associated XSDs (XML Schema Definition)

for validation.

A Service exposes one or more Interfaces. A message processor processes an XML instance. In

Client-Server architectures both Client and Server or Sender and Receiver in a Request/Response

business activity will be processing an XML instance. For this reason Backward and Forward

compatibility is defined in relation to the processor role in which a sender or a receiver is acting

[ORC01].

Backward compatibility – The message processor works correctly when receiving an old version of a

message.

Forward compatibility – The message processor works correctly when receiving a new version of a

message.

Interfaces versions are fully compatible if the versions are both backward and forward compatible.

Processor 1

Old version

of Interface

Processor 2

New version

of Interface

Backward

Compatible

Forward

Compatible

Fully Compatible

Figure 1 - Backward and Forward Compatibility

A major update is a change for which no meaningful communication between Sender and Receiver is

possible with respect to the change, where the Sender and Receiver are using different versions. A

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 3

message processor will not be able to natively process a message after a major update. After a major

update the service will loose its backward compatibility (by definition).

A minor update is a change after which it is still possible for a processor to natively process a

message. After a minor change the service will still be backward compatible.

3 Minor and Major version compatibility
For MTOSI Phase 1, versioning is defined on an interface set as a whole, not on individual operations,

interfaces nor messages. MTOSI as a whole will have a notion of release version. Nevertheless

MTOSI should not prevent an OS supplier to implement a finer grain versioning based for example on

the Interfaces, operations or even objects.

In this document, we will abbreviate “fully compatible” with “compatible” for readability.

Given the distributed and symmetrical nature of the MTOSI OSS, we consider an MTOSI release

compatible if and only if it is forward and backward compatible.

A new version of an MTOSI release may be compatible or incompatible with a previous release .

Even when the structure of the contained interfaces does not change, a change in semantics, (i.e., how

messages are processed), may cause a new release to be backward incompatible with earlier release.

In MTOSI we support both major and minor versioning as defined in the previous section 2.

Only the addition of new optional elements or optional structures in the XSD is both forward

and backward compatible

Considering that compatible versions are classified as minor versions, the above axiom has the

following implications:

- Adding a new optional interface to an MTOSI release is considered a minor change.

- Adding a new optional operation/notification to an interface is considered a minor change.

- Adding a new optional formal argument in an operation is considered a minor change.

- Adding a new optional element or structure to an MTOSI network object (TMF608) is

considered a minor change.

- Adding or refining enumeration values as a minor change in a new release may be achieved by

introducing an optional enumeration variable that specializes the base variable. Adding a new

enumeration value directly in the enumeration set will result in a major version.

- Adding mandatory artifacts will result in a major version.

- Deleting artifacts by deprecating them will result in a minor version

- Deleting mandatory artifacts by removing them will result in a major version

- Deleting optional artifacts by removing them will result in a minor version

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 4

All minor versions of an interface within a major version are defined to be compatible with each

other

• E.g., 1.0, 1.0.1, 1.1, 1.2 are compatible with each other.

It should be noted that minor versions of an interface are generally NOT identical but just compatible. Version

1.8 has different capabilities than 1.1. These differences make them different even though the addition of minor

updates is still compatible. Any business activity supported by V1.1 should be supported by V1.8 with

reasonable behaviors. The vice versa is also true. Note that the adjective “reasonable” refers to a contained

semantic difference that can be tolerated in the context of a business activity. Section 7 explains the details on

how to achieve minor version interoperability in MTOSI.

Different major versions of an interface are not compatible with each other

• E.g., 1.x and 2.x are not compatible versions

Although not normative, this document highlights (section 8) several possible migration strategies to bridge

different major release of MTOSI.

4 Version Identifiers
Version identifiers are of the form “N.x”, where “N” represents the major version number and “x”

represents the minor version string.

“N” must be a number

“x” must start with a number, but may also contain additional periods and numbers, e.g., “0”, “0.1”,

“1.1”

Starting with version 1.0, each time a minor change is applied to the interface the minor string is

changed. The new minor release string should be lexically greater than the previous.

Each time a major change is introduced in an interface, the major version number should be

incremented.

5 Marking the XSD and XML messages
The MTOSI version information should appear at least in top-level XML elements as an XML

attribute tmf854Version. The following example illustrates an MTOSI message version 1.0 extended

by ACME with extension version 1.5.

The tmf854Version information must be copied to the communication header properties, e.g., JMS

header, to allow for version specific subscriptions or routing. (see SD2-9 Using JMS as an MTOSI

Transport). The extAuthor and extVersion may as well be copied in the transport communication

header properties to speedup the vendor specific message processing.

Although this initial release allows multiple vendor extensions from different providers, versioning of

multiple extensions has not been addressed yet and will most likely be part of Phase II.

All Interfaces and operations of an interface will have the same version number. This coarse

granularity simplifies the versioning management for the MTOSI supplier and should address most of

the MTOSI deployment needs. Nevertheless, this mechanism can be enhanced (feature possibly

addresses in Phase II) to support a different (finer) versioning granularity.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 5

Note that the XSD attribute in a specific major version will only enforce the correct major version and

should allow for all minor version number to be used in the XML instances. In particular a specific

message processor (e.g. v1.5) should be able to validate any message compliant to all the earlier minor

versions (e.g. V1.1, V1.2, etc).

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns="tmf854.v1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="tmf854.v1

../xsd/common/header.xsd tmf854.v1 ../xsd/interfaces/InventoryRetrieval.xsd

http://www.w3.org/2003/05/soap-envelope http://www.w3.org/2003/05/soap-envelope">

 <soap:Header>

 <header tmf854Version="1.0" extAuthor="ACME" extVersion="1.5">

 <activityName>getInventory</activityName>

 <msgName>getInventory</msgName>

 <msgType>REQUEST</msgType>

 <senderURI>/MTOSI/InventoryOS</senderURI>

 <destinationURI>/MTOSI/EMS01</destinationURI>

 <correlationId>0001</correlationId>

 <communicationPattern>MultipleBatchResponse</communicationPattern>

 <communicationStyle>MSG</communicationStyle>

 <requestedBatchSize>0</requestedBatchSize>

 <timestamp>20051004140305</timestamp>

 </header>

 </soap:Header>

 <soap:Body>

 <getInventory tmf854Version="1.0" extAuthor="ACME" extVersion="1.5">

 <filter></filter>

 </getInventory>

 </soap:Body>

</soap:Envelope>

To facilitate the readability of the XSDs, the complete version identifier may be added in each XSD as

a comment in the top of the definition. Note the attribute tmf854Version cannot be fully specified in

the XSD since the minor version at runtime may vary.

MTOSI version

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 6

InventoryRetrieval.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- Schema Identifier: version=1.0 preliminary (Mon Aug 09 16:01:21 EDT 2004) -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="tmf854.v1"

targetNamespace="tmf854.v1">

 <!-- ===================== Includes ========= -->

 <xsd:include schemaLocation="../common/definitions.xsd"/>

 <xsd:include schemaLocation="../networkResources/inventory.xsd"/>

 <xsd:include schemaLocation="../networkResources/topologicalLink.xsd"/>

 <!-- ===================== Element Declarations ========= -->

 <xsd:element name="getInventory" type="getInventory_T"/>

 <xsd:element name="getInventoryResponse" type="getInventoryResponse_T"/>

 <xsd:element name="getInventoryFile" type="getInventoryFile_T"/>

 <xsd:element name="getInventoryFileResponse" type="getInventoryFileResponse_T"/>

 <!-- ===================== Type Definitions ========= -->

 <xsd:complexType name="inventoryData_T">

 <xsd:sequence>

 ….
 <xsd:attribute name="tmf854Version" type="xsd:string" use="optional" />

6 XSD namespace
The purpose of the xsd namespace is to isolate major versions of similar XSDs and allow cross

validation of minor version of the same major. Adding the major identifier in the namespace will

prevent different major release to validate by mistake.

The top-level message (defining the root message in the body of an MTOSI message) defines and

assign a namespace to the XML message: tmf854.v1

Adding an xsd namespace to the XSD definition allowed us to relax the directory structure.

It is now possible to reference to different versions of a message by using the proper namespace and

without using a combination of prefix and directory structure.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="tmf854.v1"

targetNamespace="tmf854.v1">

 <!-- ===================== Includes ========= -->

 <xsd:include schemaLocation="../common/definitions.xsd"/>

 <xsd:include schemaLocation="../networkResources/inventory.xsd"/>

 <xsd:include schemaLocation="../networkResources/topologicalLink.xsd"/>

7 Achieving minor version interoperability
A Message processor knows and supports a specific version of an interface (major and minor number).

All messages with the same major version as the processor are compatible regardless of the minor

version.

In this section we address the mechanism to achieve backward and forward compatibility in a minor

version release.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 7

7.1 Backward compatibility

By adding only optional element in an XSD for minor versions, the XML instances are backward

compatible. A new version of a message processor will by default ignore any missing optional element

in an old message instance.

7.2 Forward compatibility

Forward compatibility is exercised when an old processor receives a new version message. There are

two main mechanisms to achieve forward compatibility: planning for extensions and Validation by

projection.

7.2.1 Planned extensions

The XSD has a construct “ANY” that allows extending a schema maintaining forward compatibility.

Nevertheless this construct has some side effects: it often introduces additional complexity (wrappers,

namespaces) to deal with the intrinsic non-determinism, and it is often not realistic to know where and

how an interface will be extended in the future. The “ANY” mechanism is best suited for well

planned extensions such as the customer extensions under the UML vendorExtensions attribute.

7.2.2 Validation by projection

This technique advocates removing (projecting) all the unknown elements and structures not

recognized in the message processor version, prior to validate and process the XML remains.

[BAU04][ORC04].

In this way all the optional future tags added in minor release will be silently ignored by a current or

earlier version message processor. While some of the current tools in the market allows this relax

validation (e.g. Java XMLbeans), we can always achieve forward compatibility by pre-processing the

XML instances before they reach the message processor. For example, an XSLT can be defined to

pass through only those elements valid for a version of an interface. The same result can be achieved

by materializing the XML message it a generic DOM structure and using for example XPATH to

process the XML and only reference known elements. The implementation particulars of the above

mentioned techniques are beyond the scope of MTOSI.

7.3 MTOSI minor version mechanism

In MTOSI we adopt the “planned extensions” to address the vendor extensibility dimension and the

“validation by projection” technique to address the forward compatibility in the minor MTOSI

releases.

In a nutshell, if a message minor version of an incoming message is greater than the processor’s

supported minor version, the processor MUST silently ignore extra elements it does not know (as

note previously, these must be optional elements).

Refer to the “Advanced versioning features” section in this document for some thoughts on how to

modify this default behavior (this is not normative for MTOSI Release 1.0). Alternatively the

processor in the warnings section of the reply message can provide a list of ignored tag elements.

If an interface is validated with XSD, the XSLT mapping must be used prior to the validation step.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 8

<Header tmf854Version=“1.2”>

</Header>

<foo version=“1.2”>

<a>…

…

<c>…</c>

<d>…</d>

</foo>

<Header tmf854Version=“1.1”>

</Header>

<foo version=“1.1”>

<a>…

…

</foo>

XSLT for foo version

1.1

Pass through

<a>,

Rewrite version

to 1.1 in message

and Header

Figure 2 - Filtering the unknown elements

7.3.1 Minor Version Interoperability Use case set

Figure 3 shows a request/reply flow in the case both the client and processor support the exact same

version.

Client

v1.1

Filter

v1.1

Comm

Binding

Comm

Binding

Comm

Channel

Filter

v1.1

Processor

v1.1

v1.1v1.1
v1.1

v1.1

v1.1

v1.1

v1.1

v1.1

v1.1

execute

validate

v1.1

validate

v1.1

Figure 3 - Versions supported by client and processor match

Figure 4 shows a request/reply flow when the processor support a latter minor version than the client.

Note that the filter on the client side transforms the v1.2 response into a v1.1 message, and the

Communication Binding function on the processor side validates the v1.1 message against the v1.2

specification.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 9

Client

v1.1

Filter

v1.1

Comm

Binding

Comm

Binding

Comm

Channel

Filter

v1.2

Processor

v1.2

v1.1v1.1
v1.1

v1.1

v1.1

v1.2

v1.2

v1.2

v1.2

v1.1

Validate

v1.2

execute

validate

v1.1

v1.1

Figure 4 - Version supported by client older than that of processor

Figure 5 shows a request/reply flow when the client has a latter minor version than the processor. The

filter on the processor side maps the message to v1.1 message and then the message is validated

against the v1.1 XML and sent onto the processor. On the other side, the v1.1 message is validated

against the v1.2 XML and then sent onto the client.

Client

v1.2

Filter

v1.2

Comm

Binding

Comm

Binding

Comm

Channel

Filter

v1.1

Processor

v1.1

v1.2
v1.2

v1.2

v1.1

v1.1

v1.1

v1.1

v1.1

v1.2

execute

validate

v1.1

validate

v1.2

v1.1

Figure 5 - Version supported by client newer than that of processor

The flows suggested in this section are not normative. They simply are meant to suggest a method for

dealing with interoperability between MTOSI minor versions.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 10

8 Major Version Interoperability Transition
The flows in this section and the next are not normative. They simply are meant to suggest a method

for dealing with interoperability between MTOSI major versions.

Both Client and Server processors should have some degree of independence when upgrading. When a

client or server upgrades to a new major version of an interface, the previous major version should

also be supported. A major version of an interface supported by a client must be available from a

server.

Server

v1.x

v2.x

Client

v1.x

Server upgrades first

Server

v1.x

v2.x

Client

v1.x

Server upgrades first

Client

v1.x

v2.x

Server

v1.x

Client upgrades first

Client

v1.x

v2.x

Server

v1.x

Client upgrades first

Client

v1.x

v2.x

Both have upgraded

Server

v1.x

v2.x

Client

v1.x

v2.x

Both have upgraded

Server

v1.x

v2.x

Figure 6 - Configurations showing multiple interface endpoints in clients and applications

Transition can be also accomplished through a mediation layer.

Mediation

v1.x/v2.x

Client

v1.x

Server upgrades first,

some clients upgrade, others use mediation

Server

v2.x

Client

v2.x

Mediation

v1.x/v2.x

Client

v1.x

Server upgrades first,

some clients upgrade, others use mediation

Server

v2.x

Client

v2.x

Figure 7 - Transition through a mediation layer

Notifications must be published in the major interface versions expected by subscribers.

v1.x

v2.x

Subscriber

v1.x

Client

v1.x
Server

Client

v2.x

Subscriber

v2.x

v1.x

v2.x

Subscriber

v1.x

Client

v1.x
Server

Client

v2.x

Subscriber

v2.x

Figure 8 - Example of transition configuration with clients and subscribers on different major versions

If a server cannot support multiple major versions, mediation will also be required to generate

notifications.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 11

v1.x/v2.x

v2.x

Mediation

v2.x/v1.x

Client

v1.x
Server

Client

v2.x

Subscriber

v2.x

Subscriber

v1.x

Mediation

v1.x/v2.x

v2.x

Mediation

v2.x/v1.x

Client

v1.x
Server

Client

v2.x

Subscriber

v2.x

Subscriber

v1.x

Mediation

Figure 9 - Mediation layer for notifications

8.1.1 Major Version Interoperability Use Cases

The following diagram in Figure 10 shows how a Server may support two major versions with two

interface endpoints offered through a common communication binding stack. Both old and new clients

can access the proper service by routing the request to the proper communication channel.

Client

v1.x

Client

v2.x

Comm

Binding

Comm

Binding

Comm

Channel

v1.x

Processor

v1.x

Processor

v2.x

Server

Comm

Channel

v2.x

execute

execute

Figure 10 - Server supports two major versions with two interface endpoints, both old and new clients (Filters
and validation not shown)

In the following diagram (Figure 11) a Server supports only one major version and uses a mediator

layer during transition (Communication Binding not shown).

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 12

Server

Client

v1.x

Client

v2.x

Comm

Channel

v1.x

Processor

v2.x

Comm

Channel

v2.x

execute

execute

Mediator

v1.x/v2.x

Figure 11 - Server supports only one major version, requires mediator during transition

The following diagram (Figure 12) shows how different communication channels and notification

channels may be used during a transition from different major versions.

Client

v1.x

Client

v2.x

Comm

Channel

v1.x

Processor

v1.x

Processor

v2.x

Server

Comm

Channel

v2.x

execute

Notify

Channel

v1.x

Notify

Channel

v2.x

Subscriber

v1.x

execute execute

execute

execute execute

Subscriber

v2.x

Server 2 Server 3

Figure 12 - Notification when there are subscribers on different major versions. Publication and subscription to
Notify channels v1.x and v2.x is configurable

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 13

9 MTOSI Schema Extensions
Extensibility is one of the essential design characteristics that were applied in the definition of the

MTOSI schema. Extensibility requirements are captured in section 4.4 of the [TMF517]. The design

of extension handlers in the MTOSI schema is based on the following two considerations:

� Allow vendor to customize by extension the interface definitions, and

� Allow evolution of the interface definitions with minimal impact on compatibility.

The specific interface definitions allowing MTOSI schema extension capabilities are covered in the

following three sections:

� Section 9.1 for extension of MTOSI objects and notifications

� Section 9.2 for extension of MTOSI attributes and parameters (all specific data type

definitions)

� Section 9.4 for specific definitions of vendor objects and notifications

Additionally, some XML examples are provided in the [TMF854].

9.1 MTOSI Objects and Notifications

This section describes the definitions used in the MTOSI schema to allow for extension of the MTOSI

objects and notifications (events).

Any release of the MTOSI XSD should be customizable to fit the need of a specific solution. The

UML model has already accounted for this extensibility identifying a placeholder in any significant

object to allow customer extensions: vendorExtensions.

The customer extension mechanism should allow a processor to accept additional custom elements

needed in a specific solution while maintaining syntactical compatibility with any processor outside

the solution. In other words, a processor should be able to process the known extensions or silently

ignore them if not known.

9.1.1 Definition of Vendor Extensions

After investigating the use of the ANY construct in all it’s variances, the MTOSI team reached the

conclusion that in order to guarantee determinism in the XSD without introducing a new namespace it

was necessary to wrap the xsd:ANY construct with an xsd element (<vendorExtensions>).

Any extensible object should have an optional aggregate (preferably at the end) called

vendorExtensions. The aggregate type should be a <objName>vendorExtensions defined by default in

the vendorExtensions.xsd.

The following examples illustrate the XSD extension mechanism for Managed Element.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 14

managedElement.xsd
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="tmf854.v1" targetNamespace="tmf854.v1">

 <xsd:include schemaLocation="../common/definitions.xsd"/>

 <xsd:include schemaLocation="globalDefinitions.xsd"/>

 <xsd:include schemaLocation="vendorExtensions.xsd"/>

 <xsd:simpleType name="CommunicationState_T">

 </xsd:simpleType>

 <xsd:complexType name="ManagedElement_T">

 <xsd:all>

 <xsd:element name="name" type="NamingAttributes_T" minOccurs="0">

 <xsd:element name="namingOS" type="NamingOS_T" minOccurs="0">

 ….

 <xsd:element name="vendorExtensions" type="MEVendorExtensions_T" minOccurs="0">

 <xsd:annotation><xsd:documentation>

 Allows for additional information to be modeled

 </xsd:documentation></xsd:annotation>

 </xsd:element>

 </xsd:all>

 <xsd:attribute name="extVersion" type="xsd:string" use="optional"/>

 <xsd:attribute name="extAuthor" type="xsd:string" use="optional"/>

 <xsd:attribute name="tmf854Version" type="xsd:string" use="optional" />

 </xsd:complexType>

</XSD:SCHEMA>

VENDOREXTENSIONS.XSD

<xsd:complexType name="MEVendorExtensions_T">

 <xsd:annotation>

 <xsd:documentation>Extension for MTOSI managed elements</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="extAuthor" type="xsd:string" use="optional"/>

 <xsd:attribute name="extVersion" type="xsd:string" use="optional"/>

 <xsd:attribute name="tmf854Version" type="xsd:string" use="optional" fixed="1.0"/>

 </xsd:complexType>

Valid XML instance without extensions
<?xml version="1.0" encoding="UTF-8"?>

<ManagedElement_T xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="..\schema\MTOSI\Common.V1\ManagedElement_T.xsd">

 <name>

 <mdNm>732699</mdNm>

 <meNm>OLT1</meNm>

 </name>

</ManagedElement_T>

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 15

Valid XML example with unrecognized extension
<?xml version="1.0" encoding="UTF-8"?>

<ManagedElement_T xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="..\schema\MTOSI\Common.V1\ManagedElement_T.xsd" >

 <name>

 <mdNm>732699</mdNm>

 <meNm>OLT1</meNm>

 </name>

 <vendorExtensions extAuthor="Acme" extVersion=”1.2 ” tmf854version=”1.0”>

 <foo>ABCXYZ</foo>

 <bar>NJAS3478</bar>

 </vendorExtensions>

</ManagedElement_T>

9.1.2 Versioning the vendor extensions

When a base MTOSI object is extended by the vendor to customize it’s data structure, the top level

message should be versioned according to the vendor solution versioning scheme but still maintain a

trace of it’s base. We propose the use of the following attributes at any top level message:

• extVersion – the current version number

• extAuthor – the extension author

• tmf854Version – the original MTOSI base version number base of the extension

This mechanism allow to seamless integrate MTOSI in the context of a wide solution where

versioning is governed by enterprise rules.

Any extensible object should have an optional aggregate (preferably at the end) called

vendorExtensions. The aggregate type should be a <objName>vendorExtensions defined by default in

the vendorExtensions.xsd.

The following examples illustrates the XSD extension mechanism for managedElement.xsd

Payload example:
 <getTPResponse extVersion="V2.5" extAuthor="ACME" tmf854Version="1.0">

 <TP>
 <name>

 <mdNm>ManagementDomain1</mdNm>
 <meNm>MeName23</meNm>

 <ptpNm>/shelf=1/slot=3/port=2</ptpNm>

 </name>
 <vendorExtensions extAuthor="ACME" extVersion="2.5" tmf854Version=”1.0”>

 <foo>ABCXYZ</foo>

 <bar>NJAS3478</bar>
 </vendorExtensions>

 </TP>

 </getTPResponse>

9.1.3 How to use the vendor extensions.

There are three ways to extend the base MTOSI XSD with proprietary extensions:

• Redefine the type

• Bridge pattern

• Brute force

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 16

 MTOSI allow for all three approaches and it is the MTOSI implementer responsibility to chose the

more appropriate..

Note that the extension implementation mechanism is completely transparent to the MTOSI client:

regardless of what method the provider chooses to implement the extensions, the XML instance will

be identical.

9.1.3.1 Redefine the type

XSD has a construct that allows redefining of a type and propagating the changes in a pervasive way.

A proprietary extension can be defined according to the following example:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:redefine schemaLocation="VendorExtensions_T.xsd">

 <xs:complexType name="meVendorExtensions_T.xsd">

 <xs:complexContent>

 <xs:extension base="Acme.Ext.meVendorExtensions_T"/>

 </xs:complexContent>

 </xs:complexType>

 </xs:redefine>

 <xs:complexType name="Acme.Ext.meVendorExtensions_T">

 <xs:annotation>

 <xs:documentation>Additional me attributes specific to the Acme Solution.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="CommonLanguageName" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xsd:attribute name="extAuthor" type="xsd:string" use="optional"/>

 <xsd:attribute name="extVersion" type="xsd:string" use="optional"/>

 <xsd:attribute name="tmf854Version" type="xsd:string" use="optional" fixed="1.0"/>

 </xs:complexType>

</xs:schema>

This is the most elegant solution but also the more difficult to implement due to the current limitations

in the XML supporting tools. At the time of writing this document, the current version of JAXB

JAVA binding tools do not support “xsd:redefine”.

9.1.4 Bridge pattern

Override the MTOSI vendorExtension.xsd with a file containing a definition of the extension type

inherited from the custom extension.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 17

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:include schemaLocation="../../../Acme/Ext/ehVendorExtensions_T.xsd"/>

 <xsd:complexType name="ehVendorExtensions_T">

 <xsd:annotation>

 <xsd:documentation>This file imports in the MTOSI space the Acme extensions</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="Acme.Ext.ehVendorExtensions_T">

 <xsd:attribute name=" extAuthor " type="xsd:string" use="required" fixed="Acme"/>

 <xsd:attribute name=" extVersion " type="xsd:string" use="optional"/>

 <xsd:attribute name="tmf854Version" type="xsd:string" use="optional" fixed="1.0"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

</xsd:schema>

9.1.5 Brute force

In this case, we define an extension type and override the default MTOSI type. The new file
VendorExtensions.xsd will override the old file in the MTOSI distribution release.
EHVendorExtensions_T
<?xml version='1.0' ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name = "EHVendorExtensions_T" >

 <xsd:annotation>

 <xsd:documentation>Additional Equipment Holder attributes specific to the Acme Solution.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name = "CommonLanguageName" type = "xsd:string" minOccurs="0" maxOccurs="1" />

 </xsd:sequence>

 <xsd:attribute name="extAuthor" type="xsd:string" fixed="Acme"/>

 <xsd:attribute name="extVersion" type="xsd:string" use="optional"/>

 <xsd:attribute name="tmf854Version" type="xsd:string" use="optional" fixed="1.0"/>

 </xsd:complexType>

</xsd:schema>

example of XML compliant with the new extension
<?xml version="1.0" encoding="UTF-8"?>

<Equipment_T xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="..\schema\MTOSI\V1\Common\Equipment_T.xsd">

 <name>

 <mdNm>md1</mdNm>

 <meNm>eq1</meNm>

 <ehNm>eh1</ehNm>

 <eqNm>eq1</eqNm>

 </name>

 <vendorExtensions extAuthor="Acme" tmf854version="1.0" extVersion="2.0">

 <CommonLanguageName>12123434355rtrfd</CommonLanguageName>

 </vendorExtensions>

</Equipment_T>

9.2 MTOSI Attributes

This section describes the definitions used in the MTOSI schema to allow for extension of the MTOSI

attributes of the MTOSI objects and notifications (events).

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 18

As specified in the [TMF 517] and the SD2-13 Attribute Extensibility, the forms of manageable

extensions are:

• Open - the MTOSI team has not specified any specific values for this attribute. The value

set is left as decision for the software vendor. Many of the name related attributes are of

this type, e.g., the name attribute for managed element.

• Closed - the MTOSI team has defined a discrete set of possible values for this attribute.

For this type of attribute, no vendor extensions are allowed and the MTOSI team does not

plan any extensions either. This is used for very stable attributes (a Boolean might be a

good example).

• Qualifiable - the MTOSI team has determined that this attribute may need further

qualification by the vendor. This means that for a given value of an attribute, the vendor

may specify sub-values. For example, resourceState was determined to qualifiable. So, a

vendor can further qualify the value "Planned" with the sub-values Planned-ordered,

Planned-received, Planned-tested.

• Extendable - the MTOSI team has determined that the value set for this attribute can be

extended by a vendor (i.e., an implementer of the MTOSI) or by the MTOSI team itself (in

going from one version to the next). In this case, the additional values for the attribute do

not overlap in meaning with the existing values defined for the attribute. Extendable-

Vendor means only extendable for the vendor, Extendable-MTOSI means only extendable

by the MTOSI team within a minor version update, and Extendable means both.

• Overlap - the MTOSI team has determined that the value set for this attribute can be

extended by a vendor. In this case, the additional values overlap partially or completely

with the MTOSI provided values for the attribute. Also, the vendor must provide a

mapping between the overlapping values for the attribute and the MTOSI defined values.

9.2.1 Definition of Attribute Extensions

Each type of extension needs to be handled with a specific schema design pattern. The first two types

can easily be associated with a simple schema definition. The other types are more challenging as they

require a very special arrangement of their constraint settings.

Attributes can be extended by the MTOSI vendor in order to customize a deployment or by an MTOSI

Interface editor in the context of a new release. A vendor should be able to extend (customize) the

private MTOSI Interface while maintaining syntactic compatibility with the base MTOSI release.

When possible, it is important to adopt schema design patterns that allow an evolution of the

object/event attribute constraint definition in the scope of a minor version. Any changes that imply a

major version update are a significant impact to the MTOSI version compatibility scheme. As

specified in section 3, the release of a major version interface is not backward compatible with any

previous versions [ENUM].

The next sections will define how the various attribute extension are modeled in MTOSI.

See SD2-13 for a map of what is extendable.

9.2.1.1 Open Type Extension

Definition: Attribute is defined without any constraints.

This is only applicable to attribute that extend from following datatypes; string or any numerical.

Booleans are excluded as they can be associated with a simple form of enumeration.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 19

XSD:

� Type: <simpleType> any of the xsd:string or numericals datatypes.

� Constraint: None

� Extension: Free as it has no constraints.

� Caution: Adding to the schema some constraint settings (changing to another extension form)

in the future can only be handled as a major version update! Backward compatibility would not

work as the XML schema validation would be failing.

Example:

We identify that (EquipmentObjectType_T)Equipment.expectedEquipmentObjectType is Open

<xsd:simpleType name ="EquipmentObjectType_T">

 <xsd:restriction base="xsd:string">

 </xsd:restriction>

</xsd:simpleType>

But, changing it to the following is a Major version update (change to a Closed extension type)

<xsd:simpleType name ="EquipmentObjectType_T">

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="1"/>

 <xsd:maxLength value="1024"/>

 </xsd:restriction>

</xsd:simpleType>

Consequently, an open attribute should be restricted (specialized) by an MTOSI vendor by introducing

business rules rather than restricting the XSD in order to maintain syntactical compatibility with the

base MTOSI release.

9.2.1.2 Closed

Closed Attributes cannot be extended by an MTOSI vendor and will trigger a Major release if

extended by an MTOSI editor in the context of a new release.

9.2.1.3 Qualifiable Type Extension

Definition: Constraint is not relevant - But, sub-definition of values shall be offered to vendor.

This is only applicable to simple type attribute.

XSD:

� Type: <simpleType> any of the xsd base types.

� Constraint: Can be Open or Closed (enum).

� Extension: Another attribute of the same XSD type is required to allow carrying the sub-

values.

o Naming convention: "Qualifier"

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 20

o Constraint: Must be Open.

Example:

We identify that (String)Common.resourceState is Qualifiable.

The following object attribute must be available as well: (String)qualifier
<ME>
 <resourceState qualifier="IS_ACTIVE" > <!--note the extension here-->
 INSTALLED
 </resourceState>
</ME>

9.3 Extendable Type Extension

Definition: Schema can be extended by MTOSI team or vendor (as a minor version update)

This is applicable to the two possible types of attribute; simple and complex.

XSD:

Two scenarios based on the type of the attribute:

Simple Type Element:

� Type: <simpleType> of any of the xsd base types.

� Constraint: Applicable to Closed and Qualifiable types only.

� Extension: It is a limitation of XML schema. Changing the constraints breaks the validation of

the schema, which would normally be handled as a major version update.

The following approach is suitable to handling vendor extensions as well as MTOSI

extensions, as users are free to create as many customized values as long as they comply

with the value prefix naming convention: “PROP_“ for vendor Extensions and MINOR_

for MTOSI editors.

Here is a brief description of the schema:

� Include all the initial (MTOSI) possible definitions with the schema enumeration

constraint (same as with the Closed type)

� Use the pattern constraint style to allow any other values starting with PROP_ based

on value pattern matching

Example:

<xsd:simpleType name="ColorType">

 <xsd:union>

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="BLUE" />

 <xsd:enumeration value="WHITE" />

 <xsd:enumeration value="RED" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType>

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 21

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="PROP_([a-z]|[A-Z]|[0-9]|(_-))*" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:union>

</xsd:simpleType>

These values are valid: “WHITE”, “BLUE”, and “PROP_GREEN”

An enhanced version of this option is to include in the attribute definition union a third definition that

is reserved to capture the vendor specific extended set of values. That third definition could be

externalized to a specific schema file available in the vendorExtensions area of the local schema

structure. This is also the pattern used for managing vendor extension of MTOSI Objects/Events.

Vendor could replace the local vendor extension definition with there

The same mechanism is used with the prefix MINOR_ to allow MTOSI editors to add additional

values within the same major version.

Complex Type Element:

� Type: <complexType> of any form.

� Extension: A special vendorExtension containment that can take any elements of any

namespace can be used. The definition comes from an individual schema file (xsd) that the

vendor can modify (extend) locally with its deployed systems. Same pattern as for extension of

MTNM objects/events.

Any unplanned structural change in a complex type will trigger a major release.

9.3.1.1 Overlap Type Extension

Definition: Schema can be extended by the vendor. It is the most complex extension type as the

vendor is allowed a complete re-definition of the scope and distribution of the possible values based

on a mapping mechanism.

This is only applicable to simple type attribute.

XSD:

� Type: <simpleType> of any of the xsd base types.

� Constraint: Applicable to Closed type only (enum).

� Extension: A similar pattern as the one adopted for the Qualifable extension type can be used

here. Another attribute is defined to hold the vendor value that is mapped from the initial

MTOSI value.

Refer to the following convention:

o Naming convention: "Overlap" attribute

o Constraint: Must be Open.

Example: the same example proposed for the qualifiable extension applies replaving the attribute

name “qualifier” with “overlap”.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 22

9.3.2 Attribute Extension Examples

SD2-13 defines the following forms of attribute extensibility in the Overview sheet: Qualifiable,

Extendable-Vendor, Extendable-MTOSI and Overlap. We use the resourceState attribute to provide

examples for these four types of attribute extensibility.

First, we not that the resourceState has the following possible values:

• planned (without any supporting network resources)

• installed (supported by network resources)

• retired (no more supported by network resources)

• unknown is available for resources when other values are not applicable.

As that a service provider would like to extend these values as follows:

1. The state “retired” is further qualified as retired-removed and retired-storedAway.

2. New states “present” and “notPresent” are used instead of “planned” and “installed” but the

semantics of the values are not the same. For example, let’s say the present means the

equipment is in the service provider’s possession and notPresent has the opposite meaning.

3. A new state “sold” is used to indicate the equipment has been sold. For the sake of argument,

assume that the meaning of “sold” does not overlap any of the other MTOSI-defined values for

resourceState.

The “retired” state is extended via qualification. The resourceStateQualifier would be set to retired-

removed or retired-storedAway whenever the resourceState has the value “retired”.

The “planned” and “installed” states are extended (actually overlapped) by the present and notPresent

states. In such cases, the resourceState would typically be populated with the value “unknown” and the

resourceStateOverlap attribute would be set to present or notPresent.

The new state “sold” is used as a value of resourceState. The vendor uses the prefix PROP_ to denote

that the value is vendor-defined. In particular, the value PROP_sold would be used. Now if the vendor

took their new state to the MTOSI team and the team approved, the set of valid states for resourceState

would be expanded. This can happen in one of two ways:

1. The MTOSI team may only want to make a minor update (backward compatible). In this case

the new value would be listed as MINOR_sold.

2. On the other hand, the MTOSI team may decide to make a major update (not backward

compatible). In this case, the new value would be just “sold”.

It should be noted that the difference between the two above mentioned options is that while in the

first case, there is no “type checking” on the value, i.e., MINOR_xxx could be anything and message

processor would pass it, in the second case, there is type checking and a valid value must be used or a

validation exception will be raised.

9.4 MTOSI Vendor Objects and Notifications

This section describes the definitions used in the MTOSI schema to allow for the management of

vendor specific objects and/or notifications.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 23

9.4.1 Definition of MTOSI Vendor Object

9.4.1.1 VendorObject (Final) Element

Define a generic vendor object element (no global type visible): VendorObject with following

elements:

� name (mandatory) the object instance name based on NamingAttributes_T (See naming

below)

� vendorObjectType (mandatory) free string. However, it is recommended that vendors use

following format convention: <vendorName>/<objectType> where:

o <vendorName> is the string uniquely identifying a vendor

o <objectType> is the string uniquely identifyin the vendor object type

� vendorExtensions All vendor object specific attributes must be embedded inside that generic

vendor object element. The element type is externally defined. It can take any elements from

any namespace. Emphasize that these extensions must have the vendor namespace to avoid

conflict with other vendor object extensions (See example below).

The reason for having this vendor object base definition is to ensure that all vendor extensions are

encapsulated in an MTOSI container (confinement to control vendor extensions). The element

definition must use final=”#all” to ensure that no redefinitions are of the elements are possible.

9.4.1.2 VendorObject Naming

Naming of the VendorObject is optional (See above definition). Naming rules are as followed:

� Use the propNm RDN tag from NamingAttributes_T

� Name is absolute. The propNm must always be last component in the naming hierarchy.

VendorObject SHALL NOT be the parent of any MTOSI object.

� Hierarchy of VendorObjects is allowed using the value separator “/” such as in ehNm or

ctpNm RDN tags.

Example of an absolute name of VendorObjectB contained in VendorObjectA, which is directly

contained in ManagementDomain myDomain.

<name>

 <mdNm>myDomain</mdNm>

 <propNm>VendorObjectA/VendorObjectB</propNm>

</name>

9.4.1.3 VendorObject Notifications

Notifications of the VendorObject are supported on the basis of a VendorObject instance name and the

VendorObject class type (ObjectType_T definition). For example, the ObjectCreation notification

attributes are set as followed:

� objectName is the absolute name of the VendorObject instance (see example above).

� objectType is always OT_VENDOR_OBJECT based on ObjectType_T. Note that on receiving

a notification with objectType set to OT_VENDOR_OBJECT, the receiving OS needs has to

check the vendorObjectType attribute of the object instance based on the objectName to

determine the vendor object type.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 24

9.4.1.4 VendorObject Inventory Retrieval

Inventory retrieval coarse-grained operation getInventory only supports the query for the

VendorObject MTOSI object type as for any other MTOSI object types. The includedObjectType

filter attribute does not support the specific setting of a vendorObjectType instance. And, for the same

reason as stated above, the filter can only specify the enumerated value associated with an MTOSI

object type. So, all of the VendorObject instances are returned for a given filter baseInstance context

setting.

All the VendorObject instances are encapsulated in a specific list of the inventory layout data

structure. There is no context retrieval for the VendorObject instances matching the filter criteria. The

list is readily available from the InventoryData XML element. Consequently, the name of these

VendorObject instances is absolute.

9.4.1.5 VendorObject Example

The example below is a simple XML VendorObject instance found directly under the domain

“myDomain”. It is assigned a vendor object type “NortelObjectA”. And, the vendorExtensions

encapsulates an instance of ObjectA element, which is defined from the vendor namespace; nortel.v1

with schema definitions in nortelDefinitions.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XMLSpy v2005 rel. 3 U (http://www.altova.com)-->

<VendorObject xmlns="tmf854.v1" xmlns:nt1="nortel.v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="tmf854.v1 ..\..\xsd\networkResources\vendorObject.xsd nortel.v1

nortelDefinitions.xsd" extAuthor="jm" tmf854Version="1.0" extVersion="1.1">

 <name>

 <mdNm>myDomain</mdNm>

 <propNm>myObjectA</propNm>

 </name>

 <vendorObjectType>NortelObjectA</vendorObjectType>

 <vendorExtensions>

 <nt1:ObjectA>

 <nt1:attribute1>value1</nt1:attribute1>

 <nt1:attribute2>

 <nt1:attribute2-1>21</nt1:attribute2-1>

 <nt1:attribute2-1>22</nt1:attribute2-1>

 </nt1:attribute2>

 </nt1:ObjectA>

 </vendorExtensions>

</VendorObject>

9.4.2 Definition of MTOSI Vendor Notification

9.4.2.1 VendorNotification Element Definition

Define a generic vendor notification element as one of the supported event types. The definition of

VendorNotification has the following elements:

� notificationId (mandatory)

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 25

� vendorNotificationType (mandatory) free string

Question: shall we constraint with pattern <vendorName>_* where <vendorName> must be a

name selected by the vendor to ensure uniqueness of the definition

� vendorExtensions based on externally defined type which can take any elements from any

namespace. Emphasize that these extensions must have the vendor namespace to avoid conflict

with other vendor notification extensions (See example)

The reason for having this vendor notification base definition is the same as for the VendorObject.

9.4.2.2 Notification Topic Definition

To support the vendor notifications, they must be associated with an MTOSI topic. So, the following

changes are to be made:

� A VendorNotification is supported in the Inventory and Fault MTOSI topics.

� A new VendorNotification MTOSI topic is created. Its capabilities are described through the

DiscoveryServicethe same way as for the other MTOSI topics.

9.4.2.3 VendorNotification Example

The following example describes the instance of a VendorNotification with the vendor notification

type value “NortelNotificationA”. The entire structure of this notification is defined in vendor schema

nortelDefinitions.xsd with the vendor namespace; nortel.v1.

<?xml version="1.0" encoding="UTF-8"?>

<event xmlns="tmf854.v1" xmlns:nt1="nortel.v1" extAuthor="jm" tmf854Version="1.0" extVersion="1.1">

<VendorNotification>

 <notificationId>notifID</notificationId>

 <vendorNotificationType>NortelNotificationA</vendorNotificationType>

 <vendorExtensions>

 <nt1:NotificationA>

 <nt1:attribute1>value1</nt1:attribute1>

 <nt1:attribute2>

 <nt1:attribute2-1>21</nt1:attribute2-1>

 <nt1:attribute2-1>22</nt1:attribute2-1>

 </nt1:attribute2>

 <nt1:attribute3>

 <nt1:attribute3-1>false</nt1:attribute3-1>

 <nt1:attribute3-2>string</nt1:attribute3-2>

 </nt1:attribute3>

 </nt1:NotificationA>

</vendorExtensions>

</VendorNotification>

</event>

9.5 MTOSI Extensions Usage Recommendations

The MTOSI schema is designed to provide maximum extension capabilities in order to allow a

complete and successful integration of various OS solutions. However, the following sections suggest

some usage recommendations. These recommendations should all be understood by any implementers

who are designing proprietary schema that is going to be used in these MTOSI vendor extensions.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 26

Finally, as a general recommendation, all vendor specific definitions of interest to the MTOSI user

community should be presented to the MTOSI team as potential contributions for additions to the

standard interface definitions.

9.5.1 Namespace

The choice of the namespace for the vendor’s proprietary schema is important. It must be unique to

avoid any conflicts with another vendor’s schema. It is recommended to use the company’s name in its

definition (e.g. “<company_name>.v1”).

It is also recommended to choose a distinct prefix with the vendor’s namespace. A short name or

acronym easily associated with the company’s name should do it.

9.5.2 Extending an MTOSI Object vs. Using Vendor Object

Extension of an MTOSI object/notification is usually preferable to the use of an MTOSI vendor

object/notification.

It is recommended to use the MTOSI object/notification extension method if the characteristics of the

extension can be associated with one of the existing MTOSI objects/notifications. Extending the

definition of an MTOSI object/notification with additional specific attributes has the following

advantages:

� Simpler implementation effort (no specific naming handling)

� Greater management controls (retrieval, data lifecycle)

� Easier integration (the object/notification is a known entity)

For instance, if a network entity concept can be related to an MTOSI Physical Termination Point

(PTP), the recommended option is to extend the schema definition of the PTP with specific additional

attributes in the vendorExtension element.

Otherwise, a specific vendor object can be defined (as seen in 9.4.1) to describe that network entity

concept, which cannot be mapped to any of the MTOSI objects.

9.5.3 Examples of XML Messages with Extensions

The [TMF854] comes with some XML examples that can be used to support the various MTOSI

extension techniques.

All the extension examples are based on a vendor schema, which can be found in

xml\vendorSchema\vendorDefinitions.xsd

The following XML messages have extensions:

� getInventory_response.xml with

o one PTP object extension, and

o one vendor object

� objectCreation.xml extension of the ObjectCreation notification

� vendorNotification.xml a specific vendor notification

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 27

10 Advanced versioning features
The present MTOSI mechanism describes versioning at the MTOSI interface level. While this

granularity should address most of the concerns, the provider may implement a finer granularity. In a

finer granularity scenario, an interface or even an operation may be partially compatible depending on

the formal attributes or on the operation invoked in the interface. This fine grain versioning may widen

the base of compatible services, allowing a service consumer to engage on a “conversation” with a

mediation service checking compatibility each step in the flow. Since a fine grain versioning has a

more relaxed notion of minor version compatibility, it is useful for a service consumer to modify the

default behavior of the service provider to silently ignore all the unsupported tag. A way for a

consumer to accomplish this is by identifying and marking the critical data with

“MUST_UNDERSTAND” and triggering an exception if any of this data gets dropped in the service

provider. The marking of the XML data can be accomplished by adding a list in the Header or by

adding an attribute in each element. Given the complex nature of these extensions, the MTOSI Release

1.0 specifications do not support this mechanism.

11 MTOSI Requirements trace
The following table provides a mapping between the TMF 517 versioning requirements and the

method of support in TMF 854. In the table, “Interface” refers to the MTOSI as a whole and

“interface” refers to one of the interfaces in TMF 854.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 28

Table 11-1. Mapping of Versioning Requirements to Support in TMF 854
TMF 517 Versioning Requirement Method of Support in TMF 854

The MTOSI shall support discovery by one OS of the Interface version
of another OS. To the extent MTOSI allows for versioning below the

level of the overall Interface, this (i.e., the version of the Interface

components such as objects and operations) should also be
discoverable.

The getAllCapabilities operation of the Discovery service supports this
requirement.

The MTOSI versioning methodology shall allow for the addition of

interfaces and objects in going from one version to the next.

If the interface or object is optional, this is supported as a minor

version update to the Interface.
If support for the interface or object is mandatory, then this is a major

update to the Interface (not forward compatible in this case).

The MTOSI versioning methodology shall allow for the deletion of

interfaces and objects in going from one version to the next.

If the interface or object is optional, this is supported as a minor

version update to the Interface.
If support for the interface or object is mandatory, then this is a major

update to the Interface (not backward compatible in this case). For

mandatory interfaces and objects, the MTOSI team will deprecate the
entity for at least one version before removing from the Interface.

The MTOSI versioning methodology shall allow for the addition of

operations and notifications to interfaces.

If the operation or notification is optional, this is supported as a minor

version update to the Interface.
If support for the operation or notification is mandatory, then this is a

major update to the Interface (not forward compatible in this case).

The MTOSI versioning methodology shall allow for the deletion of

operations and notifications from interfaces.

If the operation or notification is optional, this is supported as a minor

version update to the Interface.
If support for the operation or notification is mandatory, then this is a

major update to the Interface (not backward compatible in this case).
For mandatory operation or notification, the MTOSI team will

deprecate the entity for at least one version before removing from the

Interface.

The MTOSI versioning methodology shall allow for the addition of
parameters to operations and notifications.

If the parameter is optional, this is supported as a minor version update
to the Interface.

If support for the parameter is mandatory to understand the operation

or notification, then this is treated as a major update to the Interface
(not forward compatible in this case).

The MTOSI versioning methodology shall allow for the deprecation of

parameters with regard to an operation or notification.

This is done via a behavior statement in the operation or notification. If

understanding of the parameter is mandatory to process the operation
or notification, then this is not backward compatible unless there is

some safe default value that can be set for the parameter.

The MTOSI versioning methodology shall allow for the addition of

attributes to objects.

If the attribute is optional, this is supported as a minor version update

to the Interface.
If support for the attribute is mandatory, then this is treated as a major

update to the Interface (not forward compatible in this case).

The MTOSI versioning methodology shall allow for the deprecation of
attributes with regard to an object.

For mandatory attributes, this is done via a behavior statement in the
operation or notification, and by putting a suitable default value in the

attribute. Optional attributes can just be removed and do not need to be

deprecated.
Either way, the change is fully compatible.

The MTOSI versioning methodology shall allow for modifications to

the relationships (including containment) among objects.

Most Containment Relationships are mapped into nested XML

structures. The contained objects are always optional and hence the

containment hierarchy can be modified by deprecating a removed
branch and by adding an additional optional branch, Nevertheless such

structural change in the inventory layout, while still syntactical
compatible, may be significantly critical to trigger a major version

release. In particular modifying the containment relationships may

impact the names of all the contained objects..
Relationships modeled by MTOSI pointers are also optional and

modifiable within a minor release.

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 29

12 Summary
This supporting document classifies the changes to a release in two main categories: minor and major.

Any minor change will result in a minor version increment in the Interfaces and will still guarantee

full compatibility.

Three prerequisite must be met in order to implement the MTOSI versioning mechanism:

1) Mark the XSDs with comments including the major and minor version number.

2) Mark the XML messages with the major and minor version number (both header and body)

3) Maintain the same major XSD namespace across the set of minor releases

By adding only optional elements or structures in a minor release, the MTOSI minor releases will be

backward compatible.

By adopting the “validation by projection” all the minor releases will also be forward compatible.

It is strongly advised to keep all the MTOSI modification in this class of versioning since it will

minimize the migration activities.

A major change (even if only semantic) will not preserve the native service compatibility and will

require a mechanism (described in section 8) to allow a smooth release transition.

A vendor extensibility mechanism has also been introduced to address any proprietary extension a

vendor may require in a particular deployment of MTOSI.

References
[BAU04] – “Theory of Compatibility (Part 3)” – David Bau,

http://davidbau.com/archives/2004/01/15/theory_of_compatibility_part_3.html

[ORC04] – “Providing Compatible Schema Evolution” - David Orchard,

http://www.pacificspirit.com/Authoring/Compatibility/ProvidingCompatibleSchemaEvolut

ion.html

[ORC01] – “Versioning XML Languages” - David Orchard, Norman Walsh,

http://www.w3.org/2001/tag/doc/versioning-20031003-diff.html

[ENUM] -Managing Enumerations in W3C XML Schemas

http://www.xml.com/lpt/a/2003/02/05/wxs-enum.html

[SD2-13] Attribute Extensibility map

[SD2-9] Using JMS as an MTOSI Transport

[TMF517] MTOSI Business Agreement

[TMF854] MTOSI XML Solution Set

 SUPPORTING DOCUMENT: VERSIONING AND EXTENSIBILITY

SD2-6 Version 1.1 TeleManagement Forum 2005 30

13 Revision History
Version Date Description of Change

1.0 MM/DD/YY

1.1 November 2005 Included comments from ME review

14 Acknowledgements
Francesco Caruso Telcordia Technologies Inc.

Tom Kelley Telcordia Technologies Inc.

Josephine Micallef Telcordia Technologies Inc.

Jerome Magnet Nortel

15 How to comment on the document
Comments and requests for information must be in written form and addressed to the contact identified below:

Francesco Caruso Telcordia Technologies Inc.

Phone: +1 732 699 3072

Fax: +1 732 336 7026

e-mail: caruso@research.telcordia.com

Please be specific, since your comments will be dealt with by the team evaluating numerous inputs and trying to
produce a single text. Thus we appreciate significant specific input. We are looking for more input than
wordsmith” items, however editing and structural help are greatly appreciated where better clarity is the result.

