
 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

1 TeleManagement Forum 2005 SD2-5 Version 1.1

MTOSI Communication Styles

Abstract

This document outlines the top down approach followed by MTOSI to define the technology neutral abstract

interfaces and the various technology specific concrete solutions set.

Table of Content

1 Introduction .. 2
2 Communication Architecture ... 2
2.1 Two different communication styles... 5
2.2 Semantics and processing model of the two communication styles ... 6
2.2.1 RPC Style sequence description ... 6
2.2.2 MSG Style sequence description .. 7

2.3 Implications of the two communication styles in the abstract interface signature................................ 7
2.4 Mapping the communication styles to a transport .. 7
2.4.1 RPC style with a synchronous transport ... 7
2.4.2 RPC style with a asynchronous transport ... 7
2.4.3 MSG style in synchronous transport... 8
2.4.4 MSG style in asynchronous transport... 9
2.4.5 Style transport mapping summary .. 10

3 Message Exchange Patterns.. 10
3.1 Simple Response pattern:(SRR) (ARR).. 11
3.2 Multiple Batch Response Communication Pattern ... 12
3.2.1 Synchronous Iterator (SIT) MEP.. 12
3.2.2 Asynchronous batch response (ABR)... 12

3.3 Bulk Response Pattern .. 14
3.3.1 Synchronous (File) Bulk Response (SFB) MEP... 14
3.3.2 Asynchronous (File) Bulk Response (AFB) MEP.. 15

3.4 Notifications.. 15
3.4.1 The MTOSI topics .. 15
3.4.2 Publishing in MTOSI.. 16
3.4.3 Receiving notifications in MTOSI.. 16
3.4.4 The Selector syntax... 18

4 Summary... 18
5 Revision History... 20
6 Acknowledgements .. 20
7 How to comment on the document... 20

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 2

1 Introduction

This document describes certain interactions between OS to OS such as an Inventory System and Discovery

OS. To aid understanding of these interactions, and the terminology used in the rest of this document, the

following high-level conceptual architecture diagram is presented as specific example.

Federated

Communications

Infrastructure

MTOSI MTOSI

MTOSI

MTNM Other NMS-EMS

Interfaces

ME ME ME

Various ME

Interfaces

EMS 1

EMS 2

Inventory OSS

MTOSI

Activation OSS Fault Mgmt OSS

Discovery OSS

ME ME ME
ME ME ME

Federated

Communications

Infrastructure

MTOSI MTOSI

MTOSI

MTNM Other NMS-EMS

Interfaces

ME ME MEME ME ME

Various ME

Interfaces

EMS 1

EMS 2

Inventory OSS

MTOSI

Activation OSS Fault Mgmt OSS

Discovery OSS

ME ME MEME ME MEME ME ME
ME ME MEME ME MEME ME MEME ME ME

XML messages

Figure 1: High level architecture

The Inventory OS interacts with the underlying Discovery OS by the sending and receiving XML messages..

2 Communication Architecture

The MTOSI team identified the need to be transport independent. Being transport independent will allow

replacing the underlying transport without changing the application code (and the application logic) of both the

OS client and OS server. This property is achieved by keeping untouched the MTOSI messages as the specific

transport is deployed.

In order to meet this requirement a service oriented façade design pattern is used [GAM]. Similar to the

CORBA broker architecture, the MTOSI team has defined an abstract interface that is transport technology

agnostic and the encapsulation of the mappings to different transport in generic modules called bindings.

The following diagram (Figure 2) shows the detailed communication architecture.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

3 TeleManagement Forum 2005 SD2-5 Version 1.1

Service

Consumer
Abstract Interface

(WSDL PortType)

Protocol Binding

(WSDL Bindings:

Protocol mapping

+ Access info)

Transport Protocol
Transport Protocol
Transport Protocol
Transport Protocol
Transport Protocol

Service

Provider
XML payload

Local Procedure Call

(e.g., Request/Reply)

Code derived

from WSDL

SOAP

Node

Processor

Abstract Request()

Abstract Reply()

SOAP

Node

Processor

“On the wire” Concrete Interface:

PortType + Protocol Binding

Service

Consumer
Abstract Interface

(WSDL PortType)

Protocol Binding

(WSDL Bindings:

Protocol mapping

+ Access info)

Transport Protocol
Transport Protocol
Transport Protocol
Transport Protocol
Transport Protocol

Service

Provider
XML payload

Local Procedure Call

(e.g., Request/Reply)

Code derived

from WSDL

SOAP

Node

Processor

Abstract Request()

Abstract Reply()

SOAP

Node

Processor

“On the wire” Concrete Interface:

PortType + Protocol Binding

“On the wire” Concrete Interface:

PortType + Protocol Binding

Figure 2 - MTOSI communication architecture

A service consumer interacts with a service provider through the invocation of an operation to execute a

Business Activity achieving a business goal . The operation involves an exchange of XML messages (XML

payload). A communication pattern (as described further in Section 2.1) identifies the sequence and cardinality

of the messages sent and/or received as well as whom they are sent or received from. The messages are

exchanged by the application to the SOAP Node Processor (usually middleware) according to a

communication style: RPC or message (MSG) (see Section 2.2). The Soap Node processors implement the

bindings for a supported transport and are responsible for the marshalling and un-marshalling of the XML

messages and meta information to the wire format protocol.

The combination of a communication pattern and a communication style fully identify the messages and the

choreography (sequencing and cardinality) of messages involved in a business activity, which we call a

Message Exchange Pattern (MEP) [SOA] [WSD] [WSD2]. The combination of the MEP and the message

types (XML Schemas) fully specify an interface at the abstract level. By adding the transport protocol details

(Bindings) to the abstract interface we define a the concrete (transport specific) interface.

The following figure (Figure 3) illustrates how a business goal addressed by an abstract operation can be

mapped to a communication style, pattern, and protocol.

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 4

Simple

Response

RPC MSG

HTTP/S

JMS

Multiple Batch

Response

RPC MSG

Business Activity

Comm.

Pattern

Comm.

StyleA
b
st
ra
ct
 I
n
te
rf
ac
e

Bulk

Response

RPC MSG

HTTP/S

JMS

B
in
d
in
g

C
o
n
cr
et
e
In
te
rf
ac
e Notification

M
es
sa
g
e
E
x
ch
a
n
g
e
P
a
tt
er
n

Figure 3 - Mapping an operation to communication styles and transport protocols

The picture also illustrates that an operation with a communication pattern and a style defines an abstract

interface and with the addition of a protocol binding it defines a concrete interface. These concepts are

explained further in the following subsections.

2.1 Communication patterns

A Communication Pattern identifies the actors, their role in the communication, and the abstract type of

messages sent and/or received (e.g., request, response, notification, error).

We identified four distinct Communication patterns in MTOSI V1.0:
• Simple Response

• Multiple Batch Response

• Bulk Response (e.g. file transfer)

• Notification

These Communication patterns address different communication needs: while the first three are oriented

towards an exchange of information between two parties in a business activity (P2P), the notification

communication is designed to disseminate information to a set of recipient (pub/sub), possible greater than one.

In the MTOSI methodology, the design of a service realizing a business activity includes selecting one or more

of these communication patterns.

For example, the getInventory business activity is likely to require result sets to be partitioned into several

chunks and sent to the service consumer according to the multiple-batch-response business communication

pattern. A communication pattern defines the collaboration as a high-level choreography without specifying

how it is actually carried out. A communication pattern is an abstract concept and is analogous to the concept of

WSDL Transmission Primitive in WSDL 1.1 [WSD] within the portType or the WSDL Message Exchange

Pattern in WSDL 2.0 [WSD2] within the Interface.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

5 TeleManagement Forum 2005 SD2-5 Version 1.1

2.2 Two different communication styles

A communication style identifies the interaction between a service implementation (or consumer) and its SOAP

processor (often referred as communication middleware). Occasionally the SOAP processor may be part of the

application where the specific transport binding is not available off the shelf or where full control of the

bindings is required. Nevertheless, a logical boundary should be identifiable between the application

implementing the business logic (or processing a service response) and the component responsible for the

marshalling and un-marshalling the messages. Two communication styles are defined for MTOSI: RPC style

and Message Style (defined below). This concept of style is common to the WSDL V2.0 specification and it is

also called Style [WSD2].

It should be noted that a Service consumer at the abstract level should be able to bypass the soap processor and

access a service provider by simply invoking the abstract interface according to the communication style. This

abstraction simplifies the description of the styles, allowing us to conceptualize the messages exchanged in a

provider/consumer configuration.

a) RPC communication style

Service

Consumer

Service

Provider

Abstract

Request/Reply

XML payload

b) MSG communication style

Service

Consumer

Service

Provider

Abstract Request

XML payload

Abstract Reply

XML payload

Service Receptacle Callback Receptacle

Figure 4 - Communication styles

In the RPC communication style (Figure 4a) the Service consumer invokes the service providers through a

service receptacle and receives a response as return argument. The call to the middleware is a blocking

synchronous call and implements the Remote Procure Call semantics. This interaction is blocking for the

process or thread that invoked the operation.

In the Messaging communication Style (Figure 4b), the service consumer invokes the service by sending a

request message through the Service receptacle but at the same time exposes a callback receptacle. The Service

provider will then respond by sending the reply message to the callback receptacle. This interaction is non-

blocking.

Beside the different coordination mechanics, the significant difference between these two styles lies in the

exposure of the callback receptacle in the MSG style. These differences have implications in the operation

signature as well as in the business patterns built on top of the communication styles.

Note that the callback receptacle is a logical entity and it may be implemented in different ways. It could be

simply a service exposed by the consumer (e.g. HTTP URL) or a combination of a topic and correlation ID to

filter the relevant messages.

Furthermore, the message originated in the MSG Style should not be confused with a Notification message. A

notification is a higher level Communication Pattern used to disseminate information. It is possible to

implement a Notification Pattern on top of a MSG Style, as suggested in Figure 4.

These styles are not interchangeable at the business level. The message style is somehow richer than the RPC.

In the message style, the service producer has the ability to expose the state of its own private transaction flow

related to an operation invocation. The RPC style does not offer the capability to produce more than one

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 6

response per invocation. For this reasons, while it is possible to reduce a MSG style exchange to an RPC style

by ignoring the intermediate messages, the vice versa may not always be viable. To upgrade the RPC to a

MSG style it is necessary to have access to the internal (private) process state of the service provider in order to

produce the additional messages (e.g. intermediate state changes) .

2.3 Semantics and processing model of the two communication styles

The next figure illustrates how to use the RPC and MSG styles to carry out a simple business transaction

between two parties. The business transaction will invoke a function on the service provider with formal

arguments and return an output result.

a) RPC communication style

Request

message

Compute

Response
Response

message

Define

required

Data

Process

response

Data

active wait

Service

Consumer

Service

Provider

b) MSG communication style

Request

Message + replyTo

Compute

Response

Response message

Define

required

Data

Process

response

Data

Call back

message

No active wait

Service

Consumer

Service

Provider

Figure 5 - RPC/MSG Style sequence diagram

2.3.1 RPC Style sequence description

Figure 5a describes the following sequence of synchronous events:

• A request message is generated and passed to the service Provider with a synchronous blocking call.

• The Service Consumer blocks on the call and waits for a response or failure notification.

• The Service Provider computes a response and replies with a Response message using the logical

request communication channel (e.g. TCP/IP socket, HTTP session, IIOP session, etc)

• The Service Consumer receives the result

• A synchronous transport such as CORBA, or HTTP/S will natively support this interaction pattern.

A significant number of the MTOSI operations are by its nature request with a single reply. With some

exceptions e.g. (bulk retrieval), a request is processed in a reasonable time and a single reply can carry the

response back to the client.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

7 TeleManagement Forum 2005 SD2-5 Version 1.1

2.3.2 MSG Style sequence description

Figure 5b describes the following sequence of synchronous events:

A request message is generated and passed to the Service Provider with an asynchronous call.

• The Service Consumer will not block on the call but rather be notified later when a response is

available.

• The Service Provider computes a response and replies with a Response message using the ReplyTo

logical channel exposed by the Service consumer.

• The Service Consumer receives and correlates the result, resumes it’s thread control, and then processes

the response.

An asynchronous transport such as JMS, or MQ will natively support this interaction pattern.

2.4 Implications of the two communication styles in the abstract interface
signature

The MSG communication style requires the Service Consumer to expose a callback receptacle, the identity of

which is sent back to the Service Provider in the request message. This field is named “ReplyTo” and is

specified in the header.

The MSG communication style also requires a CorrelationID to be used by the service consumer to correlate the

acknowledgement and responses to the original service request. This files can also be specified in the header.

2.5 Mapping the communication styles to a transport

Both Communication styles can be mapped (with various degrees of difficulty) to different transport fabrics

with different native characteristics. The transport capability to synchronously connect the parties or

asynchronously store and forward the messages plays a major role in mapping the two communication styles.

2.5.1 RPC style with a synchronous transport

Mapping the RPC style to a synchronous transport is straightforward. A request can be carried out from the

transport and the result will be received on the same logical communication channel established for the request.

The call from the service consumer is blocking and both consumer and producer need to be active at the same

time.

2.5.2 RPC style with a asynchronous transport

Mapping the RPC style to a asynchronous transport requires synchronization to be implemented in the layer

between the application and the transport. A service consumer will invoke the middleware with a blocking call

according to the RPC style semantic. The binding code (located in the application or in the middleware) in the

binding adapter (a.k.a the SOAP node processor) will handle the dispatching and synchronization of the

messages through an asynchronous transport. The following sequence diagram illustrates an example of a

possible implementation.

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 8

Client OS

(e.g. Inventory)
Server OS

(e.g. NMS/EMS)

Forward

Request message
Compute

Response

Response message

Binding

adapter

Request message

Binding

adapter

Asynch

Channel

Compose correlation ID

post message dispatch

message

Wait for msg with

correlation ID

Response message

Post

Response

message

Forward

Response

message

Extract

correlation ID

Add correlation ID

Figure 6 – RPC Request/Reply over Asynchronous transport

This previous diagram describes the following sequence of asynchronous events:

• A request message is generated and passed to the OS messaging adapter (this is the binding adapter on

client-side of the diagram).

• The binding adapter generates a correlation ID (possibly suggested by the application).

• The binding adapter posts the request message in the logical channel related to the server OS.

• The binding adapter waits (passive wait) for a return message with the correlation ID.

• The server OS binding adapter (this is the binding adapter on the server-side of the diagram) receives

the request message extracts and holds the correlation id.

• The OS binding adapter calls the relevant method on the underlying API.

• Based on the response from the Server OS, the OS binding adapter builds a Response Message which

includes the correlation ID, which is passed back to the client OS via the Asynch Channel and Binding

Adapter on the client-side.

• The client OS message adapter detects a message with the proper correlation ID and forwards it to the

client OS.

2.5.3 MSG style in synchronous transport

In order to map a MSG style in synchronous transport the binding adapter needs to implement a “store and

forward” policy to decouple the service consumer from the service provider. This is similar to adding

“reliability QOS to the transport”.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

9 TeleManagement Forum 2005 SD2-5 Version 1.1

Service

Provider

Post
Request Msg

Compute
and Send
Response

Post Response
Msg to ReplyTo

Post
Request Msg

Store &
Forward MSG

Dispatch Msg

Forward MSG
add ReplyTo

Service

Consumer

Binding

Adapter

Binding

Adapter

Blocking Wait

Response Msg
Post Response
Msg to replyTo

Wait for
Corr ID

Figure 7 - MSG Request/Reply over Synchronous Transport

This previous diagram (Figure 7) describes the following sequence of synchronous events:

• A request message is generated and passed to the OS messaging adapter along with a call back handler.

(this is the binding adapter on client-side of the diagram). This is a NON blocking call.

• The binding adapter stores the request message

• The binding adapter posts the request message to the target destination with a synchronous call.

• The above step may be repeated in case of communication failure according to a reliability protocol

(see [WSR]).

• The binding adapter waits (active wait) for a return message.

• The server OS binding adapter (this is the binding adapter on the server-side of the diagram) receives

the request message.

• The OS binding adapter calls the relevant method on the underlying API and waits for a response.

• Based on the response from the Server OS, the OS binding adapter builds a Response Message, which

is passed back to the client OS resuming the pending synchronous call initiated by the Service

consumer Binding Adapter..

• The client OS binding adapter receives a message forwards it to the client OS invoking the specified

call back handler.

2.5.4 MSG style in asynchronous transport

The MSG style maps natively to an asynchronous transport.

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 10

Service

Provider

Request Msg

Compute
and Send
Response

Response
Msg

Request Msg
Post
Msg

Dispatch Msg

Response Msg
Dispatch

Response Msg

Service

Consumer

Async

Channel

Binding

Adapter

Binding

Adapter

Post
Response

Figure 8 - MSG Request/Reply over Asynchronous Transport

The above diagram (Figure 8) highlights that the binding adapter is simply passing the message to the

asynchronous channel and vice versa. No specific logic is required since the asynchronous transport natively

implements the MSG style.

2.5.5 Style transport mapping summary

The following table (Table 1) summarize the possible combinations mapping the communication style to a

transport

Table 1 Communication Styles and Transport Type

 Transport type

Communication Style Synchronous (HTTP/S, IIOP) Asynchronous (JMS, MQ,SMTP)

RPC Maps natively Binding adapter needs to handle

messages correlation (correlation ID)

MSG Binding adapter needs to handle store

and forward semantic

Maps natively

3 Message Exchange Patterns

A Message Exchange Pattern (MEP) is the combination of a business communication pattern and a

communication style and fully identifies the messages and the choreography (sequencing and cardinality) of

messages independently from a business activity. A MEP can be equated to a SOAP MEP [SOA].

Table 2 summarizes the possible 8 combinations of communication styles and communication patterns into

individual MEPs.

This table represents the MTOSI MEP portfolio: Each business activity can reference to one or more MEP to

fully identify the mechanism to achieve the business goal in the MTOSI specification.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

11 TeleManagement Forum 2005 SD2-5 Version 1.1

Table 2 - MEPs used in TMF 854

Message

Exchange

Pattern

(MEP)

Communication Pattern

Communication
Style

Simple Response Multiple Batch

Response

(File) Bulk

Response

Notification

RPC (Synch)

Note – None of the

RPC styles is

supported by MTOSI

v1.0.

SRR

Synchronous

Request/Reply

SIT

Synchronous

Iterator

SFB

Synchronous (File)

Bulk

WSN

Web Services
Notification

MSG (Asynch) ARR

Asynchronous

Request/Reply

ABR

Asynchronous

Batch Response

AFB

Asynchronous

(File) Bulk

WSN

Web Services

Notification

The following MEPs are used for the operations in MTOSI:

• Synchronous Request/Reply (SRR) and Asynchronous Request/Reply (ARR) – Message (SRM) are used

for requests that have a single response.

• Synchronous Iterator (SIT) – this MEP allows for a synchronous (i.e., RPC style) request for an iterator.

• Asynchronous Batch Response (ABR) – this MEP allows for an asynchronous (i.e., message style) request

for a multiple batch response.

• Synchronous (File) Bulk (SFB) – this MEP allows for a synchronous (i.e., RPC style) request for inventory

to be returned in a file. The file is delivered via an out-of-band method (i.e., not using the CCV).

• Asynchronous (File) Bulk (AFB) - this MEP allows for an asynchronous (i.e., message style) request for

inventory to be returned in a file. The file is delivered via an out-of-band method (i.e., not using the CCV).

• Web service Notification – to disseminate information (see Section 3.4 for a detailed description)

3.1 Simple response pattern: (SRR, ARR)

The simple response pattern involves a request/reply with a single result message. This pattern maps directly

into the two native communication styles. Using RPC style the sequence diagram of Figure 5 applies at the

business level. An acknowledge message may also be sent from the Service provider to the service consumer

upon receiving a service request.

For example, the out = getTP(in) operation defined in the managedElementManager will have two variants:

• SRR out = getTP(in)

• ARR out getTP(in + replyTo+ CorrelationID)

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 12

3.2 Multiple batch response communication pattern

Handling a large result data set requires some additional coordination between the service consumer and

producer. The Iterator design pattern is usually deployed in this situation to provide such coordination.

Nevertheless the two communication styles natively lead to an Iterator pattern with significant differences in

terms of flow control.

3.2.1 Synchronous iterator (SIT) MEP

This is the classical Iterator design pattern [GAM]. The response of the first invocation returns a partial data set

as well as a pointer to an Iterator interface. The service consumer will then invoke the Iterator to receive the

subsequent result data set partitions. The consumer has control of the flow, the service provider needs to

maintain the state related to the pending Iterator. The following example illustrates a typical interaction.

Client OS

(e.g. Inventory)
Server OS

(e.g. NMS/EMS)

Request message<args, int resultSize>

Define

required

Data

Compute

Response
Response message [resultSize] + iterator handler

Request next N <Iterator , int resultSize>

Response message [resultSize]

Request next N <Iterator , int resultSize>

Response message [resultSize]

. . .

Next N

Next N

Solicit

next N

Figure 9 - Synchronous Iterator design pattern

The Iterator state on the server side can be controlled using a timeouts-based garbage collection mechanism.

This is the common mechanism used in the MTNM CORBA interface to retrieve multiple result sets.

3.2.2 Asynchronous batch response (ABR) MEP

Using the MSG communication style in combination with the Multiple Batch Response Communication Pattern

leads to a variation of the pattern with flow control in the service provider. The response of the first invocation

returns an acknowledgement. The result set will then be sent in chunks to the service consumer (via the call

back receptacle) as the data becomes available in the service producer. The consumer has usually control over

the size of the chunks specified in the initial call. The following example (Figure 10) illustrates a typical

interaction. This is the mechanism implemented in the OSS/J design guidelines [OSSJ].

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

13 TeleManagement Forum 2005 SD2-5 Version 1.1

Client OS

(e.g. Inventory)
Server OS

(e.g. NMS/EMS)

Request message<args, int resultChunk>

Define

required

Data

Compute

Response

Response message [chunk 1]

Response message [chunk 2]

. . .

Response message [chunk 3]

Response message [chunk N]

Figure 10 - Asynchronous batch response design pattern

The following example summarizes the mapping of the Multiple Batch Response Communication Pattern to the

different styles RPC and MSG.

For example, the out[] = getAllPTPs(in) operation defined in the managedElementManager will have two

variants:

• SBR out[i..j] + iterator = getAllPTPs(in + requestedBatchSize)

The request will need to specify the size of the result set returned as response from the initial

invocation. The service provider will also return a reference to an Iterator interface. The service

consumer will than invoke the Iterator to get the subsequent result data set.

• out[i..j]=next_n(n)->Iterator

We can use the same signature adopted in the CORBA MTNM implementation TMF814. (See

supporting document: overview of Iterator usage Overview of Iterator Usage)

• ABR out[i..j]= getAllPTPs (in + requestedBatchSize + replyTo+ CorrelationID)

The Asynchronous batch Response does not need the additional Iterator interface since the service producer it

will directly fragment the result and send it to the service consumer.

Although with slight different semantic, the formal argument “requestedBatchSize” is common to both Iterator

and can be carried in the message header of the request. How may is the number of elements in the batch. A

value of 0 (zero) will imply the entire data result set in a single response.

The “replyTo” callback identifier needs to be provided in the MSG Asynchronous Iterator request. This field can
be provided in the header section of the request message.

Note that although the Iterator responses are similar in nature to Notifications they are not Notifications.

Notifications should be used to disseminate information (such as alarms and/or state changes) and not to convey

a result data set.

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 14

3.3 Bulk Response Pattern

This pattern enables to transfer the result XML payload using an additional specialized protocol different from

the one used to carry the messages conversation. For instance, with this pattern it is possible for a service

consumer to request a service provider to upload the bulk result set to an ftp server according to the FTP

protocol.

This pattern can be further mapped in the two styles: RPC and MSG. It should be noted that the actual payload

will be transferred off-band in both the communication style variants.

3.3.1 Synchronous (File) Bulk Response (SFB) MEP

Service

Consumer

Response message

(upload terminated)

Service

Provider

Request message

(XML req + SS URI)

Storage

Server

Upload XML

response to URI

Download file from SS

Figure 11 - Bulk transfer RPC style

In this MEP the service consumer request a response set to be uploaded in a storage server and the blocking call

returns when the transfer is complete.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

15 TeleManagement Forum 2005 SD2-5 Version 1.1

3.3.2 Asynchronous (File) Bulk Response (AFB) MEP

Service

Consumer

FT_COMPLETED

Service

Provider

Request message

(XML req + SS URI)

Storage

Server

Upload XML

response to URI

Download file from SS

FT_IN_PROGRESS

FT_IN_PROGRESS

…

Figure 12 - Bulk transfer MSG style

In this pattern, the initial request is non-blocking and the service consumer gets notified when the transfer is

completed. The NT_FILE_TRANSFER_STATUS notification (defined in the MTNM specifications) is used to

indicate when the file transfer is complete or when a failure has occurred. The number of events indicating

FT_IN_PROGRESS that will be transferred is an implementation decision for the designer of the target OS.

However, at least one event indicating FT_COMPLETED with percentComplete=100, or FT_FAILED with a

supplied failureReason is mandatory

3.4 Notifications

The notification communication is designed to disseminate information to a set of recipient (pub/sub), possible

greater than one. MTOSI leverages on a subset of factures defined in the Web Service Notification specification

[WSN]. The Web Service Notification specification [WSN] has been proposed by IBM et. al. and it is currently

V1.0 as of 1/20/2004. The purpose of this spec is to “specify a standard Web services approach to notification

using a topic-based pub/sub pattern”. Given the transport independent nature of web service, this specification

is a good candidate for the MTOSI notification mechanism. Nevertheless the WS-notification is more

sophisticated than what we may find useful in the first release of MTOSI. The rest of this document will present

a minimal subset of concepts and mechanisms to be proposed as MTOSI notifications. To be fare, WS-Eventing

[WSE] [WSE2] is another proposal submitted by IBM, BEA Systems, Microsoft, Computer Associates, Sun

Microsystems, TIBCO Software, overlapping in some parts with the WS-Notification. From what we see on the

web, it seems that WS-Notification and WS-Eventing are slowly being aligned. The following paragraphs

highlight a brief view of the MTOSI notification from the user perspective. Refer to SD2-8 MTOSI Notification

Service for the details and in depth specification of the notification mechanism in MTOSI.

3.4.1 The MTOSI topics

A topic is a logical entity identifying a related stream of notifications. In MTOSI, we decided to have the

following Topics.

• Inventory Topic

• Fault Topic

• Protection Topic

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 16

• File Transfer Topic

3.4.2 Publishing in MTOSI

This proposal advocates the “simple publishing” mechanism described in the WS-notification spec.

Figure 13 - WS-Notification simple publishing

A Publisher sends a message to a NotificationBroker and the Notification broker (typically middleware) will

take care of disseminating the information.

The notification operation exposed by the NotificationBroker should have the following signature:

Notify(TopicPathExpression, Message)

Where:

TopicPathExpression - identifies the unique name of the MTOSI topic the publisher intent to publish

to.

Message - is the payload message fully described by the MTOSI XSDs.

Note WS-notification has an additional optional Publisher registration to the broker to allow security.

We can/may introduce this step in phase II.

3.4.3 Receiving notifications in MTOSI

In WS-notification there is a distinction between the actor requesting a subscription (service requestor) and the

actual actor receiving the stream of event notifications (Notification consumer).

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

17 TeleManagement Forum 2005 SD2-5 Version 1.1

Figure 14 - WS-Notification, Brokered subscription

In MTOSI we probably safely assume that a Notification consumer is also the entity initiating the subscription

request. This assumption will not change the notificatication API but it will simplify the mechanism.

Figure 15 - WS-Notification, brokered publisher

Figure 15 further simplified the sequence diagram propose by WS-notification by removing the subscriber topic

lookup in the broker and Publisher registration with the broker.

The notification consumer has to have the capability to receive notifications sent from the broker. This

translates into exposing an operation with the following signature:

Notify(TopicPathExpression, Message)

Where:

TopicPathExpression identifies the unique name of the topic on which the message was published.

Message is the payload message fully described by the MTOSI XSDs.

Note this is the same operation the broker exposes to the publisher.

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 18

The subscriber (possible the same entity as the notification consumer) has to notify the broker of it’s intention

to receive events from a topic. The subscriber also has an option to further constraint the messages received by

specifying a filter at the subscription time.

The broker has to expose the following operation:

Subscribe(ConsumerEndpointReference, TopicPathExpression, [Selector])

returns: WS-Resource qualified EPR to a Subscription

where:

ConsumerEndpointReference - is the endpoint (callback handler) that the broker will call to send the

notification.

TopicPathExpression - Is the unique name of the topic object of the subscription

Selector Is the optional “filter” expression further restricting the flow of messages dispatched to the

notification consumer.

3.4.4 The Selector syntax

WS-Notification provides the XPATH syntax for expressing the filter. While the XPATH notation is a rich and

effective language for constraining XML, it is important to keep an eye on the possible implementation. When

the notification broker is implemented as a JMS broker, the JMS subscriber has a capability to set a JMS

selector to constraint the JMS messages. This JMS selector syntax is less XML oriented and the scope of the

predicates are bound to the header and additional application specific properties [SD2-9]. In MTOSI phase I we

decided to structure the selector in two parts: an identifier specifying the selector format, and the selector itself.

In this way we can easily support the JMS selector syntax in the subscription implemented in JMS.

4 Summary

We identified two Communication Styles in the context of the MTOSI OS to OS interactions: Remote

Procedure Call (RPC) and Message (MSG). Each Communication Styles, RPC and MSG can be supported

(with different efforts) by both Synchronous and Asynchronous Transport fabrics with the same signature and

without changing the applications. Nevertheless, these different styles, while pursuing the same business

transaction objective (accessing a service), have a distinct signature and behaviour in terms of coordination. As

a consequence, the style conditions the business communication Patterns (Req/Reply, Iterator, Notification) into

two classes: Synchronous and Asynchronous. While a synchronous behaviour is more effective in a tight

integration such as the NMS/EMS relationship, the Asynchronous behaviour is more suitable to a loosely

integrated application such as the OS to OS ecosystem. Since MTOSI is defining the services that will be used

in these two different contexts we are proposing the adoption of both Communication Styles RPC and MSG.

MTOSI will define operations with these two different styles and related Business Patterns (e.g Iterator) with

different flavour. It will be the provider responsibility to state what operation are implemented and offered to

the service consumer. Although in MTOSI phase I we focus only on the Message Exchange Patterns related to

the MSG communication stile the subsequent phases can easily extend the scope to RPC.

 SUPPORTING DOCUMENT: MTOSI COMMUNICATION STYLES

19 TeleManagement Forum 2005 SD2-5 Version 1.1

References

[SD2-8] MTOSI Notification Service

[SD2-9] Using JMS as an MTOSI Transport

[TMF854] MTOSI R1.0 XML Solution Set

[GAM] Gamma, Helm, Johnson, and Vlissides. Design Patterns. Addison-Wesley, 1995

[WSD] Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,

http://www.w3.org/TR/wsdl

[WSD2] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C Working

Draft 3 August 2004, http://www.w3.org/TR/wsdl20/

[SOA] SOAP Version 1.2, W3C Recommendation 24 June 2003, http://www.w3.org/2000/xp/Group/

[WSR] WS-Reliability 1.1, K. Iwasa, ed., OASIS Web Services Reliable Messaging TC, Committee Draft

1.086, 24 August 2004

[WSN] WS-Notification version 1.0 – 1/20/2004 - http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsn

[WSE] WS-Eventing– August 2004 - http://www-

106.ibm.com/developerworks/webservices/library/specification/ws-eventing/

[WSE2] WS-Events version 2.0 - 21/07/2003 - http://devresource.hp.com/drc/specifications/wsmf/WS-

Events.jsp

[OSSJ] OSS through Java Initiative - http://java.sun.com/products/oss

 SUPPORTING DOCUMENT

SD2-5 Version 1.1 TeleManagement Forum 2005 20

5 Revision History

Version Date Description of Change

1.0 May 2005 This is the first version and as such, there are no changes to report.

1.1 Dec 2005 Applied member evaluation feedback.

6 Acknowledgements

<FirstName> <LastName> <Company>

Michel Besson Cramer

Francesco Caruso Telcordia Technologies Inc.

Shlomo Cwang TTI Telecom

Felix Flemisch Siemens

Steve Fratini Telcordia Technologies Inc.

Elisabetta Gardelli Siemens

Jérôme Magnet Nortel Networks

7 How to comment on the document

Comments and requests for information must be in written form and addressed to the contact
identified below:

Francesco Caruso Telcordia Technologies Inc.

Phone: +1 732 699 3072

Fax: +1 732 699 7015

e-mail: caruso@research.telcordia.com

Please be specific, since your comments will be dealt with by the team evaluating numerous inputs
and trying to produce a single text. Thus we appreciate significant specific input. We are looking for
more input than wordsmith” items, however editing and structural help are greatly appreciated where
better clarity is the result.

