Page 4
Draft prETS 300 ???: Month YYYY

Annex A Drafting Rules for BC IDL

Scope

Backward compatible IDL is only prescribed for the main, major relelase.
this is in order that rel N, may be understood and managed by a manager at reelase N+1.

An IRP Agent which supports relase N, may be managed by a manager at release N, or a release N+1 (and if each major reelase is handled in thia manner every N+M release as long as each one (of N+M) is created adhering to these rules.

Rationale

The reason for wishing to write enhancements to CORBA solution sets in a backward compatible way is to satisfy the following

· Without any agreed approaches each release forces al systems to be upgraded in Lock-Step.

· This forces an operator and vendor to adopt crude upgrade strategies of

· Shut the management network down, upgrade and re start.

· Support multiple IRP versions on the same computer hardware.

· Provide additional management hardware to maintain the upgraded network until all systems have been moved to later release.

· Any of these strategies contribute to an operators costs, and forces the operators hand regarding when the upgrade is best to be performed.

Why is new IDL causing a BC Problems

CORBA interfaces use interface definition language (IDL) to specify CORBA interfaces.

The IDL is compiled for development to a particular target language. The compilation process producing skeletons and stubs, which are frameworks for software code development.

The important thing here is that if the interface definitions (The IDL) changes in any way, it is possible for the IRPManager (CORBA client) and the IRPAgent (CORBA server) to mis communicate.

examples of changes which result in incompatibilities (without re building both sides of the interface to the same IDL versions are:-

Addition or removal of an attribute

Addition of an operation

Addition of a notification

Changing an enumerated value.

Enumerated values also have an interesting effect such that without both CORBA client, and CORBA server

 implementations being re built using the updated IDL, it is possible for an enumerated value to be sent, and to be mi interpreted. This doe snot necessarily mean an error condition will be raised. The enumerated value may mean different things between the IRPManager and IRPAgent. The prediction regarding the result is difficult to predict.

Summary of Backward Compatibility Rules

The backward compatibility rules are provided. It is a decision of the Rapporteur group whether the BC rules are applied to a particular work item.

Unchanged Items from previous Releases

Where a new release adds some extensions to some parts of an IRPs CORBA solution set , there will be no copying of the un changed parts of the previous release into the new IDL.

The previous parts will be embodies into the new IDL by use of the " # include" statement.

File Names

If the IDL files of an earlier release have not been functionally modified, the existing file names will be used, without change, in the new release.

If a new IDL file is created, or there is a functional modifications to an existing file, are made, as part of the new release development, then the new or modified IDL file name will indicate the release in its name by inclusion of an "....._rn.idl" in the file name.

File Content

After the //File:- <file name> comment line there will be a set of comments which define the Delta from the previous release(identifiers no longer supported, mew identifiers added to the current release. This is to allow an understanding of what functional changes have been made.

After the commented release specific changes, there will be a series of #include statements. These will be in an order of the oldest release nearest the top of the file, the more recent versions, in release order following.

Module Names

Backward compatibility does not require any change to module names existing in previous releases.

idl enhancements will be done within the existing module names.

There are no release specific annotations to new module names.

Interface Names

1. Interfaces that do not change from previous versions of the interface would not appear in the revised CORBA IDL file

2. The name of the new interface shall be the same as the existing interface with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated. So, extending an interface for AlarmInformationIterator interface in R7 would result in an interface named AlarmInformationIterator_r7.

3. The new interface shall inherit from the existing interface

4. Capabilities inherited from the existing interface cannot be removed or modified in the new interface. If a method definition must be modified, a new operation must be defined. The name of the new method shall be the same as the existing operation with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated.

For example, consider the following interface:

interface AlarmIRP
{

void existing operation (in int A);
};

// new parameter added to previous releases operation
// Define a new interface which Inherits form the old, add the new operation(s).

interface AlarmIRP_r7 : alarmIRP
{

void newRl7Operation (in int A, in intB);
};

Amending or adding New Operations

Operations are defined within an interface definition.

Modifying operations, for the latest3GPP release being developed requires that a new interface is defined for the release. The new interface shall inherit from the previous release, and will have rn as part of its name.
Only new operations , again named with thern will be defined.

Revision to other identifiers

· Other identifiers may be of the following sorts

· 16, 32,64-bit signed and unsigned 2’s complement integers
· Single-precision (32-bit), double-precision (64-bit), and double-extended (mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE floating point numbers
· Fixed-point decimal numbers of up to 31 significant digits
· Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets
· Boolean type taking the values TRUE and FALSE.
· An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems
· A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined
· A wide character string type, which consist of a variable-length array of (fixed width) wide characters; the length of the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.
· A container type “any,” which can represent any possible basic or constructed type.
· Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width) wide characters.

· A record type (called struct), which consists of an ordered set of (name, value) pairs.

· A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an instance of a type appropriate to the discriminator value.

· A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at run-time.

· An array type, which consists of a fixed-shape multidimensional array of a single type
· An interface type, which specifies the set of operations that an instance of that type must support.
· A value type, which specifies state as well as a set of operations that an instance of that type must support
· Enumerated types
A similar approach is made that new identifiers have an _Rn, where n shows the release the new definition was introduced. Enumerated types will have "...._rn" added to the type definition. The enumerated type definition, as well as each enumeration will include the "...._rn" where n is a value appropriate to the current release.

CR (Change Request) processing

Changes made during an interim period will not typically change release numbers unless new enumeration, interface definitions, or type definitions are created. In this latter case the same backward compatibility rules will apply.

File Names for IDL Modules
To allow BC to become effective from a particular release, the new IDL, or the updates to the previous release IDL will have file names which embody a release identifier in the name.

e.g.

 "NewIdlFile_r7_.idl"

AlarmIRPConstDefs_r7_.idl

Commenting the compatibility

The file will include comment lines after the /File definition which will mark the identifiers from the previous release which are no longer supported.

This will be followed by comments marking the new identifiers for the new release

//File: ExampleIRPConstDefs.idl
/**
 /* The following indetifiers are no longer supported in release 7
 /* entityName, entityName
 /* The following are identifiers new to release 7
 /* newEntity_r7_
**/
Inclusion of IDL Files
 Include files are listed in release order.

If a new release file name has been cretaed, earlier releases are #included.

The order of the includes is sucha that the earliest releases are at the top

later release appear at the end of the included files.

Identifiers

For backward compatibility the release in which a new definition is created is marked using _rn.

// release N enumeration

enum EntityA

 {

definition 1,

definition 2,

definition 3
 }

// release N+1 enumeration all marked with the release

enum EntityA_r7

{ DEFINITION1_r7,

 DEFINITION2_r7,
 DEFINITION3_r7
 }

Operations

When a new operation or data type is needed, this is to be specified in a new interface specification. The new interface will inherit fom the earlier release.

e.g.

module AlarmIRPSystem_r7

{

…

…

interface AlarmIRP_r7 :interface AlarmIRP
 {
 void newMethod_r7(in int X, in int Y)

 };

