Page 1

3GPP TSG-SA5 (Telecom Management)
S5-047086r1
Meeting #40, Sanya, CHINA, 15 - 19 November 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(
	32.300
	CR
	CRNum
	(
rev
	-
	(
Current version:
	5.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (symbols.

	

	Proposed change affects:
(
	UICC apps(
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(
	Correct and convert formal specification from BNF syntax to EBNF with corrections

	
	

	Source:
(
	SA5 (Nortel Networks – Suzèle Lariven – lariven@nortelnetworks.com)

	
	

	Work item code:
(
	OAM-NIM
	
	Date: (
	19/11/2004

	
	
	
	
	

	Category:
(
	F
	
	Release: (
	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(
	The formal definition is not correct and requires additional definition.
The existing specification makes no distinction between the different name types such as RDNs for Domain Components, RDNs for object instances with an "Id" naming attribute, and escaped characters.

This tightens the formal definition without adding new features.

	
	

	Summary of change:
(
	· Convert the existing BNF syntax to EBNF
· Amend the formal definition to distinguish between the different name types:

· Null distinguished name

· Regular and Domain Component specific RDNs

· RDNs for object instances of classes with & without "Id" naming attribute
· Characters which are escaped
· Explicit which characters are globally allowed for DN string representation

· Add an informative annex to describe how to interpret EBNF

· Editorial corrections

	
	

	Consequences if
(
not approved:
	Ambiguities in DN name format which could lead to interworking problems

	
	

	Clauses affected:
(
	2, 3.1.7, 3.2, 7.A, 7.B, 7.1.1, 7.1.3, 7.2, 7.3, 8, 9.1, annex A, annex B, annex C, annex D

	
	

	
	Y
	N
	
	

	Other specs
(
	
	X
	 Other core specifications
(
	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(
	Further work, discussion, and decision are required with regard to further tightening of EBNF definitions "ClassName" and "NamingAttributeName".

Once finalized, this point will be addressed through complementary CR.

Change in Clause 2

2
References

[…]

[10]
Void.
[11]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[12]
3GPP TS 32.102: "3G Telecom Management Architecture".

[13]
ISO/IEC 14977: "Information technology – Syntactic metalanguage – Extended BNF".

[14]
ISO/IEC 646: "Information technology – ISO 7-bit coded character set for information interchange".
[15]
ISO/IEC 10646: "Information technology – Universal multiple-octet Coded Character Set (UCS)".

End of Change in Clause 2

Change in Clause 3.1.7
3.1.7
Distinguished Name and Relative Distinguished Name

[…]

DistinguishedName ::= RDNSequence
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE {type AttributeType, value AttributeValue}

[…]

End of Change in Clause 3.1.7

Change in Clause 3.2

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

[…]

EBNF
Extended Backus-Naur Form

[…]

[…]

[…]

[…]

[…]

End of Change in Clause 3.2

Change in Clause 7.A
7
String Representation of DN

7.A
Overview

This clause specifies the string representation of DN. This work is based on IETF RFC 2253 [7]. A DN string representation, using the string-encoding scheme specified in the present document, is also a valid DN string according to IETF RFC 2253 [7].

The string-encoding scheme specified in the present document imposes further restrictions as compared to IETF RFC 2253 [7]. The most important restrictions are:

· Multi-valued RDN is not supported in the subject name convention.

· Character asterisk is used to denote wildcard in the subject name convention.
End of Change in Clause 7.A

Change in New Clause 7.B

7.B
Allowed character sets
Subject to further restrictions described in the following subclauses, the allowed characters for the string representation of DN are:

-
Characters of ISO/IEC 646 [14] International Reference Version (IRV) coded character set, and
-
Characters of standard coded character sets supporting and extending ISO/IEC 646 [14] IRV coded character set, e.g. ISO/IEC 10646 [15] coded character set.
NOTE 1:
ISO/IEC 646 [14] IRV coded character set is the international equivalent to the ANSI X3.4 ASCII coded character set.
NOTE 2:
The character set of ISO/IEC 646 [14] IRV corresponds to the subset of characters that range from U+0000 to U+007F in the character set of ISO/IEC 10646 [15].

NOTE 3:
The ISO/IEC 646 [14] IRV characters specifically referenced in this specification are further identified using ISO/IEC 10646 [15] character short identifier notation form "U+XXXX".
7.1
Converting DN from ASN.1 to a String

End of Change in New Clause 7.B
Change in Clause 7.1.1

7.1.1
Converting RDNSequence
[…]

The encoding of adjacent RDNs are separated by a comma character (',', U+002C), to be consistent with IETF RFC 2253 [7].
White spaces adjacent to the comma character shall be ignored.

End of Change in Clause 7.1.1

Change in Clause 7.1.3

7.1.3
Converting AttributeTypeAndValue
The AttributeTypeAndValue is encoded as the string representation of the AttributeType, followed by an equals sign character ('=', U+003D), followed by the string representation of the AttributeValue.

[…]

String representation of AttributeValue allows character escape mechanism such as the use of a reverse solidus character ('\', U+005C) followed by two hexadecimal digits to replace a character in a string. String representation of AttributeType does not allow character escape mechanism.
EXAMPLE:
"CN=Before\0DAfter,O=Test,C=GB". In this example, the reverse solidus character and the two hexadecimal digits form a single byte in the code of the escaped character. The reverse solidus character followed by "0D" indicates a carriage return character. See annex B for a rule for MO designers to avoid ambiguity concerning the AttributeType of a DN string.
End of Change in Clause 7.1.3

Change in Clause 7.2

7.2
Character syntax

[…]

1.
Any character except:
-
comma character (',', U+002C),
-
equals sign character ('=', U+003D),
-
carriage return character (U+000D),
-
line feed character (U+000A),
-
plus sign character ('+', U+002B),
-
less-than sign character ('<', U+003C),
-
greater-than sign character ('>', U+003E),
-
number sign character ('#', U+0023),
-
semicolon character (';', U+003B),
-
reverse solidus character ('\', U+005C),
-
quotation mark character ('"', U+0022).
2.
The full stop character ('.', U+002E). This character shall be used in the AttributeValue whose AttributeType is "DC". An example is "DC=marketing.CompanyXYZ.com". This full stop character shall not be used in AttributeType.

3.
The asterisk character ('*', U+002A) is reserved to denote wildcard. Wildcard character(s) can appear in AttributeType and AttributeValue.

End of Change in Clause 7.2

Change in Clause 7.3

7.3
EBNF of DN String Representation

The formal definitions provided within this subclause consolidate several rules and concepts (null distinguished name, DN prefix, local DN, domain component type, class names starting with upper case characters, attribute names starting with lower case characters, classes with or without an "Id" naming attribute, attribute type and attribute value allowed characters). The definition is more detailed to clarify these naming rules, and will not introduce compliancy issues for implementations compliant with Rel-5 version of this specification.

The following is the EBNF for DN in string representation (Extended Backus-Naur Form; see ISO/IEC 14977 [13] for more information):

DistinguishedName = NullDN (* Distinguished Names shall not exceed *)
 | RegularDN ; (* 400 octets as specified in section 7.4 *)
NullDN = ; (* empty string; null DN is specified in subclause 7.1.1 *)

RegularDN = DNPrefixPlusRDNSeparator (* DN prefix and local DN *)
 , LocalDN ; (* are defined in annex C *)
DNPrefixPlusRDNSeparator = (NullDN , NullRDNSeparator)
 | (DNPrefixWithDomainComponent , RDNSeparator)
 | (DNPrefixWithoutDomainComponent , RDNSeparator) ;

NullRDNSeparator = ; (* empty string *)

DNPrefixWithDomainComponent = DomainComponentRDN
 , { RDNSeparator , DomainComponentRDN }
 , { RDNSeparator , RegularRDN } ;

DNPrefixWithoutDomainComponent = RegularRDN
 , { RDNSeparator , RegularRDN } ;

LocalDN = LocalRDN
 , { RDNSeparator , LocalRDN } ;

RDNSeparator = [RDNSeparatorWhiteSpace] (* use of optional white space *)
 , CommaChar (* is recommended to be avoided *)
 , [RDNSeparatorWhiteSpace] ;

RDNSeparatorWhiteSpace = [CarriageReturnChar]
 , { SpaceChar } ;

DomainComponentRDN = DCAttributeTypeAndValue ;

RegularRDN = RegularAttributeTypeAndValue ;
LocalRDN = LocalDNAttributeTypeAndValue ;

DCAttributeTypeAndValue = DCAttributeType
 , AttributeTypeAndValueSeparator
 , DCAttributeValue ;

RegularAttributeTypeAndValue = RegularAttributeType
 , AttributeTypeAndValueSeparator
 , RegularAttributeValue ;

LocalDNAttributeTypeAndValue = LocalDNAttributeType
 , AttributeTypeAndValueSeparator
 , RegularAttributeValue ;

AttributeTypeAndValueSeparator = EqualsSignChar ;

DCAttributeType = "DC" ; (* ISO/IEC 646 IRV U+0044/0043 Latin capital letters D&C *)

DCAttributeValue = DCLabel (* this is specified *)
 , { FullStopChar , DCLabel } ; (* in IETF RFC 1035 *)

DCLabel = LetterChar (* this is specified *)
 , [{ LetterDigitHypenMinusChar } (* in IETF RFC 1035 *)
 , LetterDigitChar] ;

RegularAttributeType = LetterChar (* this is specified *)
 , { LetterDigitHypenMinusChar } ; (* in IETF RFC 2253 *)

LocalDNAttributeType = NameOfClassWithIdAttribute (* definition selected shall *)
 | NamesOfClassAndNamingAttribute ; (* be in accordance with the *)
 (* rules defined in annex B *)

NameOfClassWithIdAttribute = ClassName ; (* see rules defined in annex B *)
NamesOfClassAndNamingAttribute = ClassName (* see rules defined in annex B *)
 , FullStopChar
 , NamingAttributeName ;

ClassName = CapitalLetterChar (* see recommendation on *)
 , { LocalDNAttributeTypeChar } ; (* characters for class names *)
 (* in 3GPP TS 32.622 annex A *)
NamingAttributeName = SmallLetterChar
 , { LocalDNAttributeTypeChar } ;

RegularAttributeValue = (AttributeValueChar – SpaceChar) (* this is *)
 , [{ AttributeValueChar } (* specified in *)
 , (AttributeValueChar – SpaceChar)] ; (* IETF RFC 2253 *)

LocalDNAttributeTypeChar = DNChar ;
AttributeValueChar = DNChar | EscapedCharSequence ;

DNChar = DNCharUnrestricted - ReservedChar ;

DNCharUnrestricted = ? Character of ISO/IEC 646 IRV ?
 | ? Character of standard coded character set
 supporting and extending ISO/IEC 646 IRV ? ;
EscapedCharSequence = ReverseSolidusChar (* this is specified *)
 , 2 * HexadecimalDigitChar ; (* in subclause 7.1.3 *)

ReservedChar = Rfc2253ReservedChar | CarriageReturnChar | LineFeedChar ;

Rfc2253ReservedChar = CommaChar | EqualsSignChar | PlusSignChar | LessThanSignChar
 | GreaterThanSignChar | NumberSignChar | SemiColonChar
 | ReverseSolidusChar | QuotationMarkChar ;

LetterChar = CapitalLetterChar | SmallLetterChar ;

LetterDigitChar = LetterChar | DigitChar ;

LetterDigitHypenMinusChar = LetterDigitChar | HypenMinusChar ;

HexadecimalDigitChar = DigitChar | CapitalLetterAtoFChar | SmallLetterAtoFChar ;

LineFeedChar = ? ISO/IEC 646 IRV U+000A character line feed ? ;
CarriageReturnChar = ? ISO/IEC 646 IRV U+000D character carriage return ? ;
SpaceChar = ' ' ; (* ISO/IEC 646 IRV U+0020 character space *)
QuotationMarkChar = '"' ; (* ISO/IEC 646 IRV U+0022 character quotation mark *)
NumberSignChar = '#' ; (* ISO/IEC 646 IRV U+0023 character number sign *)
PlusSignChar = '+' ; (* ISO/IEC 646 IRV U+002B character plus sign *)
CommaChar = ',' ; (* ISO/IEC 646 IRV U+002C character comma *)
HypenMinusChar = '-' ; (* ISO/IEC 646 IRV U+002D character hyphen-minus *)
FullStopChar = '.' ; (* ISO/IEC 646 IRV U+002E character full stop *)
DigitChar = '0' | '1' | '2' | '3' | '4' (* ISO/IEC 646 IRV U+0030-0039 *)
 | '5' | '6' | '7' | '8' | '9' ; (* digits 0 to 9 *)
SemiColonChar = ';' ; (* ISO/IEC 646 IRV U+003B character semicolon *)

LessThanSignChar = '<' ; (* ISO/IEC 646 IRV U+003C character less-than sign *)
EqualsSignChar = '=' ; (* ISO/IEC 646 IRV U+003D character equals sign *)
GreaterThanSignChar = '>' ; (* ISO/IEC 646 IRV U+003E character greater-than sign *)
CapitalLetterAtoFChar = 'A' | 'B' | 'C' (* ISO/IEC 646 IRV U+0041-0046 *)
 | 'D' | 'E' | 'F' ; (* Latin capital letters A to F *)
CapitalLetterChar = CapitalLetterAtoFChar | 'G' | 'H' (* ISO/IEC 646 IRV *)
 | 'I' | 'J' | 'K' | 'L' | 'M' | 'N' (* U+0041-005A *)
 | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' (* Latin capital *)
 | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z' ; (* letters A to Z *)
ReverseSolidusChar = '\' ; (* ISO/IEC 646 IRV U+005C character reverse solidus *)

SmallLetterAtoFChar = 'a' | 'b' | 'c' (* ISO/IEC 646 IRV U+0061-0066 *)
 | 'd' | 'e' | 'f' ; (* Latin small letters a to f *)
SmallLetterChar = SmallLetterAtoFChar | 'g' | 'h' (* ISO/IEC 646 IRV *)
 | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' (* U+0061-007A *)
 | 'o' | 'p' | 'q' | 'r' | 's' | 't' (* Latin small *)
 | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' ; (* letters a to z *)
End of Change in Clause 7.3

Change in Clause 8

8
Examples of DN in string representation

[…]

EXAMPLE 1:
"DC=com,DC=CompanyXYZ,DC=marketing,IRPAgent=ATMPVCBilling, Log=19990101131000,AccountingRecord=100098". In this example, the name space aligns with DNS. The AttributeType of the top three RDN are "DC". Concatenation of the corresponding AttributeValues produces the DNS registered name, i.e. "marketing.CompanyXYZ.com". The top RDN is the Global Root because DNS defines "DC=com" as the root of its name space. That top RDN is the Local Root as well.

EXAMPLE 2:
"DC=marketing.CompanyXYZ.com,IRPAgent=ATMPVCBilling, Log=19990101131000,AccountingRecord=100098". In this example, the name space aligns with DNS as well. Instead of using three RDNs to represent the DNS registered name, this example chooses to use one RDN. The top RDN is the Global Root (and Local Root as well).

EXAMPLE 3:
"IRPNetwork=ABCNetwork,Subnet=TN2,BSS=B5C0100". In this example, the name space designer chooses not to name its objects under the DNS nor X.500 scheme. The name space designer chooses to use "IRPNetwork=ABCNetwork" as the Local Root of its name space (by looking at the DN string, it is not possible to say if the Local Root is the Global Root). DNs in this name space will start with that string as their Local Root. One string ("IRPNetwork") for AttributeType (of the AttributeTypeAndValue of the RDN) starts with "IRP". This indicates that this string is mapped from the MO class names specified in NRM of [9] or other domain specific NRMs (see the Introduction clause). Other strings do not start with "IRP", indicating that those strings are not mapped from MO class names specified in NRM of [9] or other domain specific NRMs. They are probably mapped from MO classes that are specific for a particular product and thus specified in a product-specific NRM.

EXAMPLE 4:
The following example illustrates the use of the comma character as separator for RDNs. It also illustrates the use of space and full stop characters as part of the legal character syntax for RDNs: "CN=John T. Mills, O=Cyber System Consulting"
End of Change in Clause 8

Change in Clause 9.1

9.1
DN prefix usage

[…]

5.
The NE is sold to a customer. The customer administrator knows his Enterprise name space, the topology of his network and where the NE will be deployed. Based on the information, he configures the DN prefix of the NE.

EXAMPLE 2:
The customer administrator can configure it to:

"DC=marketing.CompanyXYZ.com,Net=DS3BackBone,Station=TMR"

The Global Root in this case is "DC=marketing.CompanyXYZ.com".

6.
At run time, whenever NE is reporting an alarm on Port=3 via the IRP, the following string will be in the MOI field of the alarm record:

"DC=marketing.CompanyXYZ.com,Net=DS3BackBone,Station=TMR,Node=1,Port=3"

End of Change in Clause 9.1

Change in Clause Annex A

Annex A (normative):
Mapping of RDN AttributeType to Strings

[…]

There is one AttributeType that is not defined in NRM of 3GPP TS 32.622 [9] or other domain specific NRMs as listed in the Introduction clause. This special AttributeType is used to denote the domain component of the DNS. The following partial DN string representations are examples to illustrate the valid use of "DC" strings for the three DNS domain components of "marketing.CompanyXYZ.com":
·
-
"DC=com.CompanyXYZ.marketing,…"

·
-
"DC=com,DC=CompanyXYZ,DC=marketing,…"

·
-
"DC=com,DC=CompanyXYZ.marketing,…"

·
-
"DC=com.CompanyXYZ,DC=marketing,…"

[…]

End of Change in Clause Annex A

Change in Clause Annex B

Annex B (normative):
Rule for MO Designers regarding AttributeType interpretation

[…]

First interpretation
[…]

If this (first) interpretation is used for constructing the DN string, then the DN will be "…,id=123". MO class name cannot be derived from the DN string. The value of the AttributeValue contains the value of the naming attribute.

Second interpretation

[…]

If this interpretation is used for constructing the DN string, then the DN will be "…,Bsc=123". The name of the naming attribute cannot be derived from the DN string. The value of the AttributeValue contains the value of the naming attribute.

Rule

Given the two interpretations, a DN reader cannot know how to interpret the AttributeType, i.e. if the AttributeType identifies class or naming attribute. To avoid ambiguity, the following rules shall apply:

· If AttributeType of a naming attribute is not a concatenation of MO class name and "Id" (ignoring case for both), then the DN shall use "…,Yyy.zzz=123,…" where "Yyy" is the MO class name and "zzz" is the naming attribute (preserving case for both).

EXAMPLE 1:
If "Bsc" is the MO class name and if its naming attribute is "serialNumber", then the DN shall be "…,Bsc.serialNumber=123,…".

· If AttributeType of a naming attribute is a concatenation of MO class name and "Id" (ignoring case for both), then the DN shall use "…,Xxx=123,…" where "Xxx" is the MO class name (preserving case).

EXAMPLE 2:
If "Bsc" is the MO class name and if its naming attribute is "bscId", then the DN shall be "…,Bsc=123,…".

End of Change in Clause Annex B

Change in Clause Annex C

Annex C (informative):
DN Prefix and Local Distinguished Name (LDN)

[…]

Suppose the Enterprise name space is organized hierarchically and is partitioned into 4 sub-sets as shown in figure C.1.

[image: image2.wmf]

NS

-

D

NS

-

B

NS

-

A

RDN is"A=9"

DN prefix is ""

DN prefix is

"DC=com.C

ompa

nyXYZ.marketing"

RDN is "F=1"

RDN is "G=1"

RDN is "H=2"

DN prefix is

"DC=

com.C

ompa

nyXYZ.mar

keting

,

A=9,F=1,G=1"

RDN is

"DC=com.C

ompa

nyXYZ.marketing

"

RDN is

"H=2"

RDN is"A=9"

DN prefix is

"DC= com.C

ompa

nyXYZ.marketing,

A=7,X=1"

NS

-

C

RDN is "X=1"

RDN is "Y=1"

RDN is"A=7"

Figure C.1: Name space partitions

NS (name space)-A contains 5 objects. DN prefix is NULL. The Global Root and Local Root of NS‑A is "DC=com.CompanyXYZ.marketing" (see the Note below). DN of top object is "DC=com.CompanyXYZ.marketing". RDNs of the other four objects are, from bottom left to bottom right, "A=1", "A=7", "A=3" and "A=9". DNs of the same four objects are "DC=com.CompanyXYZ.marketing,A=1", "DC=com.CompanyXYZ.marketing,A=7", "DC=com.CompanyXYZ.marketing,A=3" and "DC=com.CompanyXYZ.marketing,A=9". The second and fourth objects are reference objects to MOs in NS-B.

NS-B contains two branches. They have the same DN prefix that is "DC=com.CompanyXYZ.marketing". The Global Root is "DC=com.CompanyXYZ.marketing".

The Local Root and RDN of top object of the right branch is "A=9". Its DN is "DC=com.CompanyXYZ.marketing,A=9". RDNs of other objects are shown in figure C.1.
DN of the bottom object is "DC=com.CompanyXYZ.marketing,A=9,F=1,G=1,H=2". This object refers to object of another name space called NS‑D.

The Local Root and RDN of the top object of the left branch is "A=7". Its DN is "DC=com.CompanyXYZ.marketing,A=7". RDNs of other objects are shown in figure C.1.
DN of the bottom object is "DC=com.CompanyXYZ.marketing,A=7,X=1,Y=1". This object refers to object of another name space called NS-C.

NS-C contains a branch of 4 objects. Its DN prefix is "DC=com.CompanyXYZ.marketing,A=7,X=1". The Local Root an RDN of the top object is "Y=1".

NS‑D contains a branch of 5 objects. Its DN prefix is "DC=com.CompanyXYZ.marketing,A=9,F=1,G=1". The Local Root and RDN of the top object is "H=2".

In figure C.1, the bottom object of NS‑B right branch has the following names:

·
-
DN is "DC=com.CompanyXYZ.marketing,A=9,F=1,G=1,H=2".

·
-
LDN is "A=9,F=1,G=1,H=2".

·
-
RDN is "H=2".

[…]

NOTE:
Use of "DC" in "DC=com.CompanyXYZ.marketing" is an attempt to align the RDN with DNS name associated with the named organisation. The "DC" stands for Domain Component and is an attribute name defined by IETF for use in directory work. Annex A specifies other valid ways to align RDN with DNS as well. Equally valid, the example can choose to align the RDN with the X.500 convention. In such case, the subject string can be "O=com,O=CompanyXYZ,OU=marketing" where O and OU are X.500 standard attributes denoting organisation and organization unit respectively. The alignment choice belongs to the name space designer of each operator. The choice will be reflected in the value of the DN prefix, probably a product configuration parameter. See clause 7 for more information.

End of Change in Clause Annex C

Change in Clause New Annex D
Annex D (informative):
Interpreting EBNF [13]

This annex provides a very simplified summary of EBNF, and does not modify in any way the reference text in ISO/IEC 14977: "Information technology – Syntactic metalanguage – Extended BNF" [13].

ISO/IEC 14977 [13] specification also provides far greater coverage supported by numerous examples which are not included within this annex.

The EBNF metalanguage is useful for defining rigorous syntax notations and is a notation for defining syntax rules.

The language uses sequences of formal definitions.

Definitions may have several layers of definition. The definitions which are refined are termed as "non terminal symbols".

A term which cannot be defined at a lower level of detail is known as a "terminal symbol". I.e. the "terminal symbols" cannot be further decomposed.

The language permits sentences to be constructed.

The sentences consist of a non terminal, or a terminal symbol, followed by an equality symbol, followed by a formal definition of the symbol.

Each sentence terminates with the semicolon ';' terminal symbol.

Ideally the definitions are read from the top across to the right hand side of the page and downwards.

A definition commences with an identifier (of the thing being defined) followed by an equality sign.

The thing is defined by the symbols and identifiers to the right hand side of the equality symbol, up to the next semicolon ';'.

There is a natural breaking down of definitions, by other definitions until a point is reached that a terminal symbol is reached – which cannot be further defined (e.g. the leaves of definition hierarchy).
There are terminal symbols which permit optional choice, sequence, exclusion, comments to be included in the sentence.

The set of terminal symbols as defined in table 1 of ISO/IEC 14977 [13] are below.

The normal character representing each operator of Extended BNF and its implied precedence is (highest precedence at the top):

'*'
repetition-symbol

'-'
except-symbol

','
concatenate-symbol

'|'
definition-separator-symbol

'='
defining-symbol

';'
terminator-symbol

The normal precedence is over-ridden by the following pairs of terminal symbols:

"'"

first-quote-symbol

first-quote-symbol

"'"

'"'

second-quote-symbol

second-quote-symbol

'"'

"(*"
start-comment-symbol

end-comment-symbol

"*)"

'('

start-group-symbol

end-group-symbol

')'

'['

start-option-symbol

end-option-symbol

']'

'{'

start-repeat-symbol

end-repeat-symbol

'}'

'?'

special-sequence-symbol
special-sequence-symbol
'?'

Examples:

letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L"
 | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "U" | "V" | "W" | "X" | "Y" | "Z" ;

vowel = "A" | "E" | "I" | "O" | "U" ; (* a subset of letters *)

consonant = letter – vowel ; (* the set of letters except vowels *)

End of Change in Clause New Annex D

End of Document

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Jun 2001
	S_12
	SP-010283
	--
	--
	Approved at TSG SA #12 and placed under Change Control
	2.0.0
	4.0.0

	Dec 2001
	S_14
	SP-010641
	001
	--
	Alignment of Figure C.1 with text in annex C
	4.0.0
	4.1.0

	Sep 2001
	S_17
	SP-020481
	002
	--
	Upgrade to Rel-5 (Remove information in the Introduction that is only relevant to Rel-4)
	4.1.0
	5.0.0

	Dec 2002
	--
	--
	--
	--
	Cosmetics
	5.0.0
	5.0.1

	
	
	
	
	
	
	
	

CR page 1

_1055935066.doc

NS-D

NS-

B

NS-A

RDN is"A=9"

DN prefix is ""

DN prefix is

"DC= se.companyZ.lmc"

RDN is "F=1"

RDN is "G=1"

RDN is "H=2"

DN prefix is

"DC=se.compa

nyZ.lmc.A=9,

F=1,G=1"

RDN is

"DC=se.companyZ.lmc

"

RDN is

"H=2"

RDN is"A=9"

DN prefix is

"DC=se.compa

nyZ.lmc,A=7,

X=1"

NS-C

RDN is "X=1"

RDN is "Y=1"

RDN is"A=7"

_1162021445.doc

NS-D

NS-

B

NS-A

RDN is"A=9"

DN prefix is ""

DN prefix is

"DC=com.Compa

nyXYZ.marketing"

RDN is "F=1"

RDN is "G=1"

RDN is "H=2"

DN prefix is

"DC=com.Compa

nyXYZ.marketing,

A=9,F=1,G=1"

RDN is

"DC=com.Compa

nyXYZ.marketing"

RDN is

"H=2"

RDN is"A=9"

DN prefix is

"DC= com.Compa

nyXYZ.marketing,

A=7,X=1"

NS-C

RDN is "X=1"

RDN is "Y=1"

RDN is"A=7"

