3GPP TSG-SA5 (Telecom Management)
S5-046952

Meeting #39bis, Sophia Antipolis, FRANCE, 27 Sep - 1 Oct 2004

Source:
Lucent Technologies

Title:
Clarification of Filter definitions and parameters within 3GPP Information service and Solution set specifications

Agenda Item:
CR CD

	Decision
	X

	Discussion
	X

	Information
	

Document for:

	Late submission
	

Work Item:
Rel- 5 & 6 (OAM-NIM)
WT addressed
OA&M - NIM
Specs involved:
Potentially all IS and CORBA SS

1
Decision/action requested
Consider the f suggested actions within section 3.2.2 of this contribution.

The intent is to have a single semantic definition of filter, with the possibility of having a consistent usage guide written.

2 References

[1]
OMG notification service <http://www.omg.org/cgi-bin/doc?formal/2002-08-04>

3
Problem Outline

Filters are used in several IRPs, and at first reading can be interpreted as always meaning that they should be constructed using the grammar defined for the OMG trader constraint language (see [1]).

The current suite of specifications are consistent, and imply that the notification header, a concept defined in the notification IRP, is extended by every IRP, to define the parameters in each notification which may be filtered on.

The OMG notification service will support filtering based on the parameters in the structured event. Even though it can be interpreted that because there are no explicit extensions to the inherited notification header in each IRP, an IRP should not be allowed to filter on any other parameters other than those defined in the notification header.

TS 32.302 implies that all IRPs should define their own “notification header” (which they don’t).

Clause 6.9 from 32.302 is copied below with the specific parts highlighted.

6.9
NotificationIRPNotification Interface

IRPAgent notifies the subscribed IRPManager that an event has occurred and that the event has satisfied the filter constraints used for this subscription. One event example is the notification defined in Alarm IRP: IS (3GPP TS 32.111‑2 [1]).

It should be possible to pack multiple notifications together for sending to NM. This provides more efficient use of data communication resources. In order to pack multiple notifications, an EM/NE configurable parameter defines the maximum number of notifications to be packed together. Additionally an EM/NE configurable parameter defines the maximum time delay before the notifications have to be sent.

Under normal operations, an IRPAgent shall send, to each IRPManager, notifications in the same order they were generated, i.e. in the First-In, First-Out order. There shall not be any priority given to types of notifications.

This interface doesn't define any specific notification but instead defines information that is commonly found in notifications defined by other IRPs. This information is called notificationHeader. Notification interfaces defined in other IRPs, such as Alarm IRP: IS (3GPP TS 32.111‑2 [1]), shall inherit from this interface and define their notifications by:

· Identifying and qualifying the Notification Header attributes for their use;

· Specify additional attributes specific to their use.

Despite the fact that the semantic of notifications is defined by other IRP ISs, it is notification IRP and not those IRP that is responsible for the emission of those notifications.

precise in terms of the description regarding filters.

 There does not seem to be a consistent way of specifying the usage of filter parameters in the IS or SS documents.

In addition some solution sets choose a very different solution which means it is not possible to produce software library functions to implement TCL in all IRPs.

The filter construct in Basic CM TS 32.602

The operations

getMoAttributes

deleteMO
setMOAttributes

all use a filter construct in their signatures.

The IS provides no specific guidance on how this should be used. And indicates it is solution set dependent.

The solution set n TS 32.603 provides a mapping to searchControl.filter.

The description of this is

SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field), level 0 means the "baseObject",

 * level 1 means baseobject including its sub-ordinates etc..

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field contains the filter expression.

 * The string "TRUE" indicates "no filter",

 * i.e. a filter that matches everything.

 */

The filter definitions is

 /**

 *

 * In this version the only allowed filter value is "TRUE" i.e. a filter that

 * matches everything.
 */

 typedef string FilterType;

TS 32.603, then defines in section 5.1 the filter language construct, which conflicts with the search control construct.

It would seem the original intent was to use the OMG extended trader constraint language, however the SSs do not adopt this universally..

5.1 Filter language

The filter language used in the SS is the Extended Trader Constraint Language (see OMG Notification Service [6]). IRPAgents may throw a FilterComplexityLimit exception when a given filter is too complex. However, for 3GPP Release 99 an "empty filter" shall be used i.e. a filter that satisfies all MOs of a scoped search (this does not affect the filter for notifications as defined in the Notification IRP – see 3GPP TS 32.303 [9]).

3.2.1 Filtering on Time information or Elements of Data structures

The current standards refer to the trader constraint language.
However the OMG trader constrain language is shown in the notification service to contain ambiguities and does not embrace all possible data types which may be sent in via the notification service.

To overcome these shortfalls, the notifications service uses an extended trader constraint language. This is defined in section 2.4.2 of the OMG Notification service language.

3.2.2 Requested Actions

· Lucent requests that 3GPP considers adding a definition section in the Information service specifications to show which data elements in the IRP ,may be used in the construction of a filter.
This might be done by adding al “filterable” column to the legal parameters table. Showing which IS data elements can be used in filter constructs. OR clearly indicate what extensions are to be made to the "notification header"
· Amend current specifications which refer to the Trader constraint language, and to refer to the extended trader constraint language.

· Review current CORBA Solution sets where IDL specifications define filter parameter of “TRUE” which means everything is passed by the filter, and possibly replace this definition with the definition that an empty string means everything , aligning with extended trader constraint language.

· That modifications are made to provide examples of 3GPP context specific filters embracing alarm filtering constraints, including time constructs.

· Consider if the syntax and format of the filter should be imported from the notification service into the 3GPP SS specifications to specify the filter Grammar used in the CORBA solution sets.
· To indicate by IDL comments within the solution sets that operations which have a filter parameters. To clearly indicate how the string variable should be used to construct a logical expression for a filter.

Annex A
Trader Constraint Language

The trader constraint language definition may be located at

http://www.omg.org/cgi-bin/doc?formal/2002-08-04
The constraint language grammar Definitions can be located in section 2.4

Annex A – Trader constraint Language Summary

AN extract from section 2 of the Notification Service Specification

Filter objects that affect the event forwarding decisions made by Proxy objects

encapsulate a set of constraints. Each constraint is a data structure comprised of two

components:

• A sequence of data structures, each of which indicates an event type.

• A string containing a boolean expression whose syntax conforms to some constraint

grammar.

Each element in the sequence of data structures which each indicate an event type is

comprised of a string field for the name of the domain within which the event type has

meaning (e.g., “Telecom”), and a string field for the name of the specific event type

within that domain to which the constraint applies (e.g., “CommunicationsAlarm”).

This sequence contains the list of event types to which the subscription encompassed

by a particular constraint applies. The second element in the constraint structure

contains a boolean expression over the values of the contents of instances of the event

types indicated in the first element of the same structure. Note that while there are no

limits placed on the number of different constraint grammars supported by an

implementation of the Notification Service, every implementation must support an

implementation of the CosNotifyFilter::Filter interface that supports the grammar

described in Section 2.4, “The Default Filter Constraint Language,” on page 2-23.

This two component data structure for the expression of each constraint encapsulated

by a filter object is mainly provided for the convenience of both the end-user and the

implementor of the Notification Service. From the end-user’s perspective, the structure

allows for a short-hand notation for defining constraints which apply to one or more

event types. For instance instead of supplying a constraint expression of the following

form:

“(($domain_name == “Telecom” and $type_name == “CommunicationsAlarm”)

or ($domain_name == “Transport” and $type_name == “RoadImpassable”))

and severity != 4”

the same constraint can be expressed as a two element structure as follows:

{ [{“Telecom”, “CommunicationsAlarm” }, {“Transport”,

“RoadImpassable” }], “severity != 4” }

The above two constraints have the same meaning: they both subscribe to all events

which are of either of the types indicated, and have a severity field within the contents

of the event not equal to four. Notice that the convenience of this structure for

constraint expressions becomes more obvious as the boolean expressions associated

with the event types become more complex, and are applicable to more types of event.

………

Also note that an end-user may choose to provide no event

types in the sequence and then match on the type_name and domain_name fields in

the constraint expression. However, if event types are specified in the sequence, then

only these types will be matched, and any additional types that are specified using

constraints may never be matched (since the constraint will only be evaluated if the

types in the sequence match). When provided within an element of the sequence of

event types contained in the first field of a constraint structure, either the domain or

event type field can contain a string with the wildcard (“*”) symbol indicating the

boolean expression applies to any event whose type matches the indicated pattern. The

“*” character may be expanded to zero or more characters, and may appear in any

position in the string. As one would expect, a type element whose value is {“*”, “*”}

indicates that the boolean expression applies to all types of events.

………..

The constraint language consists of the following items

comparative functions == , != , >, >=, <, <=, ~ (substring match)

in (element in sequence);

boolean connectives: and, or, not

property existence: exist

property names

numeric and string constants

mathematical operators: +, -, *, /

grouping operators: (,)

Additional examples of filter definitions can be found in the notification service specification.

4
Notification service extract depicting Extended Trader Constraint language

This is an extract from the Notification service section
2.4.2 Trader Constraint Language Extensions for Notification

In order to fully support event filtering on complex data types, several extensions to the

Trader Constraint Language are defined. There are two basic types of extensions: those

that allow the components of complex data structures to be referenced, and those that

are considered features of the Notification Service implementation. The complete list

of language extensions is as follows:

• The special token ‘$’ is introduced to denote both the current event as well as any

run-time variables. The current event, ‘$’, is that on which the constraint expression

is evaluated. The form ‘$<Ident>’ is used to specify a run-time variable.

• The new symbol <Component> denotes a collection of named <Ident>s that may be

joined with subscript, associative array, or structure member operators (all defined

below).

• If <Component> refers to a named structure, discriminated union, or

CORBA::Any data structure, then the structure member operator ‘.’ may be used to

reference its members.

• If <Component> refers to an array or sequence of elements, then the subscript

operator ‘[<Digits>]’ may be used to reference a specific element in said list (e.g.,

array[2] would reference the third element in the array).

• If <Component> refers to a name-value pair list, then the associative array operator

‘(<Ident>)’ may be used to reference a specific value in said list (e.g.,

nv(priority)). This syntax is also used for positional notation in discriminated

unions as described in Section 2.4.6, “Positional Notation and Intended

Applications

• A <Component> has implicit members ‘_type_id’ and ‘_repos_id’. The former

identifies the unscoped IDL type name of the component (e.g., mystruct._typeid

== ‘mystruct’) and the latter returns the RepositoryId (e.g., mystruct._repos_id

== ‘IDL:module/mystruct:1.0’).

• If <Component> refers to an array or sequence of elements, then the implicit

member ‘_length’ refers to the number of elements in the list (e.g.,

sequence._length).

• If <Component> refers to a discriminated union, then the implicit member ‘_d’

refers to the discriminator (e.g., union._d).

• A new boolean operator, ‘default’, is introduced to provide a means for checking

whether a union has a default member that is active (e.g., default union._d).

• The ‘exist’ operator is extended for use on all implicit members of a <Component>

(e.g., (exist any._d and any._d == 50) or any == 50).

• The ‘in’ operator is extended so that it may operate on a <Component>.

• The run-time variable ‘$curtime’ is reserved; its meaning is current time of day, its

data type is that of “TimeBase::UtcT” as defined in the OMG Time Service.

• A reserved run-time variable may be escaped by inserting a backslash between the

dollar sign and the <Ident> (e.g., $\curtime).
• Any vendor-defined keywords must be of the form ‘:<Ident>:’. The colons prevent

any new conflicts with event-specific enums and also make these extensions easy

to locate.

As stated above, a <Component> is a collection of named identifiers. Yet, multiple

layers of encapsulation may not actually have identifier names associated with them.

Fortunately, the constraint author need not be concerned with these unnamed layers. If

an event type repository is in use, it will be able to supply the encapsulation

information. Alternatively, when the run-time engine is responsible for pulling apart

the event structure, it will encounter (and quietly pass over) these unnamed layers.

To make this concept more clear, consider the following event components:

Event . memA . Any . struct { int val, cnt; };

Event . memB . Any . Any . int;

Event . char;

Event . methA . (char key, Any . int types[10]);

In the first example, the struct is encapsulated in the CORBA::Any named memA;

to reference cnt, one would use ‘$.memA.cnt’. In the second example, an int is

wrapped in an unnamed CORBA::Any and then again in memB (a named

CORBA::Any). Here, to reference the unnamed integer one would write ‘$.memB’.

In the third example, a char is immediately wrapped in a CORBA::Any and sent

through the channel; in this case, ‘$’ alone represents the data. The last event consists

of a method and its arguments; here, ‘$.methA.types[3]’ identifies the 4th element in

the 2nd argument to method methA.

As stated above, the constraint author need not be concerned about unnamed layers of

encapsulation. This implies that it is possible to write a single constraint that will

function on structured (typed or untyped) and unstructured events. For example,

consider the constraint “$.header.fixed_header.event_type.type_name ==

‘CommunicationsAlarm’”; if the unstructured event included a

‘header.fixed_header.event_type.type_name’ member, then both types of events

could be filtered by the same proxy using this constraint.

A complete specification of the enhancements to the Trader Constraint Language BNF

defined by the Notification Service can be found in Section 2.4.8, “Extensions to

Trader Constraint Language BNF,” on page 2-32.

2.4.3 Arithmetic Conversions for Mixed Data Types

In general, arithmetic conversions follow the “usual arithmetic conversion” rules set

forth by C/C++. However, in the context of the Notification Service, it is not always

possible to determine the data types of all operands at compile-time. Therefore, in

order to simplify data conversion rules, most arithmetic operations are performed using

either CORBA::Long or CORBA::Double. The result of each operation is then cast

back to the data type of the most capacious of the operands, along with it’s weak or

strong type attribute (as described below).

The following rules then, govern mathematical operations with mixed data types.
• If either operand is a CORBA::LongDouble, the other is converted to

CORBA::LongDouble and the result is CORBA::LongDouble.

• Otherwise, if either operand is a CORBA::Double, the other is converted to:

• CORBA::Double and the result is CORBA::Double.

• if either operand is a CORBA::Float, both operands are converted to

CORBA::Double, but the result is CORBA::Float.

• if either operand is a CORBA::LongLong, the other is converted to

CORBA::LongLong and the result is CORBA::LongLong.

• the most strongly-typed of the two operands becomes the result type, and both

operands are converted to either CORBA::Long or CORBA::ULong.

• When:

• a shorter unsigned type is combined with a larger signed type, the unsigned

property does not propagate to the result type.

• a numeric constant is specified, it is treated as weakly-typed CORBA::Long or,

in the case of a floating point constant, a weakly-typed CORBA::Double.

• a boolean operand is used in an arithmetic operation, it is treated as weaklytyped

CORBA::Long with the values TRUE and FALSE corresponding 1 and 0,

respectively.

Going back to the example constraint in Section 2.4.1, “Issues with the Trader

Constraint Language,” on page 2-23:

2.5 * ($.one / $.two) > 1

In order for this constraint to return TRUE, the parenthesized expression may be cast

to floating point by rewriting it as:

2.5 * (1.0 * $.one / $.two) > 1

For the purpose of describing the operator restrictions, all operands may be classified

as one of the following generic types: boolean, enum, numeric, string, or sequence.

Numeric operands include boolean and strings of length one (i.e., char). Operator

restrictions are as follows:

• The substring operator ‘~’ may only be applied to string data types.

• The in operator may only be applied when the first operand is of a simple type and

the second is a sequence of the same type.

• Comparison operations are valid only when both operands are either boolean,

numeric, or string.

• Numeric operations are valid only on numeric types.

• For a divide operation, zero is invalid as a denominator.

• A numeric value may not be substituted when a boolean is required.

• Regarding the implicit members of a <Component>, ‘_length’ is only valid for

arrays or sequences, ‘_d’ may only be used on discriminated unions, and ‘_type_id’

and ‘_repos_id’ are only valid if said information can be obtained.

• The default operator may only be applied to a discriminated union. If a

discriminated union does not have a default member, this operator returns FALSE.

• Only equality and inequality operations (==, !=, >=, <=, >, or <) can be applied to

enums.

When first handed a constraint, the Notification Service can only guarantee that it is

syntactically correct. It is only when events are filtered, that it becomes possible to

check that operands have valid data types. When invalid operands are encountered or

when specified identifiers do not exist, the match operation must immediately return

FALSE.

The implication of the above rule is that a Notification Service implementation runtime

engine must implement short-circuiting of boolean ‘and’ and ‘or’ operations.

Specifically, ‘FALSE and <expression>’ must yield FALSE. Similarly, ‘TRUE

or <expression>’ must yield TRUE. In either case, it is not permissible to

evaluate <expression>.

As an example, consider the following 4 events and the associated constraint:

Event 1: <$.a, ‘Hawaii’>, <$.c, 5.0>

Event 2: <$.a, ‘H’>, <$.c, 5.0>

Event 3: <$.a, 5>, <$.c, 5.0>

Event 4: <$.a, 5>, <$.b, 5.0>

Constraint: ($.a + 1 > 32) or ($.b == 5) or ($.c > 3)

For the first event, the first expression becomes (‘Hawaii’ + 1 > 32). Since it is

not possible to add ‘1’ to a string data type, the constraint is invalid and the match

operation immediately returns FALSE.

In the second event, the first expression becomes (‘H’ + 1 > 32). Since ‘H’ is a

valid char data type, this yields TRUE (for the ASCII character set) and the match

operation immediately returns TRUE. Note that here, the fact that ‘$.b’ is not part of

the event is immaterial due to the defined short-circuit semantics.

For the third event, the first expression yields FALSE and the second expression can

not be resolved (since there is no ‘$.b’ member in the event). This is an error, so the

match operation immediately returns FALSE. Note that, the constraint author could

have dealt with the possibility of a missing ‘$.b’ by rewriting the constraint as:

($.a + 1 > 32) or (exist $.b and $.b == 5) or ($.c > 3)

In the fourth event, the first expression again yields FALSE, but this time ‘$b’ is

defined as a floating point ‘5.0’. Following the arithmetic conversion rules, the

constant ‘5’ is also cast to floating point and the second expression yields TRUE. Here,

the match operation returns TRUE even though the event has no ‘$.c’ member.

2.4.4 Support for Name-Value Pairs

The Notification Service makes extensive use of name-value pair lists within

structured events. These are somewhat difficult to manage using the Trader Constraint

Language because each member of the list must be treated as a complex structure (i.e.,

with both a name and value field), as in:
($.header.variable_header[1].name == ‘priority’ and

$.header.variable_header[1].value > 1163) or

($.header.variable_header[2].name == ‘priority’ and

$.header.variable_header[2].value > 1163)

While the above syntax is correct, it is far more convenient to treat a name-value pair

as an associative array such that, when given a name, one expects its value. To

accomplish this, we extend the Trader Constraint Language to allow one to identify a

component as being that of a name-value pair list. For example,

‘$.header.variable_header(priority)’ returns the value of priority in

the variable_header name-value pair list.

2.4.5 A Short-hand Notation for Filtering a Generic Event

Section 2.4.2, “Trader Constraint Language Extensions for Notification,” on page 2-25

shows that it is possible to use a single constraint across both structured and

unstructured events. However, for this to work, the layout of the filterable portion of

the unstructured event must match that of the structured event. In order to relax these

requirements, run-time variables may be employed as a short-hand notation for

expressing commonly filtered data.

Specifically, any simple-typed member of fixed_header or any property in the namevalue

pairs variable_header and filterable_data may be represented as run-time

variables. For example, the constraint:

$.header.fixed_header.event_type.type_name == ‘CommunicationsAlarm’ and

$.header.fixed_header.event_name == ‘lost_packet’ and

$.header.variable_header(priority) < 2

can be rewritten using run-time variables as:

$type_name == ‘CommunicationsAlarm’ and

$event_name == ‘lost_packet’ and $priority < 2

The following rules govern translation of a run-time variable, ‘$variable’, into a

specific event field. If the run-time variable is reserved (e.g., $curtime) this

translation takes precedence. If the run-time variable is $ domain_name,

$ type_name, or $event_name, these are resolved to

$.header.fixed_header.event_type.domain_name,

$.header.fixed_header.event_type.type_name, or

$.header.fixed_header.event_name, respectively.

Next, the first matching translation is chosen respectively from properties in

$.header.variable_header, and properties in

$.header.filterable_data. If no match is found, the translation defaults to

either $.variable., or in the case of a CORBA::Any that encapsulates a single

unnamed name-value pair list (Section 2.4.4, “Support for Name-Value Pairs,” on

page 2-28), $(variable).
Given these rules, an unstructured event with a $.priority member and a structured

event using $.header.variable_header(priority) can be specified in a

generic constraint using the run-time variable ‘$priority’. Alternatively, a

constraint can be written specifically for a structured or unstructured event by avoiding

the use of run-time variables.

2.4.6 Positional Notation and Intended Applications

CORBA does not require that the names of IDL type members be marshalled into the

TypeCode of a CORBA::Any. This implies that a filter that matches on named parts of

an unstructured event will fail if the CORBA::Any was generated by an ORB that

does not populate these fields. The population of a TypeCode’s RepositoryId is also

optional, so one can not depend on looking names up in the Interface Repository either.

To resolve this issue, the Notification Service permits constraints to be written in a

purely positional notation which can be used to extract the same data as the traditional

name-based filter expressions. For example, the constraint:

$.gpa < 80 or $.tests(midterm) > $.tests(final) or

$.monthly_attendance[3] < 10

might be rewritten using positional notation as:

$.3 < 80 or $1.(midterm) > $.1(final) or $.2[3] < 10

Except for discriminated unions, the translation of a constraint using identifiers to one

that uses positional notation is idempotent. In the case of structs and enums, the

members are indicated by their position starting from zero. For example, consider the

IDL:

struct X {

long A;

string B;

short C;

};

enum P { Q, R, S };

In ‘struct X’, member ‘A’ is denoted by ‘0’, ‘B’ by ‘1’ and ‘C’ by ‘2’. Similarly, in

‘enum P’, ‘Q’ is denoted by ‘0’, ‘R’ by ‘1’ and ‘S’ by ‘2’.

Describing unions using positional notation is more complicated because the order of

members is not significant, rather, members are indexed by label value. Therefore here,

the “positional” notation for unions is really an index notation. The grammar defines

the <UnionVal> literal token to collect all possible discriminator types and uses

<UnionPos> to disambiguate this special case. For example, consider the IDL:
union K switch (short) {

case 0:

case 2: string K;

case 3: X L;

case 5: long M;

default: short N;

};

The member ‘M’ is denoted as ‘(5)’ and the constraint over an unstructured event

comprised of a ‘union K’ that read “$.M < 54” is translated into positional

notation as “$.(5) < 54”. A constraint involving the ‘C’ member of the ‘L’ member

of the ‘union X’, for example, “$.L.C < 128” would be translated as “$.(3).2

< 128”.

The member ‘K’ can be denoted using either ‘(0)’ or ‘(2)’, as in “‘putty’ ~

$.(2)”. Note that the label is chosen independent of the actual discriminator.

Therefore, either of the following expressions will match a union with a

discriminator value of 2, where the string contained in the union is not ‘hoob’:

$._d == 2 and $(0) != ‘hoob’

$._d == 2 and $(2) != ‘hoob’

The last case is that of member ‘N’, indexed by the default label. This is translated as

‘()’. For example, the constraint “$.N == 999” is translated as “$.() == 999”.

The semantics of the exist operator is also special for discriminated unions. In the

case of any other data type, the assertion that a member name exists is sufficient

assurance that the value associated with that member may be accessed. For unions, this

is only true when the discriminator is set to the corresponding case. Therefore, the

expression “exist $.K” will return TRUE if and only if the event TypeCode

contains the member name information to identify ‘K’ and the union discriminator has

the value 0 or 2. The label value notation is somewhat simpler as the expression

“exist $.(0)” will return TRUE if and only if the discriminator is set to 0. This

implies that the translation of “exist $.K” is “exist $.(0) or exist $.(2)”.

It also means that the expression “exist $.(0)” is equivalent to “$._d == 0”.

2.4.7 Examples of Notification Service Constraints

This section provides annotated examples of constraints written in the Extended Trader

Constraint Language defined by the Notification Service. The following examples

intend to show the flexibility of this language.

• Accept all “CommunicationsAlarm” events but no “lost_packet” messages.

$type_name == ‘CommunicationsAlarm’ and not

($event_name == ‘lost_packet’)

• Accept “CommunicationsAlarm” events with priorities ranging from 1 to 5.

$type_name == ‘CommunicationsAlarm’ and

$priority >= 1 and $priority <= 5

• Select “MOVIE” events featuring at least 3 of the Marx Brothers.
$type_name == ‘MOVIE’ and

((‘groucho’ in $.starlist) + (‘chico’ in $.starlist) +

(‘harpo’ in $.starlist) + (‘zeppo’ in $.starlist) +

(‘gummo’ in $.starlist)) > 2

• Accept only recent events (e.g., generated within the last 15 minutes or so).

$origination_timestamp.high + 2 < $curtime.high

• Accept students that took all 3 tests and had an average score of at least 80%.

$.test._length == 3 and

($.test[0].score + $.test[1].score + $.test[2].score) / 3

>= 80

• Select processes that exceed a certain usage threshold.

$.memsize / 5.5 + $.cputime * 1275.0 + $.filesize * 1.25

> 500000.0

• Accept events with a default union discriminator set to the value 2.

default $._d and $.defvalue == 2

• Accept events where a threshold has the unscoped type name ‘short’.

exist $threshold._type_id and $threshold._type_id == ‘short’

• Accept only Notification Service structured events.

$._repos_id == ‘IDL:CosNotification/StructuredEvent:1.0’

• Accept events with a serviceUser property of the correct standard type.

$violation(serviceUser)._repos_id ==

‘IDL:TelecomNotification/ServiceUserType:1.0’

• Accept only those events that have a specified security “rights list”.

exist $.header.variable_header(required_rights)

• Accept events whose ‘in’ enum is set to the value ‘HOUSE’ or ‘CAR’.

$.\in == HOUSE or $.\in == CAR
