- 23 -

TD 72 (Rev.2) (PLEN)

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 4

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001-2004
	TD 72 (Rev.2) (PLEN)

	
	Original: English

	Question(s):
	12/4
	5 - 14 February 2003

	TEMPORARY DOCUMENT

	Source:
	Rapporteur of Q12/4

	Title:
	M.3020 status document

DRAFT RECOMMENDATION M.3020 STATUS DOCUMENT

TABLE OF CONTENTS
21.
Introduction

22.
Document history

23.
Status overview

24.
Level 1 - complete amendments

25.
Level 2 - agreed amendments

25.1
Scope

35.2
Use case template

36.
Level 3 - proposed amendments

36.1
Type definitions

46.2
Protocol neutral aspects

46.3
Requirements categories

46.4
Requirements Format

56.5
Identified issues

66.6
3GPP Information Service and Interface

146.7
Use of UML for analysis / protocol neutral modelling

236.8
User Requirements Notation

Introduction

This document is a compilation of proposed and agreed amendments to M.3020 classified as

· Level 1 - Complete amendment. Complete text is this document.

· Level 2 - Agreed amendment. Further contributions are required to complete the proposal.

· Level 3 - Proposed, not agreed amendment. Further contribution is required.

1. Document history

	Version
	Comment

	1.0
	First version, London, May 2000

	2.0
	Geneva, July 2001

	3.0
	Geneva, April 2002

	4.0
	Geneva, February 2003

2. Status overview

	Status
	Section
	Subject Matter

	2
	5.1
	Scope

	2
	5.2
	Use case template

	
	
	

	3
	6.1
	Type definitions

	3
	6.2
	Protocol neutral aspects

	3
	6.3
	Requirement categories

	3
	6.4
	Requirement format

	3
	6.5
	Identified issues

	3
	6.6
	Information Service and Interface templates (3GPP)

	3
	6.7
	UML for protocol neutral models (3GPP)

	3
	6.8
	User Requirements Notation

3. Level 1 - complete amendments

None.

4. Level 2 - agreed amendments

4.1 Scope

The scope is restricted to interface standardisation. This should be clarified in M.3020.

4.2 Use case template

The format of the use case description is given below:

	Name
	The name of the use case (matches all drawing names)

	Summary
	A summary of the use cases purpose and content

	Actor(s)
	The names of actors involved in the use case including role characteristic for each actor.

	Assumptions
	A description of the environment providing a context for the use case.

	Pre-Conditions
	A list of all system and environment conditions that must be true before the use case can be triggered.

	Begins When
	The name of the single event that triggers the start of the use case

	Description
	The various tasks that make up the use case, not necessarily in sequence. The description should reference any reuse of TMN functionality.

	Ends When
	The event(s) that signals that the use case has terminated.

	Exceptions
	A summary list of all exception conditions and faults detected by the use case during its operation

	Post-Conditions
	A list of all system and environmental; conditions that must be true if the use case has terminated without internal error

	Traceability
	A list of requirements fulfilled by this use case.

Note: A simplified version of the use case template, preferably without use of the table format is preferred by Q12/4.

A revised use case template should clarify the relationship between “begins when”, “description” and “ends when”.

Further, examples are requested as user guidelines.

5. Level 3 - proposed amendments

5.1 Type definitions

[image: image24.wmf]

DataType

<<PACKAGE>>

DataType

Data1 :The DataType Element

is

defined in the Core

package

Tue Sep 07 22:52:45

1999

CL: CIS

DataType

Class Diagram

Primitive

Enumeration

-

name: Name

EnumerationLiteral

literal

{ordered}

Structure

Integer

<<primitive>

>

String

<<primitive>

>

Time

<<primitive>

>

Uninterpreted

<<primitive>

>

AggregationKind

<<enumeration>

>

Boolean

<<enumeration>

>

CallConcurren

cyKind

<<enumeration>

>

ChangeableKind

<<enumeration>

>

EventOriginKind

<<enumeration>

>

MessageDirectionKind

<<enumeration>

>

OperationKind

<<enumeration>

>

ParameterDirectionKind

<<enumeration>

>

PseudosateKind

<<enumeration>

>

ScopeKind

<<enumer

ation>

>

SynchronousKind

<<enumeration>

>

VisibilityKind

<<enumeration>

>

-

body:

String

Name

Figure 1: UML Data Types

5.2 Protocol neutral aspects

Protocol neutral aspects to be extracted from “UML Profile for CORBA - Version 1.0” (Q6 LON2)
5.3 Requirements categories

Category I
- Identifies a concept, data type, relationship, format, or structure

Category II
- Identifies a dynamic situation, a sequence, timing parameters, or an interaction.

Category III
- Describes all known abnormal conditions, error conditions and bounds of performance

Category IV
- Non-functional requirements

Category V
- System administration and operational requirements not related to the use cases normal operations.

5.4 Requirements Format

Requirement {Category, number} Details {Source Citation}

example:

Requirement{I, 23} A Service Order consists of a name, address, phone number, service description and an optional FAX number for contacts {T1M1.5 Document 246 11/96}

5.5 Identified issues

1 Do we need to co-ordinate methodologies between SG17 (software development), SG4 (TMN Interface specification) and SG11 (ISDN). The M.3020 phases seem to correspond to the three first phases of Z.100 supp. SG4 has several task objectives on consistency and Quality of TMN specifications, which are not yet addressed. Z.100 supp. provides several phases for this.

2 SG17 believe that Z.120 (MSC) has more functionality than UML, that the additional functionality is needed in the provided Annex, and that its use should not be excluded and that it should be referenced in M.3020.

3 The purpose of “behaviour” is not clear in M.3020 (primarily treated in informal notes).

4 It is not clear what the output of the methodology is, i.e. the outputs and the phases should be orthogonal, and both should be indicated.

5 The term “analysis” may be misleading, as it produces a protocol neutral design.

6 If the various outputs of the Design phase of M.3020 are standardised, are then the mappings between the various specifications always standardised?

7 SG10 asks that the SG4 object model diagrams should be made conformant to SDL UML diagrams.

8 SG10 recommends that SDL is used to define behaviour of UML classes.

9 SG10 has initiated work on a User Requirement Notation.

The following issue questions were raised during the process of creating Q.834.3. Answers to them should be included in revisions to M.3020 to facilitate use of the M.3020 process. The questions are followed by tentative responses where they could be determined.

10 How will we get to the point where there are common, extensible, reusable UML abstractions for the manager to agent relationship between the NML and EML? This will require the creation of a UML representation of the Generic Network Model, as proposed in another contribution.

11 Did the creators of M.3020 expect that it would be possible to use mechanical translation of UML into IDL and/or GDMO? Is the state of the art such that a UML expression of a model can be used to generate IDL and GDMO independent of the tools (compiler)?

12 When do we go from an abstraction of behaviour to filling in the details of the signature of the operation and the syntax and semantics of the attributes in order to produce the protocol specific version? Is this part of the M.3020 GDMI?

13 Do the standards bodies plan to go back and generate UML expressions of the frameworks that have been generated previously, to unify them with the M.3020 process?

14 It is felt that it is very important to continue to assert the value of the M.3100 managed objects without necessarily promoting them to interface objects. How do we continue to assert the value of the M.3100 objects in these circumstances? Is it possible that a new service needs to be defined to support the provisioning process in the same way that Q.821 supports Alarm Management?

15 How does one import the framework services into a new piece of modelling work?

16 Things to add to M.3020 GDMI

· Data dictionary

· Use case descriptions

· A common set of use case description topics is needed in M.3020: proposed text for Section A.2.2.2

17 Add definitions for' includes' and 'extends' to encourage consistency in interpretation

18 What instructions should be added to M.3020 to avoid the difficulties experienced by the FSAN group? Is it appropriate to modify M.3020 so that its CORBA design output will only allow framework objects? Draft Q.834.4 demonstrated that is was possible to proceed through the prescribed paths involving M.3020, with validation at interim steps, and at the end to derive CORBA interface objects that do not match the CORBA framework.

5.6 3GPP Information Service and Interface

The following templates are used by 3GPP for documentation of information services and interfaces. The source of this text is 3GPP TS 32.102 V5.2.0 (2002-12) and was made available by the SG4 chairman.

X.
Information Object Classes

X.1
Information entities imported and local labels

This clause identifies a list of information entities (e.g. information object class, information relationship, information attribute) that have been defined in other specifications and that are imported in the present document. This includes information entities from other specifications imported for inheritance purpose. Each element of this list is a pair (label reference, local label). The label reference contains the name of the specification where it is defined, the type of the information entity and its name. The local label of imported information entities can then be used throughout the specification instead of the label reference.

This information is provided in a table. An example of such a table is given here below:

	Label reference
	Local label

	32.106-5 [10], information object class, Top
	Top

X.2
Class diagram

X.2.1
Attributes and relationships

This first diagram represents all information object classes defined in this IS with all their relationships and all their attributes. This diagram shall contain relationship names, role name and role cardinality. This shall be a UML compliant class diagram.

Characteristics (attributes, relationships) of imported information object classes need not to be repeated in the diagram. Names of information elements (class, attribute) defined in the IS and which scope is local to this IS must be prefixed by a 3 characters prefix uniquely identifying the IS. Information object classes should be defined using the stereotype <<InformationObjectClass>>. On the class diagram, each attribute in an information object class shall be qualified as "protected" by the addition of a symbol "#" before each attribute.

X.2.2
Inheritance

This second diagram represents the inheritance hierarchy of all information object classes defined in this IS. This diagram does not need to contain the complete inheritance hierarchy but shall at least contain the parent information object classes of all information object classes defined in the present document. By default, an information object class inherits from the information object class "top". This shall be a UML compliant class diagram.

Characteristics (attributes, relationships) of imported information object classes need not to be repeated in the diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.

X.3
Information object classes definition

Each information object class is defined using the following structure.

X.3.a
InformationObjectClassName

InformationObjectClassName is the name of the information object class

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information object class

X.3.a.1
Definition

The <definition> sub-clause is written in natural language. The <definition> sub-clause refers to the information object class itself. The characteristics related to the relationships that the object class can have with other object classes can't be found in the definition. The reader has to refer to relationships definition to find such kind of information. Information related to inheritance shall be precised here.

X.3.a.2
Attributes

The <attributes> sub-clause presents the list of attributes, which are the manageable properties of the object class . Each element is a tuple (attributeName, visibilityQualifier, supportQualifier, readQualifer, writeQualifer)

-
The visibilityQualifier indicates whether the attribute is public, private or IRPAgent Internal ("+","—", and "%" respectively). The semantics of public and private are as per the UML specification. The semantic of IRPAgent Internal is defined within the 3GPP UML Repertoire.
-
The supportQualifier indicates whether the attribute is Mandatory, Optional, Conditional or not supported ("M"," O"," C", or "—", respectively).

-
The readQualifier indicates whether the attribute shall be readable by the IRPManager. The semantics for readQualifier is identical to supportQualifier, for "M, "O", and "—".

-
The writeQualifier indicates whether the attribute shall be writeable by the IRPManager. The semantics for writeQualifier is identical to supportQualifier, for "M", "O", and "—".

There is a dependency relationship between the supportQualifier and visibilityQualifier, readQualifier, and writeQualifier. The supportQualifier indicates the requirements for the support of the attribute. For any given attribute, regardless of the value of the supportQualifier, at least one of the reqdQualifier or writeQualifier must be "M". The implication of the "O" supportQualifier is that the attribute is optional, however the read and write qualifiers indicate how the optional attribute shall be supported, should the optional attribute be supported. Regardless of the supportQualifier, if an attribute is supported then it shall be supported in accordance with the specified visibilityQualifier.

Private or IRPAgent Internal attributes are per definition not readable by the IRPManager. Their readQualifier is hence always "—".

Private or IRPAgent Internal attributes are per definition not writable by the IRPManager. Their writeQualifier is hence always "—".

The readQualifier and writeQualifier of a supported attribute, that is public, may not be both "—".

The use of "—" in supportQualifier is reserved for documenting support of attributes defined by an «Archetype» IOC. Attributes with a supportQualifier of "—" are not implemented by the IOC that is realizing a subset of the attributes defined by the «Archetype». The readQualifier and writeQualifier are of no relevance in this case. However, a not supported attribute is neither readable nor writable. For this reason the readQualifier and writeQualifier shall be "—" for unsupported attributes.

For any IOC that uses one or more attributes from an «Archetype», a separate table shall be used to indicate the supported attributes. This table is absent if no «Archetype» attributes are supported. For example, if a particular IOC has defined attributes (i.e. attributes not defined by an «Archetype») and encapsulates attributes from two «Archetype»s, then the totality of the attributes of said IOC will be contained in three separate tables.

This information is provided in a table. An example of such a table is given below:
	Attribute name
	Visibility
	Support Qualifier
	Read Qualifier
	Write Qualifier

	ntfSubscriptionId
	+
	M
	M
	O

Another example, where the support qualifier is "O" is given here below:

	Attribute name
	Visibility
	Support Qualifier
	Read Qualifier
	Write Qualifier

	ntfSubscriptionId
	+
	O
	M
	O

In this example, the ntfSubscriptionId is an optional attribute. If the implementation chose to support ntfSubscriptionId, then the said implementation is required to support read and may support write.

NOTE:
This sub-clause does not need to be present when there is no attribute to define.
X.3.a.3
Attribute constraints

The <attribute constraints> sub-clause presents constraints between attributes that are always held to be true. Those properties are always held to be true during the lifetime of the attributes and in particular don't need to be repeated in pre or post conditions of operations or notifications.

NOTE:
This sub-clause does not need to be present when there is no attribute constraints to define.

X.3.a.4
Relationships

The <relationship> sub-clause presents the list of relationships in which this class in involved. Each element is a relationshipName.

NOTE:
This sub-clause is optional and may be avoided since all relationships are represented in the class diagram in clause.X.2.1.

X.3.a.5
State diagram

The <state diagram> sub-clause contains state diagrams. A state diagram of an information object class defines permitted states of this information object class and the transitions between those states. A state is expressed in terms of individual attribute values or a combination of attribute values or involvement in relationships of the information object class being defined. This shall be a UML compliant state diagram.

X.4
Information relationships definition

Each information relationship is defined using the following structure :

X.4.a
InformationRelationshipName (supportQualifier)

InformationRelationshipName is the name of the information relationship followed by a qualifier indicating whether the relationship is Mandatory, Optional or Conditional (M, O, C)

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information relationship

X.4.a.1
Definition

The <definition> sub-clause is written in natural language.

X.4.a.2
Roles

The <roles> sub-clause identifies the roles played in the relationship by object classes. Each element is a pair (roleName, roleDefinition)

This information is provided in a table. An example of such a table is given here below :

	Name
	Definition

	isSubscribedBy
	This role represents the one who has subscribed

X.4.a.3
Constraints

The <constraints> sub-clause contains the list of properties specifying the semantic invariants that must be preserved on the relationship. Each element is a pair (propertyName, propertyDefinition). Those properties are always held to be true during the lifetime of the relationship and don't need to be repeated in pre or post conditions of operations or notifications.

This information is provided in a table. An example of such a table is given here below :

	Name
	Definition

	inv_notificationCategoriesAllDistinct
	"the notification categories contained in the ntfNotificationCategorySet attribute of ntfSubscription playing the role hasSubscription are all distinct from each other"

X.5
Information attributes definition

Each information attribute is defined using the following structure :

X.5.1
Definition and legal values

This sub-clause contains for each attribute being defined its name, its definition written in natural language and a list of legal values supported by the attribute.

In the case where the legal values can be enumerated, each element is a pair (legalValueName, legalValueDefinition), unless a legalValueDefinition applies to several values in which case the definition is provided only once. When the legal values cannot be enumerated, the list of legal values is defined by a single definition.

This information is provided in a table. An example of such a table is given here below :

	Attribute Name
	Definition
	Legal Values

	ntfSubscriptionId
	It identifies uniquely a subscription

	N/A

	ntfSusbcriptionState
	It indicates the activation state of a subscription

	"suspended" : the subscription is suspended

"notSuspended" : the subscription is active

X.5.2
Constraints

The <constraints> sub-clause indicates whether there are any constraints affecting attributes. Each constraint is defined by a pair (propertyName, propertyDefinition). PropertyDefinitions are expressed in natural language.

An example is given here below :

	Name
	Definition

	inv_TimerConstraints
	"ntfTimeTickTimer is lower than or equal to ntfTimeTick"

X.6
Particular information configurations

Some configurations of information are special or complex enough to justify the usage of a state diagram to clarify them. A state diagram in this clause defines permitted states of the system and the transitions between those states. A state is expressed in terms of a combination of attribute values constraints or involvement in relationships of one or more information object classes.

Y
Interface Definition

"Y" represents a number, immediately following "X"

Y.1
Class diagram representing interfaces

Each interface is defined in the diagram. This shall be a UML compliant class diagram.

Interfaces are defined using a stereotype <<Interface>>. Each interface contains a set of either operations or notifications which are mandatory or either a single operation or a single notification which is optional. The support of an interface by an information object class is represented by a relationship between the 2 entities with a cardinality (1..1) if all the operations or notifications contained in the interface are mandatory, and (0..1) if the operation or notification contained in the interface is optional. On the class diagram, each operation and notification in an interface shall be qualified as "public" by the addition of a symbol "+" before each operation and notification.

Y.2
Generic rules

The following rules are relevant for all IS. They shall simply be copied as part of the template.

Rule 1: each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.
Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the
pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named optional input parameter is carrying information. The exception has the same entry and exit state.
Rule 3: each operation shall support a generic exception operation_failed_internal_problem which is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.
Y.b
InterfaceName Interface

InterfaceName is the name of the interface

"b" represents a number, starting at 3 and increasing by 1 with each new definition of an interface

Each interface is defined by its name and by a sequence of operations or notifications as defined here below.

Each operation is defined using the following structure.

Y.b.a
Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier indicating whether the operation is Mandatory, Optional or Conditional (M, O, C)

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation

Y.b.a.1
Definition

The <definition> sub-clause is written in natural language.
Y.b.a.2
Input parameters

List of input parameters of the operation. Each element is a tuple (inputParameterName, supportQualifier, InformationType, inputParameterComment)

This information is provided in a table. An example of such a table is given here below :

	Parameter Name
	Qualifier
	Information type
	Comment

	managerReference
	M
	ntfSubscriber.ntfManagerReference
	It specifies the reference of IRPManager to which notifications shall be sent.

Y.b.a.3
Output parameters

List of output parameters of the operation. Each element is a tuple (outputParameterName, supportQualifier, MatchingInformation, outputParameterComment)

This information is provided in a table. An example of such a table is given here below :

	Parameter Name
	Qualifier
	Matching Information
	Comment

	versionNumberSet
	M
	notificationIRP.irpversion
	It indicates one or more SS version numbers supported by the notificationIRP.

Y.b.a.4
Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition must be held to be true before the operation is invoked . An example is given here below :

notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the pre-condition are provided in a table. An example of such a table is given here below :

	Assertion Name
	Definition

	NotificationCategoriesNotAllSubscribed
	"at least one notificationCategory identified in the notificationCategories input parameter is supported by IRPAgent and is not a member of the ntfNotificationCategorySet attribute of an ntfSubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter".

	NotificationCategoriesParameterAbsentAndNotAllSubscribed
	"notificationCategories input parameter is absent and at least one notificationCategory supported by IRPAgent is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter"

Y.b.a.5
Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition must be held to be true after the completion of the operation. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the
pre-condition. An example is given here below :

subscriptionDeleted OR allSubscriptionDeleted

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the post-condition are provided in a table. An example of such a table is given here below :

	Assertion Name
	Definition

	subscriptionDeleted
	"the ntfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and has been deleted. If this ntfSubscriber has no more ntfSubscription, it is deleted as well."

	allSubscriptionDeleted
	"in the case subscriptionId input parameter was absent, the ntfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding ntfSubscription have been deleted as well."

Y.b.a.6
Exceptions

List of exceptions that can be raised by the operation. Each element is a tuple (exceptionName, condition, ReturnedInformation, exitState))

Y.b.a.6.c
exceptionName

ExceptionName is the name of an exception

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception

This information is provided in a table. An example of such a table is given here below :

	Exception Name
	Definition

	Ope_failed_existing_subscription
	Condition: (notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed) not verified

Returned information: output parameter status is set to OperationFailedExistingSubscription

Exit state: Entry State

Each notification is defined using the following structure.

Y.b.a
Notification NotificationName (supportQualifier)

NotificationName is the name of the notification followed by a qualifier indicating whether the notification is Mandatory, Optional or Conditional (M, O, C).
"a" represents a number, starting at 1 and increasing by 1 with each new definition of a notification

Y.b.a.1
Definition

The <definition> sub-clause is written in natural language.

Y.b.a.2
Input parameters

List of input parameters of the notification. Each element is a tuple (inputParameterName, supportQualifier and filteringQualifier, matchingInformation, inputParameterComment)

The filteringQualifier indicates whether the parameter of the notification can be filtered or not. Values are Yes (Y) or No (N). The matchingInformation refers to information in the state "toState".

This information is provided in a table. The column "Qualifiers" contains the two qualifiers supportQualifier and filteringQualifier separated by a comma. An example of such a table is given here below :

	Parameter Name
	Qualifiers
	Matching Information
	Comment

	managerReference
	M,Y
	ntfSubscriber.ntfManagerReference
	It specifies the reference of IRPManager to which notifications shall be sent.

Y.b.a.3
Triggering event

The triggering event for the notification to be sent is the transition from the information state defined by the "from state" sub-clause to the information state defined by the "to state" sub-clause.

Y.b.a.3.1
From state

This sub-clause is a collection of assertions joined by AND, OR, and NOT logical operators. An example is given here below :

alarmMatched AND alarmInformationNotCleared

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "from state" are provided in a table. An example of such a table is given here below :

	Assertion Name
	Definition

	AlarmMatched
	The newly generated network alarm matches with one AlarmInformation (same values for eventType, probableCause, specificProblem attributes) in AlarmList.

	AlarmInformationNotCleared
	The perceivedSeverity attribute of the matched AlarmInformation is not cleared

Y.b.a.3.2
To state

This sub-clause is a collection of assertions joined by AND, OR and NOT logical operators. When nothing is said in a to-state regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the from state. An example is given here below:

resetAcknowledgementInformation AND perceivedSeverityUpdated

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "to state" are provided in a table. An example of such a table is given here below :

	Assertion Name
	Definition

	ResetAcknowledgementInformation
	The matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated according to the following rule :

ackTime, ackUserId and ackSystemId are updated to contain no information; ackState is updated to "unacknowledged";

	PerceivedSeverityUpdated
	The perceivedSeverity attribute of matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated.

5.7 Use of UML for analysis / protocol neutral modelling

5.7.1 Basic model elements

UML defined a number of basic model elements. This subclause lists the selected subset for use in the repertoire. The semantics of the selected ones are defined in [OMG UML 1.3].

· attribute (Subclause 3.25 of [OMG UML 1.3]).

This sample shows two attributes, listed as strings in the attribute compartment of the class AClass.

[image: image1.emf]AClass

attributeA

attributeB

<<InformationObjectClass>>

· aggregation (Subclause 3.43.2.5 of [OMG UML 1.3]).

This sample shows a hollow diamond attached to the end of a path to indicate aggregation. The diamond is attached to the class that is the aggregate.

[image: image2.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

· operation (Subclause 3.26 of [OMG UML 1.3]).

This sample shows two operations, shown as strings in the operation compartment of class AClass, that the instance of AClass may be requested to perform. The operation has a name, e.g. operationA and a list of arguments (not shown).

[image: image3.emf]AClass

operationA()

operationB()

<<InformationObjectClass>>

· association, association name (Subclause 3.41 of [OMG UML 1.3]).

This sample shows a binary association between exactly two model elements. The association can include the possibility relating a model element to itself. This sample shows a bi-directional association in that one model element is aware of the other. Association can be unidirectional (shown with an open arrow at one association end) in that only the source model element is aware of the target model element and not vice-versa.

[image: image4.emf]BClass

<<InformationObjectClass>>

AClass

<<InformationObjectClass>>

· realization relationship (Subclause 2.5.2.1 of [OMG UML 1.3]).

This sample shows the realization relationship between a AlarmIRPNotification_1 (the supplier) and a model element, IRPManager, that implements it.

[image: image5.emf]IRPManager

<<InformationObjectClass>>

AlarmIRPNotification_1

<<Interface>>

· generalization relationship (Subclause 3.50 of [OMG UML 1.3]).

This sample shows a generalization relationship between a more general element (the IRPAgent) and a more specific element (the IRPAgent_vendor_A) that is fully consistent with the first element and that adds additional information.

[image: image6.emf]IRPAgent

<<InformationObjectClass>>

IRPAgent_vendor_A

<<InformationObjectClass>>

· dependency relationship (subclause 3.51 of [OMG UML 1.3]).

This sample shows that BClass instances have a semantic relationship with AClass instances. It indicates a situation in which a change to the target element will require a change to the source element in the dependency.

[image: image7.emf]AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

· note (Subclause 3.11 of [OMG UML 1.3])

This sample shows a note, as a rectangle with a "bent corner" in the upper right corner. The note contains arbitrary text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[image: image8.emf]SubNetwork

<<InformationObjectClass>>

This is a sample of

a note.

· Multiplicity, a.k.a. cardinality (Subclause 3.44 of [OMG UML 1.3]).

This sample shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is that one Network instance is associated with zero, one or more SubNetwork instances.

[image: image9.emf]Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

0..* 0..*

· rolename (Subclause 3.43.2.6 of [OMG UML 1.3]).

This sample shows a Person (say instance John) is associated with a Company (say instance XYZ). We navigate the association by using the opposite association-end such as John.theCompany ="XYZ". Use noun for the rolename.

[image: image10.emf]Person Company

+theCompany

5.7.2 Stereotype

This sub-clause defines all allowable stereotypes that are summarized in the following table. Except <<Interface>>, <<Type>> and <<use>> (which are defined in [OMG UML 1.3]), all other stereotypes are extensions specifically designed for use in IRP IS specifications.

Table G.1: Stereotypes

	Stereotype
	Base Class

	Interface
	Class

	Type
	Class

	ProxyClass
	Class

	Archtetype
	Classifier (subclause 2.5.2.10 of [OMG UML 1.3])

	InformationObjectClass
	Classifier

	use
	Association

	may use
	Association

	may realize
	Association

	emits
	Association

	names
	Aggregation

	%
	VisibilityKind (subclause 2.7.2.29 of [OMG UML 1.3])

5.7.2.1 <<Interface>>
Subclause 2.5.2.25 of [OMG UML 1.3]:

"An interface is a named set of operations that characterize the behaviour of an element. In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers may realize the same Interface.

…

Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that is navigable from the Classifier but not from the Interface."

Subclause 2.5.4.6 of [OMG UML 1.3]: "The purpose of an interface is to collect a set of operations that constitute a coherent service offered by classifiers. Interfaces provided a way to partition and characterize groups of operations. An interface is only a collection of operations with a name. It cannot be directly instantiated. Instantiable classifiers, such as class or use case, may use interfaces for specifying different services offered by their instances. Several classifiers may realize the same interface. All of them must contain at least the operations matching those contained in the interface. The specification of an operation contains the signature of the operation (i.e. its name, the types of the parameters and the return type). An interface does not imply any internal structure of the realizing classifier. For example, it does not include which algorithm to use for realizing an operation. An operation may, however, include a specification of the effects [e.g. with pre and post-conditions] of its invocation."

5.7.2.1.1 Sample

This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The operation visibility is public (see definition of public visibility applicable to operation in subclause "visibility"). The input and output parameters of the operations are hidden (i.e. not shown). The AlarmIRP has a unidirectional mandatory realisation relationship with the <<interface>>.
[image: image11.emf]AlarmIRP

<<InformationObjectClass>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<<Interface>>

Figure G.1 : <<Interface>> Notation
5.7.2.2 <<Type>>

Subclause 3.28 of [OMG UML 1.3]: "[A Type is] a domain of objects together with the operations applicable to the objects, without defining the physical implementation of those objects. A Type may not contain any methods, maintain its own thread of control, or be nested. However, it may have Attributes and Associations. The Associations of a Type are defined solely for the purpose of specifying the behaviour of the Type's operations and do not represent the implementation of state data".

5.7.2.2.1 Sample

This sample shows the NotificationIRPNotification <<Type>> that specifies the five parameters (the notification header of Notification IRP). The AlarmIRPNotification_2 <<Interface>> depends (see the dependency relationship, a dashed open arrow line) on this <<Type>> for the construction of the notification emitted via the operation notifyChangedAlarm(). The visibility of attributes and operation in the example is public.

[image: image12.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

NotificationIRPNotification

+ objectClass

+ objectInstance

+ notificationId

+ eventTime

+ systemDN

+ notificationType

<<Type>>

Figure G.2: <<Type>> Notation

5.7.2.3 <<ProxyClass>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> are present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>> or <<Archtype>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<proxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.

5.7.2.3.1 Sample

This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>>
(e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions. The MonitoredEntity plays the role of theMonitoredEntity.

Note that <<MonitoredEntity>> does not define attributeA. The attributeA is already defined by all <<InformationObjectClass>> represented by the <<MonitoredEntity>>, i.e. ClassA and ClassB.

[image: image13.emf]MonitoredEntity

attributeA

<<ProxyClass>>

ClassA

attributeA

attributeB

attributeX

attributeY

<<InformationObjectClass>>

ClassB

attributeA

attributeB

attributeC

<<InformationObjectClass>>

Figure G.3: <<ProxyClass>>

5.7.2.4 <<Archetype>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, operations, and interactions that are typical of the represented <<InformationObjectClass>>.

The semantics of an <<archetype>> is that all attributes, links operations and interactions encapsulated by the <<archetype>> may or may not be present in the represented <<InformationObjectClass>>. The <<Archetype>> represents a placeholder class that is most useful in technology neutral analysis models that will require further specification and/or mapping within a more complete construction model.
5.7.2.4.1 Sample

This shows a <<Archetype>> named StateManagement. It also shows a <<InformationObjectClass>> IRPAgent that depends on this StateManagement. Note that the StateManagement has defined a number of attributes, the classes that depend on this StateManagement may or may not use all of the StateManagement attributes. In other words, at least one of the attributes of StateManagement is present in the IRPAgent. The precise set of StateManagement attributes used by the IRPAgent is specified in the IRPAgent specification.

[image: image14.emf]IRPAgent

<<InformationObjectClass>>

StateManagement

+ administrativeState

+ otherStates

<<Archetype>>

5.7.2.5 <<InformationObjectClass>>

It is the descriptor for a set of network resources and network management capabilities. Each <<InformationObjectClass>> represents a set of instances with similar structure, behaviour and relationships.

This <<InformationObjectClass>> and other information classes such as <<interface>> are mapped into technology specific model elements such as GDMO Managed Object Class for CMIP technology. The mapping of IS modelling constructs to technology specific modelling constructs are captured in the corresponding IRP Solution Set specifications.

The name of a <<InformationObjectClass>> has scope within the 3GPP IRP IS document in which it is specified and the name must be unique among all <<InformationObjectClass>> names within that 3GPP IRP IS document. The IRP IS document name is considered in the similar way as the UML Package-name.

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.

Subclause 3.22.1 of [OMG UML 1.3]: "A class represents a concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements."

5.7.2.5.1 Sample

This sample shows an AlarmList <<InformationObjectClass>>.

[image: image15.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

Figure G.4: <<InformationObjectClass>>> Notation

5.7.2.6
<<use>> and <<may use>>

The <<use>> and <<may use>> are unidirectional associations. The target must be an <<interface>>. The <<use>> states that the source class must have the capability to use the target <<interface>> in that it can invoke the operations defined by the <<interface>>. Support of the capability by the source entity is mandatory. The <<may use>> states that the source class may have the capability to use the target <<interface>> in that it may invoke the operations defined by the <<interface>>. Support of the capability by the source entity is optional.

The operations defined by the <<interface>> are visible across the itf-N.

5.7.2.6.1 Sample

This shows that the NotificationIRPAgent shall use the notifyNewAlarm and otherNotifications of AlarmIRPNotification_1 and may use the notifyChangedAlarm of AlarmIRPNotification_2.

[image: image16.emf]AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherNotifications()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<use>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

<<may use>>

Figure G.5: <<use>> and <<may use>> Notation

5.7.2.7 Relationship realize and <<may realize>>

The relationship realize and <<may realize>> are unidirectional association. The target must be an <<interface>>. The relationship "realize" shows that the source entity must realize the operations defined by the target <<interface>>. Realization of operations by the source entity is mandatory. The <<may realize>> shows the source entity may realize the operations defined by the target <<interface>>. Realization of the <<interface>> by the source entity is optional.

The operations defined by <<interface>> are visible across the itf-N.

5.7.2.7.1 Sample

This shows that the AlarmList shall realize (or support, implement) the two operations of AlarmIRPOperations_1 and may realize the operation of AlarmIRPOperations_2.

[image: image17.emf]AlarmIRPOperations_2

+ getAlarmCount()

<<Interface>>

<<may realize>>

AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

Figure G.6: Relationship realize and <<may realize>> Notations
5.7.2.8 <<emits>>

This is a unidirectional association. The source sends information to target. In the case that the target is NotificationIRPAgent, the information will then carry the semantics of 3GPP notification (e.g. notifyObjectCreation, notifyNewAlarm) such that the target NotificationIRPAgent can construct the relevant 3GPP notification for reception by the NotificationIRPManager.

The visibility of the information passed by <<emits>> is always "IRPAgent Internal" (see subclause on "Visibility").

5.7.2.8.1 Sample

This shows the MonitoredEntity (e.g. a GgsnFunction instance) emits notifications that are received by the NotificationIRPAgent. The emission is not visible across the itf-N.

[image: image18.emf]MonitoredEntity

<<ProxyClass>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

Figure G.7: <<emits>> Notation

[image: image19.emf]MonitoredEntity

objectclass

objectInstance

<<ProxyClass>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

<<use>>

IRPManager

<<InformationObjectClass>>

Figure G.8: <<use>>, <<emits>> and realize relationship Notation

5.7.2.9 <<names>>

It specifies a unidirectional aggregation. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target classifier and among other targeted instances of other classifiers that has the same <<name>> aggregation with the source.

A source can have multiple <<names>> with multiple targets. The set of <<names>> used between the source and its targets forms the source namespace.

A target can have multiple <<names>> with multiple sources, i.e. a target can participate/belong to multiple namespaces.

By convention, the name of the attribute in the target model element to hold part of the unique identification shall be formed by the name of the target class concatenated with "Id".

When used in specifications, the label <<names>> can be omitted to reduce clutter and to improve readability of class diagrams.

5.7.2.9.1 Sample

This shows that all instances of MscFunction are uniquely identifiable within the ManagedElement namespace. Note the use of the label <<names>> in specifications is optional.

[image: image20.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

<<names>>

Figure G.9: <<names>> Notation

5.7.3 Visibility

It specifies the accessibility of the operation and attribute. There are three types of visibility, i.e. private, public and IRPAgent Internal.

Table : Private Visibility (notation "-")

	Operation
	NA

	Attribute
	It indicates that the attribute is not accessible by other entities, e.g. the IRPManager, other entities not holding the subject attribute

Table : Public Visibility (notation "+")(default)

	Operation
	It indicates that the operation is visible across the itf-N, e.g. the IRPManager can invoke the operation across the itf-N interface.

	Attribute
	it indicates that the attribute is accessible across the itf-N, i.e. the IRPManager can invoke an operation to read the attribute and to write to this attribute if the attribute is so qualified. The read or write operation must be directly invoked against the entity holding the subject attribute or against the CM IRP Agent.

Table : IRPAgent Internal Visibility (notation "%")

	Operation
	It indicates that the operation is not visible across the itf-N, i.e. the IRPManager cannot invoke the operation. However, other entities can invoke the operation. (Note: no Release 5 operations are of this kind.)

	Attribute
	It indicates that the attribute is not directly accessible across the itf-N, i.e. the IRPManager cannot read/write this attribute. However, other entities can read/write this attribute.

5.7.3.1 Samples

This sample shows four attributes whose visibility are private, public (default notation), public and IRPAgent Internal. It is recommended that within a Class symbol, the use of default notation or not for public visibility should be consistent, i.e. all "publicly visible" attributes shall be shown with the "+" sign or without the "+" sign (default notation).

[image: image21.wmf]�

ClassSample

�

- attributeA

�

attributeB

�

attributeC

�

<<%>> attributeD

�

<<InformationObjectClass>>

Figure : Visibility of attributes

This sample shows three operations. Two of these operations are accessible by the IRPManager via the itf-N. It is recommended that within a Class symbol, the use of default notation or not for public visibility should be consistent,
i.e. all "publicly visible" operation shall be shown with the "+" sign or without the "+" sign (default notation).
[image: image22.wmf]�

InterfaceSample

�

+ operationA()

�

+ operationB()

�

<<%>> operationC()

�

<<Interface>>

Figure : Visibility of operations

This sample shows one notification whose visibility is public using the non-default public visibility notation. These notifications are accessible by the IRPManager via the itf-N.

[image: image23.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

Figure : Visibility of notification

5.8 User Requirements Notation

The User Requirements Notation developed by SG17 is a candicate for the requirements phase. The following documents are relevant:

· Goal-oriented Requirements Language (Z.151)

· Use Case Map scenario notation (Z.152)

· User Requirements Notation (Z.150), describes terminology, concepts, and language requirements for the User Requirements Notation
Further work within SG17 relevant in this context include:

· UML profile for URN (Z.159, to be developed) planned for consent in March 2004
· Z.153 on URN methodological approaches (also planned for consent in March 2004)

	Contact:
	Knut Johannessen

Telenor

Norway
	Tel: +47 90 10 18 10

Fax: +47 940 53 977

Email:

knut-hakon.johannessen@telenor.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.

M:\SG_DOC\SG4\FEB03\TDs\PLEN\72r2.doc
M:\SG_DOC\SG4\FEB03\TDs\PLEN\72r2.doc

