Page 1

3GPP TSG-SA5 (Telecom Management)
S5-026458

Meeting #29, Beijing, CHINA, 24 – 28 June 2002

CR-Form-v5

CHANGE REQUEST

(

32.613
CR
CRNum
(

rev
-
(

Current version:
4.0.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network
X
Core Network
X

Title:
(

Bulk CM Security Features for CORBA Solution Set

Source:
(

T-Mobile (Tapinder Pal, e-mail: tapinder.pal@t-mobile.de)

Work item code:
(

OAM-CM (SWG-C, WT8)

Date: (

14/06/2002

Category:
(

B

Release: (

REL-5

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

Support of security features for Bulk CM.

Summary of change:
(

Add new operation getSecurityLog and new notification notifyOperationStarted as well as various security-related additions to Bulk CM CORBA SS.

Consequences if
(

not approved:
No security features will be supported for Bulk CM, creating significant risks for network operators.

Clauses affected:
(

Sub-clause 2, 3.2, 4.1, 4.2, 4.3, 4.4, Annex(A), Annex(B)

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications
32.611, 32.612, 32.614

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

1
Scope

The purpose of this Bulk CM IRP: CORBA Solution Set is to define the mapping of the IRP information service (see 3GPP TS 32.612 [3]) to the protocol specific details necessary for implementation of this IRP in a CORBA/IDL environment.

The present document does not describe any Network Resource Model (NRM) – they are described in Generic Network Resources IRP: NRM 3GPP TS 32.622 [4], UTRAN Network Resources IRP: NRM 3GPP TS 32.642 [11], GERAN Network Resources IRP: NRM 3GPP TS 32.652 [12].
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[2]
3GPP TS 32.102: "3G Telecom Management architecture".

[3]
3GPP TS 32.612: "Telecommunication Management; Configuration Management;
Part 2: Bulk CM IRP; Information Service".

[4]
3GPP TS 32.622: "Telecommunication Management; Configuration Management;
Part 2: Generic Network Resources IRP: NRM".
[5]
3GPP TS 32.300: "Telecommunication Management; Configuration Management;
Part 8: Name convention for Managed Objects".
[6]
OMG Notification Service, Version 1.0, June 2000.
[7]
OMG Event Service, Version 1.1, March 2001.

[8]
The Common Object Request Broker: Architecture and Specification (for specification of valid version, see [1]).
[9]
3GPP TS 32.303: "Telecommunication Management; Configuration Management;
Part 3: Notification Integration Reference Point: CORBA solution set".
[10]
3GPP TS 32.111-3: "Telecommunication Management; Fault Management;
Part 3: Alarm Integration Reference Point: CORBA solution set".

[11]
3GPP TS 32.642: "Telecommunication Management; Configuration Management;
Part 2: UTRAN Network Resources IRP: NRM".
[12]
3GPP TS 32.652: "Telecommunication Management; Configuration Management;
Part 2: GERAN Network Resources IRP: NRM".

[13]
3GPP TS 32.312: “Generic IRP Management: Information Service”.
[14]
CORBA Security Service Specification, v.1.7, March 2001.

[15]
Common Secure Interoperability V2 Specification, May 2001.
[16]
The Authorization Token Layer Acquisition Service Specification, October 2001.
[17]
ORBAsec SL3 3.4.0, Adiron Inc., 2002.

[18]
Schreiner, R., Lang, U.: MICOsec User's Guide, Preliminary Version 0.2, 2000.
[19]
Secure Socket Layer v3.0, Netscape Communications, March 1996. [http://home.netscape.com/eng/ssl3/ssl-toc.html].
[20]
Kohl J, Neumann C.: „The Kerberos Network Authentication Service (V5)“, Network Working Group RFC 1510, September 1993.
3
Definitions and abbreviations

3.1
Definitions

For terms and definitions please refer to 3GPP TS 32.101 [1], 3GPP TS 32.102 [2], 3GPP TS 32.612 [3], 3GPP TS 32.622 [4], 3GPP TS 32.642 [11] and 3GPP TS 32.652 [12].

· IRP document version number string (or “IRPVersion”): See 3GPP TS 32.312 [13].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

ATLAS
The Authorization Token Layer Acquisition Service Specification

CORBA
Common Object Request Broker Architecture
CORBASec
CORBA Security Service
Credentials
Information describing the security attributes (identity and/or privileges) of a user or other principal. Credentials are claimed through authentification or delegation and used by access control.

CSIv2
Common Secure Interoperability V2 Specification
CSI-ECMA
CORBA communiation protocol based on ECMA GSS-API mechanism as defined in ECMA-235.

CSS
CORBA Client Security Service

DN
Distinguished Name

ECMA
European Computer Manufacturers Association

IS
Information Service

IDL
Interface Definition Language (OMG)

IOR
Interoperable Object Reference – a data structure specified in the OMG CORBA 2.0/ Interoperability specification

GSS-API
Generic Security Services – Application Programming Interface – specified by RFC 1508 issued by the Internet IETF.

IRP
Integration Reference Point

Interceptor
An object which provides one or more specialized services, at the ORB invocation boundary, based upon the context of the object request. The OMG CORBASec specification define the security interceptors.

MO
Managed Object

MOC
Managed Object Class

NRM
Network Resource Model

OMG
Object Management Group

Principal
A user or programmatic entity with the ability to use the resources of a system.

SAS
Security Attribute Service
SS
Solution Set

SSL/TLS
Secure Socket Layer/Transport Level Security

SPKM
Simple Public-Key GSS-API Mechanism

Target
The recipient of a CORBA request message

TSS
CORBA Target Security Service

3.3
IRP document version number string

The IRP document version number (sometimes called “IRPVersion” or “version number”) string is used to identify this specification. The string is derived using a rule described in definition “IRP document version number string”.

This string is returned in getBulkCmIRPVersion method and is carried in the first field of the notification header of all notifications related to this IRP.

4
Mapping

4.1
General Mappings

All MOs are arranged in a containment structure, according to the containment relations defined in the NRM. This structure is held internally by the IRPAgent. Externally, the MO containment structure is defined by the semantics in the distinguished name syntax. The distinguished name (DN) for a MO contains the distinguished name of the parent plus the Relative DN for the MO itself.

Associations as defined in the NRM (UML) are in this document mapped to attributes in the MIB. The names of the roles for an association in the NRM are used for defining attribute names in the MIB. When the cardinality for a role is 0..1 or 1..1 the datatype for the attribute is defined as a MO reference. The value of a MO reference contains the distinguished name of the referred MO. When the cardinality for a role allows more than one referred MO instances, the attribute will contain a sequence of MO references (i.e., DNs).
4.1.1
Common Secure Interoperability Mappings

This section describes the requirements that secure communication between IRPManagers and IRPAgents is expected to meet.

To support secure communication the CORBA implementation must provide additional security functionality that conforms to the CORBA Security Service Specification [14] and Common Secure Interoperability V2 Specification [15]. If the implementation of a Security Audit Service involves the use of Event Service [7] objects for the routing of audits or alarms, then the Event Service itself must be secure in order to protect the audit trail from unauthorised modification or deletion. The Notification Service [8] must satisfy analogous security requirements.

Interoperability Model

Secure communication between IRPManagers and IRPAgents is provided by two CORBA security services: the Client Security Service (CSS) and the Target Security Service (TSS). A security context can be used and shared by a sequence of requests, if it is maintained by the CSS and TSS. Otherwise, it must be established for every request.

Upon the establishment of the security context, the IRPManager’s authentication and authorization data are passed from the CSS to the TSS. The TSS then decides on the operations the IRPManager is authorized to invoke on the MO. An analogous check is performed by CSS to authenticate the TSS. If the authentication fails, then a security alarm is issued and an exception is thrown.

The model for secure interoperability is shown in the following diagram.

[image: image1.png]
Figure 1: Model for Secure Interoperability [14]

Requirement

Secure communication is established with the help of a security-aware ORB, which conforms to the requirements of CORBASec Level 2 [14, 3.1.5]. Consequently, the standard Common Secure Interoperability (CSIv2) security communication protocol [15] must address requirements of CORBA Security Level 2 [14, 3.1.7] for interoperable authentication, delegation and privileges.
Rationale:

CORBASec Level 1 provides basic security functionality to applications: authentication and message protection to provide secure invocations between client and server. The specification states that CORBASec Level 1 also supports access control and audit, but there are no details or interfaces defined. The specification also says that Level 1 is used for security unaware applications. “Security unaware” means that an unmodified application is just linked with a secure ORB and then becomes secure. But this only provides authentication and message protection, and nothing else.
The CORBASec Level 1 specification does not support obtaining the Target’s attributes on the Client side, there is no according interface defined. However, some CORBASec implementations define additional functions that allow to know to which Target the Client is talking, for example Current::get_target_attributes [18]. Note that this operation is an addition to CORBASec 1.7 specification [14].
Implementation of Security Functionality

Requirement

A security-aware Target and Client are implemented by analogy to ordinary CORBA applications, except for the following issues:

· The CORBA SecurityService must be initialised in both the Client and the Target
· The Client and the Target must authenticate themselves to the PrincipalAuthenticator and obtain credentials before making or accepting requests

· The CORBA Security Audit and Access Control facilities must be initialised prior to making or accepting requests.

Rationale:

The Target must authenticate a principal and obtain a credentials object before the IOR is advertised to clients. This procedure is necessary because the IOR contains mechanism-specific data, which a client needs to communicate securely with the target. The Target publishes the security features it requires or supports through its IOR. If the Target has not authenticated a principal, then no security information is advertised in the object’s IOR and an exception is raised upon the submission of a request.

Secure Communication Protocol and Authentication
Principal authentication must result in Credentials that contain security data needed by the security mechanisms supported by a security level 2 conformant ORB.

Once the Target and Client are authenticated the resulting Credentials object must be modified to reflect the security features required by the underlying security mechanisms:

· The Client uses separate credentials to make a secure association.
· The authentication mechanism must be used on both Client and Target to form a secure association.

· The messages sent between Client and Target must be encrypted and have a facility for integrity.

· The Client must authenticate itself to the Target and the Target must authenticate itself to the Client.

· The Client must not delegate requests for remote invocations to the Target
Requirement

A CSI level 0 conformant transport protocol hosting Secure Inter-ORB Protocol (SECIOP) must be used for secure communication between IRPManagers and IRPAgents.
Rationale:

A protocol of CSI level 0 supports only identity based policies without delegation that is sufficient for secure BulkCM communication [14, 3.1.11.3].
Requirement

Secure Socket Layer v3.0 (SSL) protocol supports identity based policies without delegation (CSI level 0) [15]. The SSL protocol is based on the definition in [19] and uses public keys technology for distribution of keys for principals.
Rationale:

Basically, there are two methods for realising secure communication and authentication in CORBA:
SSL and GSS-Kerberos.
The SSL protocol is much simpler than Kerberos, but gives the application the ability to communicate securely using authentication involving X.509 certificate based public key technology, such as DSA and RSA for authentication and secure communication. This simple form of setting up CSIv2 credentials over the SSL/TLS protocol is also sufficient. However, it does not (yet) interoperate with any established Public Key Infrastructure components, due to the lack of mature standards in this area. Since SSL as security mechanism is underspecified in the CORBASec specification [14], complete interoperability of currently available products is not guaranteed.
GSS-Kerberos (CSI level 1) can be used, if the secret key technology for distribution of keys for principals is important [20]. Kerberos is an authentication infrastructure developed at MIT and standardized at the Internet Engineering Task Force (IETF) organization. Standardized API of Security Replaceable Modules supporting the GSS-Kerberos guarantees compatibility of modules coming from different vendors. The protocol gives the ability to interact with standard Internet RFC 1510 [20] compliant Key Distribution Centers (KDC) for authentication services. It is also possible to use this protocol without delegation (providing CSI level 0).

If a public security key distribution between IRPManagers and IRPAgents is enough for 3GPP communication, then SSL v3.0 protocol can be used [19]. For example, due to their small number of participants the keys can still be efficiently created and reliably distributed on an individual basis, e.g., each IRPManager's and IRPAgent's set of credentials can be stored in a separate file, placed on a disk and shipped to it.

Auditing

Requirement

Auditing is achieved by recording details of security relevant events with help of CORBA Audit Policies. An Audit Policy specifies events and conditions to be audited.

However, the standard CORBASec auditing has the drawback of producing large amounts of data. Therefore, it is necessary to filter the events to be stored by setting the audit policies on the client side (SecClientInvocationAudit policy) and target side (SecTargetInvocationAudit policy) accordingly.
Rationale:

The audit policy administration interfaces allow the specification of all necessary conditions for the auditing of object invocations, specified in document TS 32.612:

· Specific operations that issue Bulk CM Notifications

· Failed authentications

· Failed operations

· The invocation of specific operations in certain time intervals, e.g. during the weekend

· Operations invoked by a certain principal

A more sophisticated auditing mechanism can be implemented in a custom Audit Service.
Access Control

Requirement

The security access control is enforced by interceptors, which are assigned to an applications' modules. An interceptor is a routine called by the ORB during the processing of requests. On the target side it controls access to GIOP messages and requests before and after an operation is called.

Reference [18] presents an example of a request level interceptor that prints the client's security attributes.

Rationale:

CORBA offers several ways for implementing access controls with different degrees of granularity and sophistication. In view of the requirements of Bulk CM IRP model we recommend this simple and reliable method based on interceptors, because its implementation involve minimal modification of existing source code. Most current CORBASec implementations do not support access control service (Method 2), but it is possible to implement application specific security enforcements in interceptors. These interceptors then can be linked to the application without modification of the application source code itself. The method is general enough and can be recommended for use in other 3GPP specifications.
In addition to the recommended one CORBA offers two more standard methods for access control:
Method 2

The CORBA Security Service described in [14] places the responsibility for access control on the AccessDecision Service. Generally, it works in the same manner as auditing. An AccessDecision is made on the grounds of AccessPolicies, which refer to AccessId, GroupId and Role, the standard data, and to user defined privileges in the ManagerId. In addition to the principle's privileges, access control depends also on the state of the target object. The Client and the Target can dynamically adjust the AccessPolicies.

The access control through AccessDecision Service is the standard method specified in CORBAsec, but unfortunately, it is not yet supported by implementations [17, 18].
Method 3

An application can implement custom access controls. To give an example related to the requirements of BulkCM, the operation startSession can store the principal that invoked it; each subsequent operation within this session, ie endSession, upload, download, activate, fallback, abortSessionOperation, GetSessionsIds, getSessionStatus, getSessionLog, getSecurityLog and getBulkCmlRPVersion, can then check if it is invoked by the same Client. If the clients do not match, a security alarm can be issued and the exception CORBA::NO_PERMISSION thrown.

The following code fragment depicts an implementation of these functions in Java [17]. An object of the class AccessDecision implements custom access controls with just a few functions of Security Level 2. Though suitable for the requirements of BulkCM, custom access controls require a modification of an application's source code.

// Java

org.omg.CORBA.ORB orb = // The SL2 initialized ORB;

org.omg.SecurityLevel2.Current current =

org.omg.SecurityLevel2.CurrentHelper.narrow(

orb.resolve_initial_references(“SecurityCurrent”));

AccessDecision access_;

public String operation_name () {

 org.omg.SecurityLevel2.ClientCredentials rcreds =

 current.received_credentials();

// Check Access

 if (!access_.access_allowed(rcreds.client_principal())) {
 // generate notification

 // generate exception

 }
// operation implementation

 String res = ...

 return res;

}

4.2
Operation and Notification mapping

The IS part of Bulk CM: IRP defines semantics of operations and notifications visible across the Bulk Configuration IRP. The table below indicates mapping of these operations and notifications to their equivalents defined in this document.

Table 1: Mapping from IM Notification/Operation to SS equivalents

IS Operation/ notification
SS Method
Qualifier

startSession
start_session
M

endSession
end_session
M

upload
upload
M

download
download
M

activate
activate
M

getSessionStatus
get_session_status
M

getSessionIds
get_session_ids
M

getSessionLog
get_session_log
M

getSecurityLog
get_security_log
M

fallback
fallback
M

abortSessionOperation
abort_session_operation
M

getBulkCmIRPVersion
get_bulk_cm_IRP_version
M

notifySessionStateChanged
push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1
M

notifySessionLogStatus
push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1.
M

notifyOperationStarted
push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1.
M

notifyBulkCmSecurityViolation
push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1.
M

notifyGetSecurityLogEnded
push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1.
M

4.3
Operation Parameter Mapping

Reference Bulk CM IRP; Information Service [3] defines semantics of parameters carried in operations. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS startSession parameters to SS equivalents

IS Operation parameter
SS parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

status
exception SessionIdInUseException
M

Table 3: Mapping from IS endSession parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

status
exception UnknownSessionIdException, exception TransitionStateException
M

Table 4: Mapping from IS upload parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

uploadDataFile Reference
BulkCmIRPConstDefs::FileDestination sink
M

baseObjectInstance
BulkCmIRPConstDefs::DistinguishedName base_object
M

scope, filter
BulkCmIRPConstDefs::SearchControl search_control
M

status
exception UnknownSessionIdException, exception TransitionStateException, exception ConcurrencyException, exception IllegalDistinguishedNameFormatException, exception IllegalFilterFormatException, exception IllegalScopeTypeException, exception IllegalScopeLevelException
M

Table 5: Mapping from IS download parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

downloadDataFileReference
BulkCmIRPConstDefs::FileDestination source
M

Fingerprint
BulkCmIRPConstDefs::FileDestination fingerprint
M

status
exception UnknownSessionIdException
M

Table 6: Mapping from IS activate parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

saveFallback
boolean fallback
O

status
exception UnknownSessionIdException, exception TransitionStateException, exception ConcurrencyException, exception ActivationModeException
M

Table 7: Mapping from IS abortSessionOperation parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

status
exception UnknownSessionIdException
M

Table 8: Mapping from IS getSessionIds parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionIdList
return of type BulkCmIRPConstDefs::SessionIdList
M

status
- no error condition identified
M

Table 9: Mapping from IS getSessionStatus parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

sessionState
return of type BulkCmIRPConstDefs::SessionState
M

status
BulkCmIRPConstDefs::ErrorInformation error_information
M

status
exception UnknownSessionIdException

M

Table 10: Mapping from IS getSessionLog parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

logFileReference
BulkCmIRPConstDefs::FileDestination sink
M

contentType
boolean only_error_info
M

status
exception UnknownSessionIdException, exception ConcurrencyException
M

Table 11: Mapping from IS getSecurityLog parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

sessionId
BulkCmIRPConstDefs::SessionId session_id
M

logFileReference
BulkCmIRPConstDefs::FileDestination sink
M

startTime
BulkCmIRPConstDefs::Time start_time
O

endTime
BulkCmIRPConstDefs::Time end_time
O

status
exception UnknownSessionIdException, exception ConcurrencyException
M

Table 12: Mapping from IS getBulkCmIRPVersion parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

versionNumberList
return of type ManagedGenericIRPConstDefs::VersionNumberSet
M

status
- no error condition identified or described in SS
M

Table 13: Mapping from IS getBulkCmIRPVersion parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

versionNumberList
Return value of type:

CommonIRPConstDefs::VersionNumberSet
M

status
- (No failure conditions identified)

4.4 Notification parameter mapping

Reference 3G TS 32.612 [3] defines semantics of parameters carried in notifications. The following tables indicate the mapping of these parameters to their OMG CORBA Structured Event (defined in OMG Notification Service [6]) equivalents. The composition of OMG Structured Event, as defined in the OMG Notification Service [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remaining_body
The following tables list all OMG Structured Event attributes in the second column. The first column identifies the Bulk CM IRP: IS [3] defined notification parameters.

Table 13: Mapping from IS notifyGetSessionLogEnded parameters to SS equivalents

IS Parameter
OMG CORBA Structured Event Attribute
Qualifier
Comment

There is no corresponding IS attribute.
domain_name
M
It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

notificationType
type_name
M
It carries the string NOTIFY_BULK_CM_LOG_STATE.

sessionLogStatus
event_name
M
It carries either the string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY or

GET_SESSION_LOG_COMPLETED_UNSUCCESSFULLY. In the case of the latter, the NV pair indicating ERROR_INFORMATION may be present.

There is no corresponding IS parameter
Variable Header

managedObjectClass, managedObjectInstance
One NV pair of filterable_body_fields
M
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

notificationId
One NV pair of filterable_body_fields
M
Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

eventTime
One NV pair of filterable_body_fields
M
Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

systemDN
One NV pair of filterable_ body_fields
M
Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

sessionId
One NV pair of filterable_ body_fields
M
Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

sourceIndicator
One NV pair of filterable_ body_fields
O
Name of NV pair is the SOURCE_INDICATOR of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

There is no corresponding IS attribute.
One NV pair of filterable_ body_fields

Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

Table 14: Mapping from IS notifySessionStateChanged parameters to SS equivalents

IS Parameter
OMG CORBA Structured Event attribute
Qualifier
Comment

There is no corresponding IS attribute
domain_name
M
It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

notificationType
type_name
M
It carries the string NOTIFY_SESSION_STATE_CHANGED.

This is an attribute of Header defined in the IS.

sessionState
event_name
M
It carries one of the following:

· Upload_Failed

· Upload_Completed,

· Download_Failed,

· Download_Completed,

· Activation_Failed,

· Activation_Partly_Realised,

· Activation_Completed,

· Fallback_Failed,

· Fallback_Partly_Realised,

· Fallback_Completed
In the case of XXX_FAILED and XXX_PARTLY_REALISED, the NV pair indicating ERROR_INFORMATION may be present.

There is no corresponding IS attribute
Variable Header

managedObjectClass, managedObjectInstance
One NV pair of filterable_body_fields
M
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

notificationId
One NV pair of filterable_body_fields
M
Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

eventTime
One NV pair of filterable_body_fields
M
Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

systemDN
One NV pair of filterable_body_fields
M
Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

sessionId
One NV pair of filterable_body_fields
M
Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

sourceIndicator
One NV pair of filterable_body_fields
O
Name of NV pair is the SOURCE_INDICATOR of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

There is no corresponding IS attribute.
One NV pair of filterable_body_fields

Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

Table 15: Mapping from IS notifyOperationStarted parameters to SS equivalents

IS Parameter
OMG CORBA Structured Event attribute
Qualifier
Comment

There is no corresponding IS attribute
domain_name
M
It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

NotificationType
type_name
M
It carries the string NOTIFY_BULK_CM_OPERATION_STARTED.

operationType
event_name
M
It carries one of the following:

· Download_STARTED,

· Activation_STARTED,

· Fallback_STARTED

There is no corresponding IS attribute
Variable Header

managedObjectClass, managedObjectInstance
One NV pair of filterable_body_fields
M
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

NotificationId
One NV pair of filterable_body_fields
M
Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

eventTime
One NV pair of filterable_body_fields
M
Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

systemDN
One NV pair of filterable_body_fields
M
Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

sessionId
One NV pair of filterable_body_fields
M
Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

IRPManagerId
One NV pair of filterable_body_fields
M
Name of NV pair is the MANAGER_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

There is no corresponding IS attribute.
One NV pair of filterable_body_fields

Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

Table 16: Mapping from IS notifyBulkCmSecurityViolation parameters to SS equivalents

IS Parameter
OMG CORBA Structured Event attribute
Qualifier
Comment

There is no corresponding IS attribute
domain_name
M
It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

notificationType
type_name
M
It carries the string NOTIFY_BULK_CM_SECURITY_VIOLATION.

violationType
event_name
M
It carries one of the following:

· WRONG_MANAGER,

· WRONG_SESSION,

· WRONG_FINGERPRINT

There is no corresponding IS attribute
Variable Header

managedObjectClass, managedObjectInstance
One NV pair of filterable_body_fields
M
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

notificationId
One NV pair of filterable_body_fields
M
Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

eventTime
One NV pair of filterable_body_fields
M
Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

systemDN
One NV pair of filterable_body_fields
M
Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

sessionId
One NV pair of filterable_body_fields
M
Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

IRPManagerId
One NV pair of filterable_body_fields
M
Name of NV pair is the MANAGER_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

There is no corresponding IS attribute.
One NV pair of filterable_body_fields

Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

Table 17: Mapping from IS notifyGetSecurityLogEnded parameters to SS equivalents

IS Parameter
OMG CORBA Structured Event attribute
Qualifier
Comment

There is no corresponding IS attribute
domain_name
M
It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

notificationType
type_name
M
It carries the string NOTIFY_BULK_CM_GET_SECURITY_LOG_ENDED.

securityLogStatus
event_name
M
Indicates event that caused the Notification i.e. GetSecurityLog completed successfully, GetSecurityLog completed unsuccessfully. It carries either the string

· GET_SECURITY_LOG_COMPLETED_SUCCESSFULLY or
· GET_SECURITY_LOG_COMPLETED_UNSUCCESSFULLY. In the case of the latter, the NV pair indicating ERROR_INFORMATION may be present.

There is no corresponding IS attribute
Variable Header

managedObjectClass, managedObjectInstance
One NV pair of filterable_body_fields
M
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

notificationId
One NV pair of filterable_body_fields
M
Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

eventTime
One NV pair of filterable_body_fields
M
Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

systemDN
One NV pair of filterable_body_fields
M
Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

sessionId
One NV pair of filterable_body_fields
M
Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

There is no corresponding IS attribute.
One NV pair of filterable_body_fields

Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

4.5
Two modes of operations

The upload, download, activate, get_session_log, and fallback are methods that use asynchronous mode of operation. The IRPManager uses the methods to request a task to be done. The IRPAgent, via the method return, indicates that it has understood the request and has begun to perform the task requested. When the IRPAgent has completed the requested task, either successfully or not, the IRPAgent will emit a notification, e.g., notifySessionStateChanged() defined in IS level and mapped to push() in SS level, to indicate the completion status of the requested task. If the IRPManager has subscribed (e.g., via the attach_push() of Notification IRP) for notifications, then the IRPManager will receive the notification.

The start_session, end_session, abort_session_operation, get_session_status, get_session_ids and get_bulkCM_IRP_version are methods that use synchronous mode of operation. The IRPManager uses these methods to request some information or a task to be done. The IRPAgent performs the requested task and, via the method return, indicates the requested information or if the requested task has completed successfully or not.

4.6
Mapping from IS State Names to SS equivalents

State names, as defined in the IS part of Bulk CM, consists of two sub-parts in this SS, namely SubPhase and SubState. The table below shows the mapping between these substates and the IS state name. All combinations of SubPhase and SubState not described below are considered invalid.

Table 15: Mapping from IS State Names to SS equivalents

IS State Name
SS SubPhase
SS SubState

IDLE
IDLE_PHASE
COMPLETED

UPLOAD_FAILED
UPLOAD_PHASE
FAILED

UPLOAD_IN_PROGRESS
UPLOAD_PHASE
IN_PROGRESS

UPLOAD_COMPLETED
UPLOAD_PHASE
COMPLETED

DOWNLOAD_FAILED
DOWNLOAD_PHASE
FAILED

DOWNLOAD_IN_PROGRESS
DOWNLOAD_PHASE
IN_PROGRESS

DOWNLOAD_COMPLETED
DOWNLOAD_PHASE
COMPLETED

ACTIVATION_FAILED
ACTIVATION_PHASE
FAILED

ACTIVATION_IN_PROGRESS
ACTIVATION_PHASE
IN_PROGRESS

ACTIVATION_COMPLETED
ACTIVATION_PHASE
COMPLETED

ACTIVATION_PARTLY_COMPLETED
ACTIVATION_PHASE
PARTLY_REALISED

FALLBACK_FAILED
FALLBACK_PHASE
FAILED

FALLBACK_IN_PROGRESS
FALLBACK_PHASE
IN_PROGRESS

FALLBACK_COMPLETED
FALLBACK_PHASE
COMPLETED

FALLBACK_PARTLY_COMPLETED
FALLBACK_PHASE
PARTLY_REALISED

5
BulkCMIRPNotifications Interface

OMG CORBA Notification push operation is used to realise the notification of BulkCMIRPNotifications. All the notifications in this interface are implemented using this push_structured_event method.

5.1
Method push (M)

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

NOTE 1:
The push_structured_events method takes an input parameter of type EventBatch as defined in the OMG CosNotification module (OMG Notification Service [6]). This data type is the same as a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

NOTE 2:
The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter.

NOTE 3:
The amount of time the supplier (IRPAgent) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.

NOTE 4:
IRPAgent may push EventBatch with only one Structured Event.

Annex A (normative):
IDL: BulkCmIRPConstDefs

#ifndef BulkCmIRPConstDefs_IDL

#define BulkCmIRPConstDefs_IDL

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPConstDefs

This module contains type definitions for the Bulk CM IRP

==

*/

module BulkCmIRPConstDefs

{

 /*

 Defines the current Bulk CM IRP version

 This string is the return value for get_bulk_CM_IRP_versions(),

 get_notification_categories()

 It should be updated based on the rule of sub-clause

 titled "IRP document version number string".

 */

 const string BULK_CM_IRP_VERSION = "<to be updated using the rule>";

 /*

 This block identifies the notification types defined by

 this Bulk CM IRP version.

 This string is used in the second field of the Structured

 Event.

 */

 interface NotificationType

 {

 const string NOTIFY_SESSION_STATE_CHANGED = "x1";

 const string NOTIFY_BULK_CM_LOG_STATE = "x2";

 const string NOTIFY_BULK_CM_OPERATION_STARTED = "x3";

 const string NOTIFY_BULK_CM_SECURITY_VIOLATION = "x4";

 const string NOTIFY_BULK_CM_GET_SECURITY_LOG_ENDED = "x5";

 };

 /*

 This block assigns value for the name of the NV of the Structured Event.

 */

 interface AttributeNameValue

 {

 const string SESSION_ID = "k";

 const string MANAGER_ID = "l";

 const string SOURCE_INDICATOR = "m";

 const string ERROR_INFORMATION = "n";

 };

 /*

 This block defines all possible values for sessionState.

 One of these strings appear in the event_name of the

 Structured Event of notifySessionStateChanged notification.

 */

 interface SessionStateChangeNotification

 {

 const string UPLOAD_FAILED = "x1";

 const string UPLOAD_COMPLETED = "x2";

 const string DOWNLOAD_FAILED = "x3";

 const string DOWNLOAD_COMPLETED = "x4";

 const string ACTIVATION_FAILED = "x5";

 const string ACTIVATION_PARTLY_REALISED = "x6";

 const string ACTIVATION_COMPLETED = "x7";

 const string FALLBACK_FAILED = "x8";

 const string FALLBACK_PARTLY_REALISED = "x9";

 const string FALLBACK_COMPLETED = "x10";

 };

 /*

 This block defines all possible values for sessionLogStatus

 One of these strings appear in the event_name of the Structured

 Event of notifyGetSessionLogEnded notification.

 */

 interface LogStateNotification

 {

 const string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY = "x1";

 const string GET_SESSION_LOG_COMPLETED_UNSUCCESSFULLY = "x2";

 };

 /*

 This block defines all possible values for operationType.

 One of these strings appear in the event_name of the

 Structured Event of notifyOperationStarted notification.

 */

 interface OperationStartedNotification

 {

 const string DOWNLOAD_STARTED = "x1";

 const string ACTIVATION_STARTED = "x2";

 const string FALLBACK_STARTED = "x3";

 };

 /*

 This block defines all possible values for violationType.

 One of these strings appear in the event_name of the

 Structured Event of notifyBulkCmSecurityViolated notification.

 */

 interface SecurityViolationNotification

 {

 const string WRONG_MANAGER = "x1";

 const string WRONG_SESSION = "x2";

 const string WRONG_FINGERPRINT = "x3";

 };
 /*

 This block defines all possible values for securityLogStatus.

 One of these strings appear in the event_name of the

 Structured Event of notifyGetSecurityLogEnded notification.

 */

 interface SecurityGetLogEndedNotification

 {

 const string GET_SECURITY_LOG_COMPLETED_SUCCESSFULLY = "x1";

 const string GET_SECURITY_LOG_COMPLETED_UNSUCCESSFULLY = "x2";

 };

 /*

 For each started configuration session a unique identifier is generated

 by the IRPManager. An sessionId can not be used for an upload if it is

 already in use of a download configuration and vice versa.

 */

 typedef string SessionId;

 /*

 For each IRPManager a unique identifier is generated.
 */

 typedef string ManagerId;

 /*

 This string field is used in order to provide additional error information

 if an operation has failed.

 */

 typedef string ErrorInformation;

 /*

 Defines the different subphases of a configuration session

 e.g. thus it is easy to implement a detection of an upload

 or a download/activate session.

 */

 enum SubPhase {IdlePhase, DownloadPhase, UploadPhase, ActivationPhase,

 FallbackPhase};

 /*

 Defines the different substates of a configuration session. This includes

 the transition state as well.

 */

 enum SubState {Completed, Failed, PartlyRealised, InProgress};

 /*

 Defines state of a configuration session with the phase and the substate

 of the configuration.

 */

 struct SessionState

 {

 SubPhase sub_phase;

 SubState sub_state;

 };

 /*

 Contains the list of all current sessionIds

 */

 typedef sequence <BulkCmIRPConstDefs::SessionId> SessionIdList;

 /*

 Specifies a complete destination path (including filename).

 */

 typedef string FileDestination;

 /*

 Specifies the start/end time for log entries that should be retrieved.

 */

 typedef string Time;

 /*

 The format of Distinguished Name is specified in

 the Naming Conventions for Managed Objects; 3G TS 32.106 Annex H.

 e.g. "g3SubNetwork=10001,g3ManagedElement=400001" identifies an

 G3ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /*

 Optionally used within the upload method to give filter critera

 */

 typedef string FilterType;

 /*

 Defines the kind of scope to use in a search together with

 SearchControl.level, in a SearchControl value.

 SearchControl.level is always >= 0. If a level is bigger than the

 depth of the tree there will be no exceptions thrown.

 */

 enum ScopeType {BaseOnly, BaseNthLevel, BaseSubtree, BaseAll};

 /*

 Controls the searching for MOs during upload, and contains:

 the type of scope ("type" field),

 the level of scope ("level" field),

 the filter ("filter" field),

 The type and level fields are mandatory.

 The filter field is optional (defined by an empty string).

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;
 // optional parameter

 };

};

#endif

Annex B (normative):
IDL: BulkCmIRPSystem

#ifndef BulkCmIRPSystem_IDL

#define BulkCmIRPSystem_IDL

#include "BulkCmIRPConstDefs.idl"

#include "ManagedGenericIRPConstDefs.idl"

#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPSystem

This module implements capabilities of Bulk CM IRP.

==

*/

module BulkCmIRPSystem

{

 /*

 System fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception GetBulkCmIRPVersions { string reason; };

 exception ConcurrencyException { string reason; };

 exception IllegalFilterFormatException { string reason; };

 exception IllegalDNFormatException { string reason; };

 exception IllegalScopeTypeException { string reason; };

 exception IllegalScopeLevelException { string reason; };

 exception MaxSubscriberException { string reason; };

 exception NoFallbackException {};

 exception SessionIdInUseException { string reason; };

 exception TransitionStateException { string reason; };

 exception UnknownSubscriberException{ string reason; };

 exception IllegalURLFormatException{ string reason; };

 exception UnknownSessionIdException {};

 /*

 This exception is an equivalent of notification
 SecurityViolationNotification. Parameter reason have here values from

 SecurityViolationNotification interface.
 */

 exception SecurityViolationException { string reason; };

 /*

 Defines the System interface of a EM. It defines all methods which are

 necessary to control a configuration session from a IRPManager.

 */

 interface BulkCmIRP

 {

 /*

 Return the list of all supported Bulk CM IRP versions.

 */

 ManagedGenericIRPConstDefs::VersionNumberSet get_bulk_CM_IRP_versions (

)

 raises (GetBulkCmIRPVersions);

 /*

 Uploads a configuration from the subnetwork. The result is put in a

 configuration data file in an area specified by the IRPManager.

 The MIB of the subnetwork is iterated by means of containment search,

 using a SearchControl to control the search and the returned results.

 All MOs in the scope constitutes a set that the filter works on.

 In case of a concurrent running session the function will

 return an exception. If the value of the given baseObject or FilterType

 does not exist then this asynchronous error condition will be notified.

 */

 void upload (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::DistinguishedName base_object,

 in BulkCmIRPConstDefs::SearchControl search_control

)

 raises (UnknownSessionIdException, TransitionStateException,

 ConcurrencyException, SecurityViolationException,
 IllegalDNFormatException, IllegalFilterFormatException,

 IllegalScopeTypeException, IllegalScopeLevelException);

 /*

 Indicates the EM that it can download a configuration data file from

 a given configuration data file storage area. The EM will check the

 consistence of the configuration data and the software compatibilty.
 The IRPAgent calculates a fingerprint of the downloaded file and compares

 it with the one provided by the IRPManager. If they don’t match,
 a security alarm is issued and exception SecurityViolationException is

 throwed. Parameter “reason” has value “Wrong fingerprint”.
 */

 void download (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination source,
 in BulkCmIRPConstDefs::FileDestination fingerprint

)

 raises (UnknownSessionIdException, TransitionStateException,

 SecurityViolationException);

 /*

 Activates a previously downloaded and successfully parsed configuration

 inside a session. This means that the configuration will be introduced

 in the live sub-network. In case of a concurrent running session

 the function will return an exception.

 */

 void activate (

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean fallback

)

 raises (UnknownSessionIdException, TransitionStateException,

 ConcurrencyException, SecurityViolationException);

 /*

 Uploads a log from the subnetwork which is usally used for error

 analysis. The log is put in a logfile in the filesystem which can

 be accessed by the EM. If there are no log entries an empty log file

 is uploaded.

 */

 void get_session_log (

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean only_error_info

)

 raises (UnknownSessionIdException, ConcurrencyException,
 SecurityViolationException);

 /*

 An IRPManager invokes this operation to request an IRPAgent to provide
 the global security log of all sessions, including: identity of
 IRP Manager initiating a session, session start and end times,
 Bulk CM operations performed during a session and their start and
 end times. It is optionally possible to specify a time interval from
 which log entries should be retrieved. If there are no log
 entries an empty log file is uploaded.

 */

 void get_security_log (

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::Time start_time,
 in BulkCmIRPConstDefs::Time end_time

)

 raises (UnknownSessionIdException, ConcurrencyException,
 SecurityViolationException);

 /*

 Creates an instance of the configuration session state machine. The

 IDLE_PHASE & COMPLETED is notified

 */

 void start_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (SessionIdInUseException,
 SecurityViolationException);

 /*

 Returns the state of a configuration session.

 */

 BulkCmIRPConstDefs::SessionState get_session_status (

 in BulkCmIRPConstDefs::SessionId session_id,

 out BulkCmIRPConstDefs::ErrorInformation error_information

)

 raises (UnknownSessionIdException,
 SecurityViolationException);

 /*

 Actives a fallback area. Each time a configuration is activated a

 fallback area can be created, s. activate parameter.

 This area is backup of the complete configuration which can be

 restored by this method. The process is as follows:

 1. When the method activate(...,..., TRUE) is used,

 a copy of the valid area is taken before the activation

 of the new planned data has started. Only one fallback area can

 exists at a time for a specific scope of the subnetwork.

 2. When a fallback area is avilable and triggered by this method, the

 previous valid area is replaced with the data stored in

 the fall back area.

 If the EM detects that the former configuration has never been

 changed it returns an exception because it does not trigger an

 activation of the former data.

 */

 void fallback (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (UnknownSessionIdException, NoFallbackException,

 TransitionStateException, ConcurrencyException,
 SecurityViolationException);

 /*

 The IRPManager invokes this operation to delete all its temporary

 entities and the related sessionId which belong to the scope of

 a configuration session. This includes the related error and log

 informationen too.

 */

 void end_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (UnknownSessionIdException, TransitionStateException,
 SecurityViolationException);

 /*

 The IRPManager invokes this operation to abort a configuration sesssion.

 This operation can be called in any state. But it is only effecting

 a configuration session in state IN_PROGRESS. In this case the

 current session task is interrupted, e.g. the activating in progress,

 using best effort strategy, and a state change is notified

 */

 void abort_session_operation (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (UnknownSessionIdException,
 SecurityViolationException);

 /*

 Returns a list all sessionIds of current running configuration sessions.

 */

 BulkCmIRPConstDefs::SessionIdList get_session_ids ();

 };

};

#endif

Annex C (informative):
Change history

This annex lists all change requests approved for the present document since the specification was first approved by 3GPP TSG-SA.

Change history

Date
TSG #
TSG Doc.
CR
Rev
Subject/Comment
Old
New

Jun 2001
S_12
SP-010283
--
--
Approved at TSG SA #12 and placed under Change Control
2.0.0
4.0.0

�SEITE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�SEITE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�SEITE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�SEITE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�SEITE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�SEITE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�SEITE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�SEITE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�SEITE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�SEITE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�SEITE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�SEITE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�SEITE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�SEITE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�SEITE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�SEITE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�SEITE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�SEITE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�SEITE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�SEITE \# "'Page: '#'�'" �� This is an example of pop-up text.

Page 1

