3GPP TSG-SA5 (Telecom Management)
S5-026313

Meeting #28bis, Beijing, CHINA, 20 ‑ 21 June 2002

Source:
CMCC & BUPT

Title:
Fault Management Model Comparison

Document for:
Information and discussion
Agenda Item:
5.a.2

Work Item:

WT addressed

Specs involved:

Abstract:

The present document introduces the CMCC’s Fault Management model, compares the FM framework difference between CMCC’s and 3GPP’s specifications.

1 Scope

The present document introduces the CMCC’s Fault Management model, compares the FM framework difference between CMCC’s and .3GPP’s specifications. This documents mainly focuses on CORBA solution set.

2 Introduction of CMCC's FM model:

In CMCC's CORBA specification, the FM functions are implemented by "FMHandler_v2" interface, and uses the OMG notification Service as the notification forwarding mechanism.

2.1 FMHandler interface

FMHandler_v2 interface provides all the operations of fault management functions. And its class diagram is shown in figure 1:

[image: image1.wmf]FMHandler_v2

timeout

subscribeNotif_v2(in consumerRef, in constranList, out subId, out slyRef, out channelId) : ResultType

unsubscribeNotif(in subId) : ResultType

getSubscriptionStatus(in subId) : ResultType

subscribeLog_v2(in logFullAction, in maxsize, in constrainList, out subId, out logRef, out channelId) : ResultType

unsubscribeLog(in subId) : ResultType

queryLogRecord_v2(in consumerRef, in constranList, in logRef, out subId, out channelId) : ResultType

synchronizeAlarm_v2(in consumerRef, in constranList, out subId, out slyRef, out channelId) : ResultType

getHeartbeat(in channelId, out heartbeatRef) : ResultType

Fig. 1 Class Diagram of FMHandler_v2 interface

2.1.1
Operations of FMHandler

1) Notification related operations:

subscribeNotif_v2: NMS may subscribe to EMS for receiving alarm notifications, and give EMS the IOR of its “Consumer” object as notification receiver. And EMS will return the IOR of “SequenceProxyPushSupplier” object, which maybe used for further operations, such as modify the filtering criteria. And the identifier of the connected event channel will also be returned.

unsubscribeNotif: This operation supports NMS to cancel an existed notification subscription.
getSubscriptionStatus: This operation supports NMS to get status about an existed subscription.

2) Log related operations: (optional)

subscribeLog_v2: This operation supports NMS to subscribe alarm log in an EMS, if EMS supports the log service.
unsubscribeLog: This operation supports NMS to cancel an existed log subscription.

queryLogRecord_v2: “This operation supports NMS to get alarm log records in an EMS. And the result will be saved in files and be transferred via FTP.

3) synchronizeAlarm
This operation supports NMS to get all active alarms information in EMS. When EMS has finished data collection, the alarm information will be contained in summary reports. The report maybe transferred to NMS in two ways, one is through the Notification channel, the other is through FTP service. In the first case, when EMS finishes data collection, it shall send one or more NOTIFY_ALARM_SUMMARY_REPORT notification(s) to NMS, the report data could be split into several notifications so that each notification is not very big. In the second case, after EMS finishes data collection, it writes the data into one or more report files, and sends a NOTIFY_FM_SYNC_TRANSFER_UP_READY notification to notify NMS to get the alarm file(s). This case is usually used when the data amount is very big and not suitable for notification channel to transfer. EMS may just select one mechanism.
4) Other

getHeartbeat: provides NMS to get the IOR of "cTelHeartbeat" object, which is responsible for emitting heartbeat notifications to the notification channels that this NMS are connected to.
2.1.2
Fault Management Scenarios

This section shows several scenarios of fault management:

[image: image2.wmf]:Session

:

FMHandler

:SequenceProxy

PushSupplier

NMS

create or connect

create or connect

real time notification

releaseHandler(in

handlerId)

subscribeNotif(in consumerRef,in constrainLIst,out

slyRef,out subId)

getSubscriptionStatus(in subId,out subStatus)

release or disconnect

unsubscribeNotif(in subId)

getHandler(...)

release or disconnect

Fig. 2 UML Sequence Diagram of Alarm Notification Subscription

In figure 2, a whole interaction scenario of notification subscription is illustrated. NMS can invoke “subscribeNotif” operation on “FMHandler” interface with appropriate parameters. Then NMS will receive notifications fulfilling specified filtering criteria. When NMS is not interested in the alarm event any more, it can invoke “unsubscribeNotif” operation to cancel the notification subscription.

[image: image3.wmf]:Session

:

:FMHandler

:SequenceProx

yPushSupplier

NMS

create or connect

releaseHandler(in

handlerId)

release or diconnect

getHandler(...)

synchroniseAlarm(in consumerRef,in

constraintList,out slyRef,out subId)

alarm summary report notificaiton(s) /

OMC collects alarm

information

when finished, send the

alarmSummaryReport

notifications or

fileTransferReady

notificaton

NMC process the current

alarm summmary report

notifications or get the

current alarm summary

report file(s)

file transfer ready notification

Fig. 3 Sequence Diagram of Alarm Synchronization

In figure 3, a whole interaction scenario of alarm synchronization is illustrated. NMS invokes “sysnchronizeAlarm” operation on “FMHandler” interface. EMS will start collecting information about active alarms in the system. When EMS finishes data collection, it sends one or more alarm summary report notification(s) with the active alarm information, or a file transfer up ready notification to NMS.
3 Differences of the two FM models

The FM model in 3GPP's specification is implemented by “AlarmIRP” and “NotificaitonIRP” interfaces (3GPP 32.111-2 V4.1.0, 32.111-3 V4.1.0, 32.302 V4.0.0 and 32.303 V4.1.0).

The difference of notification management is described in another document, and present document only deals with the difference of AlarmIRP operations.

The following table shows the comparison of 3GPP Alarm related methods and corresponding CMCC FM operations.

	3GPP IS
	3GPP SS Methods
	CMCC SS operations
	Comments

	acknowledgeAlarms
	acknowledge_alarms
	--
	alarm acknowledgement is not needed in CMCC at interface level

	unacknowledgeAlarms
	unacknowledge_alarms
	--
	the same as above

	getAlarmList
	get_alarm_list
	synchronizeAlarm
	not exact the same, but similar at function level.

	getAlarmIRPVersion
	get_alarm_IRP_version
	“getHandler” operation of “Session” interface
	version negotiation is supported at interface level in CMCC’s spec.

	getAlarmCount
	get_alarm_count
	--
	not needed, the information is contained in synchronizeAlarm.

	setComment
	set_comment
	--
	not needed

	notifyNewAlarm
	push_structured_event (OMG Notification Service)
	the same as left
	

	notifyClearedAlarm
	push_structured_event
	the same as left
	

	notifyChangedAlarm
	push_structured_event
	the same as left
	

	notifyAckStateChanged
	push_structured_event
	--
	ACK is not needed in CMCC at interface level

	notifyAlarmListRebuilt
	push_structured_event
	--
	

	notifyComments
	push_structured_event
	--
	not needed

For realtime alarm forwarding, there are no actual differences between these two models. For querying of alarms, CMCC defines the “synchronizeAlarm” operation in the case of initialization or recovery of communication link, where the current active alarms will be reported to NMS through a serial of “alarmSummaryReport” notifications (or files); while 3GPP provides “get_alarm_count” and “get_alarm_list” operations in “AlarmIRP” to get alarms, and the interface “AlarmInformationIterator” helps to get more alarms. Both way are acceptable.

Some operations in 3GPP’s specification are not mandatory functions for operators, and CMCC doesn’t intend to add these operations.

PAGE
4

_1085164252.vsd
:Session�

:FMHandler�

:SequenceProxyPushSupplier�

release or disconnect�

NMS�

getHandler(...)�

create or connect�

create or connect�

real time notification�

releaseHandler(in handlerId)�

getSubscriptionStatus(in subId,out subStatus)�

subscribeNotif(in consumerRef,in constrainLIst,out slyRef,out subId)�

release or disconnect�

unsubscribeNotif(in subId)�

_1077348629.vsd
synchroniseAlarm(in consumerRef,in constraintList,out slyRef,out subId)�

NMC process the current alarm summmary report notifications or get the current alarm summary report file(s)�

:Session�

:�

:FMHandler�

:SequenceProx�

yPushSupplier�

file transfer ready notification�

OMC collects alarm information
when finished, send the alarmSummaryReport notifications or fileTransferReady notificaton�

NMS�

create or connect�

alarm summary report notificaiton(s) /�

releaseHandler(in�

handlerId)�

release or diconnect�

getHandler(...)�

