3GPP TSG-SA5 (Telecom Management)
S5-026309

Meeting #28bis, Beijing, CHINA, 20 ‑ 21 June 2002

Source:
CMCC & BUPT

Title:
Configuration Management Framework Comparison

Document for:
Information and discussion
Agenda Item:
4.a.2

Work Item:

WT addressed

Specs involved:

Abstract:

The present document introduces the CMCC’s Configuration Management model, compares the CM framework difference between CMCC’s and 3GPP’s specifications.

1 Scope

The present document introduces the CMCC’s Configuration Management model, compares the CM framework difference between CMCC’s and 3GPP’s specifications for both basic and bulk CM functions. This documents mainly focuses on CORBA solution set.

2 Introduction of CMCC's CM model:

In CMCC's specification base on CORBA, the CM functions are implemented by interfaces "CMHandler_v2" and "MOHandler_v2", together with the file transfer mechanism.

2.1 MOHandler interface

The following figure shows the class diagram of MOhandler_v2 and MOHandler_v1:

[image: image1.wmf]MOHandler_v1

getContainment(in moInstance, in depth, in scope, out moInstanceList) : ResultType

getAttriabute(in moInstance, in attrNameList, out attributeList) : ResultType

MOHandler_v2

createMO(in moInstance, in attributeList) : ResultType

deleteMO(in moInstance, out deletedMOList) : ResultType

updateAttribute(in moInstance, in attributeList) : ResultType

Fig. 1 Class Diagram of MOHandler

"MOHandler_v1" interface are used for getting the information of specific MO, and "MOHandler_v2" interface derives from "MOHandler_v1" interface and provides operations for NMS to do downstream data setting or modification of specific MO.

2.1.1
operations of "MOHandler_v1" interface
1) getContainment
This operation supports NMS to get information of contained objects of a specified managed object instance. And NMS can specify the scope and depth for the containment information.

2) getAttribute
This operation supports NMS to get attribute values of the specified object instance. NMS can specify all or part of the attributes of a specific MO instance. In this operation, the DN of the MO information shall be specified, and a zero length of “attrNameList” parameter means all the attributes are required. EMS will return the specified attribute values in output parameter “attributeList”.

2.1.2
operations of "MOHandler_v2" interface

"MOHandler_v2" interface provides three operations as follows, besides the above two:

1) createMO

This operation supports NMS to create a managed object instance. NMS may specify the DN of this MO instance and the attribute values needed for instantiation.
2) deleteMO

This operation supports NMS to delete a MO instance and all the objects that it contains.
3) updateMO

This operation supports NMS to modify the values of writable attributes of a specified MO instance.
The above operations of "MOhandler_v1" and "MOhandler_v2" are mainly used for getting or modifying MOs, and through them the basic configuration management functions can be achieved.

2.2 CMHandler interface

[image: image2.wmf]CMHanlder_v2

timeout

subscribeNotif_v2(in consumerRef, in constranList, out subId, out slyRef, out channelId) : ResultType

unsubscribeNotif(in subId) : ResultType

getSubscriptionStatus(in subId) : ResultType

subscribeLog_v2(in logFullAction, in maxsize, in constrainList, out subId, out logRef, out channelId) : ResultType

unsubscribeLog(in subId) : ResultType

queryLogRecord_v2(in consumerRef, in constranList, in logRef, out subId, out channelId) : ResultType

getMOHandler(in moInstance, in versionId, supportVersionList, out handlerId, out moHandlerRef) : ResultType

releaseMOHandler(in handlerId) : ResultType

getTopology_v2(in consumerId, out tranId, out channelId) : ResultType

synchronizeCM_v2(in consumerRef, in moInstance, out tranId, out channelId) : ResultType

getHeartbeat(in channelId, out heartbeatRef) : ResultType

Fig. 2 Class Diagram of CMHandler

In CMCC's specification "CMHandler_v2" interface are defined to provide the generic operations for CM functions, for example, subscribe configuration notification or log, get the whole MIT, and CM synchronization which involves large amount of data transfer.

2.2.1 operations of “CMHandler” interface
1) Notification related operations:

subscribeNotif_v2: NMS may subscribe to EMS for receiving configuration notifications, and give EMS the IOR of its Consumer object as notification receiver. And EMS will return the IOR of “SequenceProxyPushSupplier” object, which maybe used for further operations, such as to modify the filtering criteria. And the identifier of the connected event channel will also be returned.

unsubscribeNotif: This operation supports NMS to cancel an existed notification subscription.
getSubscriptionStatus: This operation supports NMS to get status about an existed subscription.
2) Log related operations: (optional)

subscribeLog_v2: This operation supports NMS to subscribe configuration log in an EMS, if EMS supports the log service.
unsubscribeLog: This operation supports NMS to cancel an existed log subscription.

queryLogRecord_v2: “This operation supports NMS to get configuration log records in an EMS. And the result will be saved in files and be transferred via FTP.
3) MOHandler related operation
getMOHandler: supports NMS to get the IOR of the "MOHandler" object instance.

releaseMOHandler: release the MOHandler object the NMS gets from EMS.

4) getTopology_v2

This operation supports NMS to get the whole MIT of EMS. And the object instance names information (DNs) is saved to a file(s) and will be returned to NMS via FTP.

5) synchronizeCM

This operation supports NMS to get CM data in a containment subtree. NMS may specify the root MO for the whole subtree, and all the attributes of MOs in this subtree will be saved to files, and be transferred to NMS via FTP.

6) getHeartbeat:
This operation provides NMS to get the IOR of "cTelHeartbeat" object, which is responsible for emitting the heartbeat notifications to the notification channels that NMS are connected to.
2.3 CMCC's CM Scenarios

There are several scenarios of CMCC's Configuration Management.

2.3.1 Generic Configuration Management Scenario

[image: image3.wmf]:Session

:

CMHandler

:SequenceProxy

PushSupplier

NMS

getHandler(...)

create or connect

create or connect

file_transfer_ready_notifcation

getTopology(out tranId)

release or disconnect

release or disconnect

NMC get the object

instance information

files

subscribeNotif(in consumerRef,in constraintList,out

slyRef,out subId)

synchronizeCM(in moInstance,out tranId)

OMC collect configuration

infomation

when finished send ready

notification

file_transfer_ready_notifcation

NMC get configuration

infomation files

unsubscribeNotif(in subId)

OMC collects object

instance information

when finished send ready

notification

object_creation_notifcation

(or other CM related notifications)

releaseHandler(in

handlerId)

Fig. 3 Sequence Diagram of Generic Configuration Management Scenario

NMS invokes configuration information collecting operation on CMHandler interface. EMS starts to do information collection and organizes the result into CM files. When the collection has finished, NMS will receive a file transfer ready notification. And then NMS can get the result files through FTP service.

2.3.2 “MOHandler” Management Scenario

[image: image4.wmf]:Session

:

CMHandler

:MOHandler

NMS

getHandler(...)

create or connect

create or connect

releaseMOHandler(in handlerId)

getMOHandler(in moInstance,out moHandler,out

handlerId)

getAttribute(in moInatance,in attrNameList,out

attrList)

 MSC

instance

get attributes

getConatinment(in moInstance,in scopeType, in

depth,out moInstanceList)

release or

disconnect

releaseHandler(in

handlerId)

release or

disconnect

get contained MOs

Fig. 4 Sequence Diagram of Managing MOHandler
In the above scenario, NMS firstly invokes “getMOHandler” operation on a “CMHandler” instance and gets the IOR of a “MOHandler” interface. Then NMS invokes operation on “MOHandler” to access the information of a specific MO. After NMS finishes management operations on this specific MO, it may invoke “releaseMOHandler” operation to release the corresponding instance of “MOHandler” interface.
2.3.3 CM Synchronization Scenario

[image: image5.wmf]:Session

:

CMHandler

:SequenceProxy

PushSupplier

NMS

getHandler(...)

create or connect

create or connect

file_transfer_ready_notifcation

release or disconnect

release or disconnect

NMC get configuration

infomation files

subscribeNotif (in consumerRef,in constraintList,out

slyRef,out subId)

synchronizeCM(in moInstance,out tranId)

unsubscribeNotif(in subId)

OMC collects configuration info

when finished send ready

notification

request_CM_synchonization_notification

(contains the root MO to be synchronized)

releaseHandler(in

handlerId)

some new NEs have been added to EMS or great changes have been

taking place in EMS, which may result in a lot of object creation or

attribute value change notifications.

Fig. 5 Sequence Diagram of CM synchronization driven by EMS
The above figure shows the scenario of Configuration synchronization driven by EMS. After the notification subscription, NMS may wait for CM notifications. When some new network elements have been introduced in EMS, which may cause a lot of object creation notifications sent to NMS, EMS just send a “RequestCMSynchronization” notification to NMS, indicating the root MO which are to be synchronized, and the potential object creation notifications will be suppressed. On receiving this notification, NMS will invoke the “synchronizeCM” operation on “CMHandler” interface, and get results through files.
3 Comparison of two CM models

CMCC's specification and 3GPP's specification has several similarities in CM framework, and also some differences. (3GPP 32.602 V4.1.0, 32.603 V4.1.0, 32.612 V4.1.0 and 32613 V4.0.0)

3.1 Similarity

Both CMCC and 3GPP adopted the coarse-grained modelling approach, and many functions are similar, as listed below:

1) get Containment :

2) get MO Attributes :

3) NMS retrieve bulk CM information via file transfer mechanism.

4) provide NMS subscription functions for configuration notifications.

5) functions of CMCC "MOhandler_v1" interface are similar with 3GPP "BasicCmIrpOperations" and "BasicCmInformationIterator"

3.2 Differences

Although there are similarities between these two frameworks, there are still some differences:

1) some similar functions are performed with different steps and operation names,

for example, to get the attributes information of a specific MO, in CMCC, you should invoke "getMOHandler" operation on "CMHandler_v2" first, and then invoke "getAttrbiutes" on "MOhandler_v1"; while
in 3GPP, you should perform the “find_managed_objects” on “basicCmIrpOperations” first, and then invokes the “next_basicCmInformations” operation on “BasicCmInformationIterator”.

2) CMCC specification has defined some functions in “MOhandler_v2”, performing object creation, deletion and CM data modification, which 3GPP has not defined.

3) 3GPP's specification has defined CM data downloading mechanism, and a set of operations for activating the data modification, which CMCC has not defined.

4) CMCC defines the optional function, Log function, using the OMG Telecom Event Log Service, which 3GPP's specification doesn't involve.

5) data format and contents are not the same.

3GPP used XML as CM file format, while CMCC defined file format using ASN.1.

3.3 Disadvantages

1) 3GPP:

3GPP's specification use the Bulk CM IRP to perform the data updating, and this method is suitable for the cases of large amount of data modification or object creation. For the cases that only a few attributes of a specific MO are to be modified, for instance, changing the administrative state of a MO, using this method (to create a new file and downloaded to EMS, then activate it) is really bothersome and complicated for operators. It will be better if there is one operation that can do such work.
2) CMCC:

In CMCC's specification, "CMHandler_v2" is performing the function described above, and it is suitable for small amount of data provision (except that "deleteMO" operation can be used to delete multiple objects, as it can delete a whole subtree if allowed). So, it is better that CMCC also provide the data downloading functions for large amount of data provision.

PAGE
5

_1085142681.vsd
:Session�

:CMHandler�

:SequenceProxyPushSupplier�

NMS�

getHandler(...)�

create or connect�

create or connect�

file_transfer_ready_notifcation�

getTopology(out tranId)�

release or disconnect�

release or disconnect�

releaseHandler(in handlerId)�

NMC get the object instance information files�

subscribeNotif(in consumerRef,in constraintList,out slyRef,out subId)�

synchronizeCM(in moInstance,out tranId)�

OMC collect configuration infomation
when finished send ready notification�

file_transfer_ready_notifcation�

NMC get configuration infomation files�

unsubscribeNotif(in subId)�

OMC collects object instance information
when finished send ready notification�

object_creation_notifcation
(or other CM related notifications)�

_1085143781.vsd
:Session�

:CMHandler�

:MOHandler�

NMS�

getHandler(...)�

create or connect�

getMOHandler(in moInstance,out moHandler,out handlerId)�

create or connect�

getConatinment(in moInstance,in scopeType, in depth,out moInstanceList)�

releaseMOHandler(in handlerId)�

release or disconnect�

releaseHandler(in handlerId)�

get attributes�

release or disconnect�

get contained MOs�

getAttribute(in moInatance,in attrNameList,out attrList)�

 MSC instance�

_1085141938.vsd
:Session�

:CMHandler�

:SequenceProxyPushSupplier�

NMS�

getHandler(...)�

create or connect�

create or connect�

file_transfer_ready_notifcation�

release or disconnect�

release or disconnect�

releaseHandler(in handlerId)�

some new NEs have been added to EMS or great changes have been
taking place in EMS, which may result in a lot of object creation or attribute value change notifications.�

NMC get configuration infomation files�

subscribeNotif (in consumerRef,in constraintList,out slyRef,out subId)�

synchronizeCM(in moInstance,out tranId)�

unsubscribeNotif(in subId)�

OMC collects configuration info
when finished send ready notification�

request_CM_synchonization_notification
(contains the root MO to be synchronized)�

