- 2 -

ITU - Telecommunication Standardization Sector
Temporary Document 79 (PLEN)
STUDY GROUP 4
Geneva, 8 – 19 April 2002

Question(s):
12/4, 13/4, 15/4, 19/4

SOURCE*:
EDITOR

TITLE:
Proposed X.780 Amendment 1

ABSTRACT

This contribution proposes an amendment to ITU-T Rec. X.780 (2001) to add the definition of the System and Subsystem managed objects, and to add a non-normative appendix containing a user guide.

	[image: image1.wmf]
	INTERNATIONAL TELECOMMUNICATION UNION

	
	

	ITU-T
	X.780

	TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU
	Amendment 1

(04/2002)

	
	SERIES X: DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

	
	TMN guidelines for defining CORBA managed objects

Amendment 1: System objects and user guide for bulk attributes retrieval

	
	CAUTION !

PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation. It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU‑T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 2002

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

Recommendation X.780

TMN guidelines for defining CORBA managed objects

AMENDMENT 1

 System objects and user guide for bulk attribute retrieval

Source
The ITU-T Recommendation X.780, Amendment 1, was approved by Study Group 4 on the 19th of April 2002.

CONTENTS

Page
61)
Clause 2.1

2)
New clauses 5.8 and 5.9
6
3)
Annex A
7
4)
New Appendix II
10

Recommendation X.780

TMN guidelines for defining CORBA managed objects

AMENDMENT 1

 System Objects and user guide for bulk attribute retrieval

1) Clause 2.1

Add the following new reference to clause 2.1:

[8]
ITU-T, X.720 – Structure Of Management Information: Management Information Model, January, 1992.

2) New clauses 5.8 and 5.9

Add the following new clauses after clause 5.7:

5.8 System Managed Object

In addition to the top-most ManagedObject class, the IDL also contains a couple of managed object definitions that specialize ManagedObject. The System managed object class is used to represent a set of hardware and software that forms an autonomous whole capable of performing information processing and/or information transfer. The entire specification of the sequence of name bindings to be used in constructing the distinguished name for a System managed object is outside the scope of this Recommendation. Examples of names for systems are specified in Recommendation X.720 [8].

An instance of this managed object class may be used as the superior in naming managed objects representing either information processing and or information transfer resources contained within this instance.

Note that the managed object defined here does not have the Recommendation X.721 [6] Supported Features attribute since the CORBA interface does not define negotiable Functional Units.

5.8.1 Notifications On The System Managed Object

The System managed object has the following notifications:

Table 1
/X.780am1: System Notifications

	Notification
	Conditional Package (if Conditional)

	Object Creation
	"itut_x780::createDeleteNotificationsPackage"

	Object Deletion
	"itut_x780::createDeleteNotificationsPackage"

	State Change
	"itut_x780::stateChangeNotificationPackage"

Changes in the following states (when defined) will cause State Change notifications (when supported) to be emitted:

· Administrative State
· Operational State

· Usage State
5.9 Subsystem Managed Object

The Subsystem managed object is a subclass of the System managed object class (see section 5.8) and is contained by a System or another Subsystem managed object class instance. The Subsystem managed object class may be used as a common containment point for managed objects in a system that relate to the operation of a given layer. The choice of structuring within a system is dependent on what structure the system designer wishes to present externally for management purposes.

This managed object class represents a portion of a system where components are named independently of the components of other subsystems.
3) Annex A

Add the following to the IDL in annex A.

After the last exception in the “Exceptions” portion of the IDL, which is shown in this line:

exception InvalidString {};

Add these lines:

const string administrativeStatePackage =

"itut_x744d1::administrativeStatePackage";

const string createDeleteNotificationsPackage =

"itut_x744d1::createDeleteNotificationsPackage";

const string stateChangeNotificationPackage =

"itut_x744d1::stateChangeNotificationPackage";

exception NOadministrativeStatePackage {};

After the ManagedObjectFactory interface definition, which ends with this line:

}; // end of ManagedObjectFactory interface

Add the following lines:

// SYSTEM INTERFACE

/** This valuetype is used to retrieve multiple attributes.
*/

valuetype SystemValueType : truncatable ManagedObjectValueType {

public OperationalStateType operationalState;

// GET

public UsageStateType usageState;

// GET

public AdministrativeStateType administrativeState;

// GET-REPLACE

// administrativeStatePackage

}; // valuetype SystemValueType

/** The System managed object class is used to represent a set of hardware and

software that forms an autonomous whole capable of performing information

processing and/or information transfer.

The entire specification of the sequence of name bindings to be used in

constructing the distinguished name for a System managed object is outside the

scope of this Recommendation. Name bindings to the Recommendation M.3120 Managed

Element managed object class is supplied. Examples of names for systems are

specified in Recommendaiton X.720.

NOTE- This definition does not correspond to real open system but corresponds to

real systems in Recommendation X.200.

An instance of this managed object class may be used as the superior in naming

managed objects representing either information processing and or information

transfer resources contained within this instance.

Note that this does not have the Supported Features attribute defined in

Recommendation X.721, since the CORBA interface does not define negotiable

Functional Units.

*/

interface System : ManagedObject

{

/**

Operational State, Usage State and Administrative State are described in

Recommendation X.731

*/

OperationalStateType operationalStateGet ()

raises (ApplicationError);

UsageStateType usageStateGet ()

raises (ApplicationError);

/**

PRESENT IF an instance supports it.

*/

AdministrativeStateType administrativeStateGet ()

raises (ApplicationError,

NOadministrativeStatePackage);

void administrativeStateSet

(in AdministrativeStateType administrativeState)

raises (ApplicationError,

NOadministrativeStatePackage);

CONDITIONAL_NOTIFICATION(

Notifications, objectCreation,

createDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION(

Notifications, objectDeletion,

createDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION(

Notifications, stateChange,

stateChangeNotificationPackage)

}; // interface System

// SYSTEM FACTORY INTERFACE

/**

Factory for System

*/

interface SystemFactory : ManagedObjectFactory

{

ManagedObject create

(in NameBindingType nameBinding,

in MONameType superior,

in string reqID,
// auto naming if empty string

out MONameType name,

in AdministrativeStateType administrativeState

// GET-REPLACE

// administrativeStatePackage

)

raises (ApplicationError,

CreateError);

}; // interface SystemFactory

// SUBSYSTEM INTERFACE

/** This valuetype is used to retrieve multiple attributes. */

valuetype SubsystemValueType : truncatable SystemValueType {

}; // valuetype SubsystemValueType

/**

The Subsystem managed object class may be used as a common containment point for

managed objects in a system that relate to the operation of a given layer. The

choice of structuring within a system is dependent on what structure the system

designer wishes to present externally for management purposes.

This managed object class represents a portion of a system where components are

named independently of the components of other subsystems.

*/

interface Subsystem : System

{

}; // interface Subsystem

// SUBSYSTEM FACTORY INTERFACE

/**

Factory for Subsystem

*/

interface SubsystemFactory : ManagedObjectFactory

{

ManagedObject create

(in NameBindingType nameBinding,

in MONameType superior,

in string reqID,
// auto naming if empty string

out MONameType name,

in AdministrativeStateType administrativeState

// GET-REPLACE

// administrativeStatePackage

)

raises (ApplicationError,

CreateError);

}; // interface SubsystemFactory

After the definition of the Notifications interface, which ends with this line:

 }; // end of Notifications interface

Add the following lines:

// NAME BINDINGS

/**

This name binding is used to name the System object

relative to the local root. That is, enable it to be

the top-most managed object on a system.

*/

module System

{

const string superiorClass = "";

const boolean superiorSubclassesAllowed = FALSE;

const string subordinateClass = "itut_x780::System";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy =

itut_x780::deleteOnlyIfNoContainedObjects;

const string kind = "System";

}; // module System

/**

This name binding is used to name the Subsystem object

relative to a Subsystem object.

*/

module Subsystem_Subsystem

{

const string superiorClass = "itut_x780::Subsystem";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass = "itut_x780::Subsystem";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itut_x780::deleteOnlyIfNoContainedObjects;

const string kind = "Subsystem";

}; // module Subsystem_System

/**

This name binding is used to name the Subsystem object

relative to a System object.

*/

module Subsystem_System

{

const string superiorClass = "itut_x780::System";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass = "itut_x780::Subsystem";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itut_x780::deleteOnlyIfNoContainedObjects;

const string kind = "Subsystem";

}; // module Subsystem_System

4) New Appendix II

Add the following new non-normative appendix:

Appendix II
User guide for bulk attribute retrieval (Non-normative)

This annex provides additional information about the TMN CORBA framework intended to help those implementing systems that conform to the framework recommendations.

C.1
Bulk retrieval of attributes

The top-most managed object interface, ManagedObject, defines an operation that enables a managing system to retrieve multiple attributes from a managed object in one operation. The signature of this operation, AttributesGet, is shown below:

ManagedObjectValueType attributesGet (

in
NameType name,

inout
StringSetType attributeNames)

raises (ApplicationError);

Note that the names of the attributes requested by the managing system are submitted in the attributeNames parameter, and the names of the attributes actually returned by the managed object are also returned in the attributeNames parameter. Because the list of attributes returned by the managed object may differ from the requested list, the in/out parameter attributeNames may be changed by the managed object. Managing system implementations that wish to repeatedly use the same list of attributes will not want that list modified by the managed object. One solution to this problem is made possible by the way in which CORBA ORBs exchange messages to remotely invoke methods on objects and return results. Operation parameters are passed by order, not by name. Thus, a single inout parameter can be replaced with separate in and out parameters without impacting the inter-operability of systems. This is because the in parameter will take the same place in the invocation message as would the inout parameter, and the out parameter will take the same place in the results message as would the inout parameter. As long as the order of the parameters is not changed, the ORBs will correctly match the parameters in the messages to the parameters on the method invocations. So, the developer of an implementation using the ManagedObject interface may modify the IDL by replacing the attributesGet signature above with the one below.

ManagedObjectValueType attributesGet (

in
NameType name,

in
StringSetType requestedAttributeNames,

out
StringSetType returnedAttributeNames)

raises (ApplicationError);

This will prevent the client system’s list of requested attribute names from being overwritten and still be interoperable with managed object implementations using the first operation signature, above.

�PAGE \# "'Page: '#'�'" �� Not sure what to do about this number since this would become the first table in X.780 and other tables would have to be renumbered.

Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.
M:\SG_DOC\SG4\APRIL02\TDs\PLEN\79.doc
18/04/02
M:\SG_DOC\SG4\APRIL02\TDs\PLEN\79.doc
18/04/02

