3GPP TSG SA5 (Telecom Management) Meeting #26

Miami, USA, 25 February – 1 March 2002
Tdoc S5C020124

Title:
Update of new TS: “Test Management IRP: IS”

Source:
Siemens (olaf.pollakowski@icn.siemens.de)

Agenda item:
SWG-C / WT06 Test Management

Document for:
Discussion / Decision

Category:
B

Work Item ID:
OAM-NIM

Doc Summary:
This document proposes the information service for a new Test Management IRP. It is the update of Tdoc S5C020029.

Specs involved:
New spec TS 32.322

3GPP TS 32.322 V0.0.2 (2002-02)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication Management; Test Management;

Test Management IRP: Information Service;

(Release 5)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

Configuration management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

5Contents

Foreword
10
Introduction
11
1
Scope
12
2
References
12
3
Definitions and Abbreviations
13
3.1
Definitions
13
3.2
Abbreviations
13
4
System Overview
14
5
Information Object Classes
15
5.1
Information entities imported and local labels
15
5.2
Class diagram
16
5.2.1
Attributes and relationships
16
5.2.2
Inheritance
16
5.3
Information Object Classes Definition
17
5.3.1
IOC TestActionPerformer
17
5.3.1.1
Definition
17
5.3.1.2
Attributes
18
5.3.2
IOC TestObject
18
5.3.2.1
Definition
18
5.3.2.2
Attributes
19
5.3.3
IOC ResourceSelfTestObject
19
5.3.3.1
Definition
19
5.3.3.2
Attributes
19
5.3.4
IOC TestManagementIRP
19
5.3.4.1
Definition
19
5.3.4.2
Attributes
20
5.4
Information attributes definition
20
5.4.1
Definition and legal Values
20
6
Interface Definition
23
6.1
Class diagram representing interfaces
23
6.2
Generic rules
25
6.3
Interface testManagementIRPControlOperations
25
6.3.1
Operation initiateTest (M)
26
6.3.1.1
Definition
26
6.3.1.2
Input parameters
26
6.3.1.3
Output parameters
29
6.3.1.4
Pre-condition
31
6.3.1.5
Post-condition
31
6.3.1.6
Exceptions
32
6.3.2
Operation terminateTest (M)
33
6.3.2.1
Definition
33
6.3.2.2
Input parameters
34
6.3.2.3
Output parameters
35
6.3.2.4
Pre-condition
36
6.3.2.5
Post-condition
37
6.3.2.6
Exceptions
37
6.4
Interface TestManagementIRPMonitorOperations
38
6.4.1
Operation monitorTest (M)
38
6.4.1.1
Definition
38
6.4.1.2
Input parameters
39
6.4.1.3
Output parameters
41
6.4.1.4
Pre-condition
42
6.4.1.5
Pre-condition
43
6.4.1.5
Exception
43
6.4
Interface TestManagementIRPNotifications
44
6.4.1
Notification notifyTestResults
44
6.4.1.1
Definition
44
6.4.1.2
Input Parameters
44
6.4.1.3
Triggering Events for the Resource Self Test
46
6.4.1.3.1
From-State
47
6.4.1.3.2
To-State
48
Annex A (informative): Change history
48

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The present document is part the 32.xxx-series covering the 3rd Generation Partnership Project: Technical Specification Group Services and System Aspects; Telecommunication Management; Test Management, as identified below:

32.321:
“Test Management Integration Reference Point: Requirements”;

32.322:
“Test Management Integration Reference Point: Information Service Version 1”;

32.323:
“Test Management Integration Reference Point: CORBA Solution Set Version 1:1”;

32.324:
“Test Management Integration Reference Point: CMIP Solution Set Version 1:1”;

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

A 3G telecommunication network is composed of a multitude of different network elements (NE). For a successful operation of the network the operator must be provided with mechnisms allowing him to manage the network. These management activities can be grouped into several areas: configuration management, fault management, performance management, accounting management and security mangement.

A management function assisting in different high level management areas such as fault management and performance management is test management. The purpose of testing is to get information about the functionality and performance of the 3G managed network subject to the test.

The present document is part of a set of technical specifications defining the telecommunication management (TM) of 3G systems. The TM principles are described in 3GPP TS 32.101 [5]. The TM architecture is described in 3GPP TS 32.102 [6]. The other specifications define the interface (ITf-N) between the managing system (manager), which is in general the network manager (NM) and the managed system (agent), which is either an element manager (EM) or the managed NE itself. The Itf-N is composed of a number of integration reference points (IRPs) defining the information in the agent that is visible for the manager, the operations that the manager may perform on this information and the notifications that are sent from the agent to the manager. One of these IRPs is the Test Management IRP.

Each IRP is specified by four TS, the requirements part, the information service (IS) part, the CORBA solution set (SS) and the CMIP solution set.

1
Scope

The present document defines the IS) part of the Test Management IRP, which describes the semantics of the information and the interactions visible across Itf-N in a protocol independent way. The information is specified by means of information object classes and the interactions by means of operations and notifications. This document does not specify the syntax (encoding) of the information.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.302: “Notification IRP: Information Service”

[2]
3GPP TS 32.312: “Generic IRP Management: Information Service”

[3]
3GPP TS 32.622: “Generic Network Resources IRP: Network Resource Model”

[4]
ITU-T Rec. X.733: “Information Technology – Open Systems Interconnection – Systems Management: Alarm Reporting Function”

[5]
ITU-T Rec. X.745: “Information Technology – Open Systems Interconnection – Systems Management: Test Management Function”

[6]
3GPP TS 32.101: “3G Telecom Management: Principles and high-level Requirements”

[7]
3GPP TS 32.102: “3G Telecom Management Architecture”

[8]
3GPP TS 32.321: “Test Management IRP: Requirements”

[9]
3GPP TS.32.672: “State Management IRP: Information Service”

3
Definitions and Abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 32.101 [6], 3GPP TS 32.102 [7] and 3GPP TS 32.321 [8] apply.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

IOC
Information Object Class

IRP
Integration Reference Point

IS
Information Service

ME
Element Manager

MORT
Managed Object Referring to Test

NE
Network Element

TM
Telecommunication Management

4
System Overview

Figures 1 and 2 show the system context of this document in terms of implementations called IRPAgent and IRPManager.

The term IRPManager refers to a process that interacts with IRPAgent for the purpose of test management via this IRP. An example of an IRPManager can be a Network Management System. IRPAgent implements and supports the Test Management IRP.

IRPAgent can be one Network Element (NE) (Fig. 2) or it can be one Element Manager (EM) with one or more NEs (Fig. 1). In the latter case, the interfaces (represented by a thick dotted line) between the EM and the NEs are not subject of this IRP. Whether EM and NE share the same hardware system is not relevant to this document either. By observing the interaction across the Test Management IRP, one cannot deduce if EM and NE are integrated in a single system or if they run in separate systems.

As indicated in Figure 1 and 2, the subject document need to be complemented with the Notification IRP [1] (to allow IRPManager to subscribe to notifications issued by IRPAgent and (optionally) product-specific resource models describing the MOs maintained by the IRPAgent).

Figure 1: System Context A

Figure 2: System Context B

5
Information Object Classes

5.1
Information Entities imported and local Labels

Label reference
Local label

32.622 [3], information object class, Top
Top

32.622 [3], information object class, IRPAgent
IRPAgent

32.312 [2], information object class, managedGenericIRP
managedGenericIRP

32.672 [9], attribute, operationalState
operationalState

32.672 [9], attribute, proceduralStatus
proceduralStatus

5.2
Class Diagram

5.2.1 Attributes and Relationships

The following figure shows, for the Test Management IRP, the information object classes, the attributes of each information object class and the relationships between the information object classes.

[image: image2.wmf]<<

InformationObjectClass>>

TestActionPerformer

supportedTOClasses

testActionPerformerId

<<

InformationObjectClass>>

TestManagementIRP

1...*

1

*

1

TARR

<<

instantiate>>

testInvocationId

mORTs

operationalState

proceduralStatus

testState

testOutcome

testObjectId

<<

InformationObjectClass>>

TestObject

<<

InformationObjectClass>>

ResourceSelfTestObject

represents

represents

TestManager

TestExecuter

1

*

From the cardinalities can be seen that the TestManagementIRP can have one or several instances of the test action performer information object class. One instance of the test action performer in turn may have none or multiple TOs depending on the number of tests invoked.

5.2.2
Inheritance

The following figure depicts the inheritance relationships between the information object classes. As can be seen the IOC TestManagementIRP inherits from ManagedGenericIRP, the IOC ResourceSelfTest inherits from TestObject and the interface TestManagementIRPNotifications inherits from NotificationIRPNotification. By default IOCs inherit from the IOC Top.

[image: image3.wmf]<<

InformationObjectClass>>

ManagedGenericIRP

<<

InformationObjectClass>>

TestManagementIRP

<<Interface>>

NotificationIRPNotification

<<Interface>>

TestManagementIRPNotifications

<<

InformationObjectClasses>>

TestObject

<<

InformationObjectClass>>

ResourceSelfTestObject

5.3
Information Object Classes Definition

5.3.1
IOC TestActionPerformer
5.3.1.1
Definition

This IOC provides the TARR-functionality, i. e. the ability to receive and react upon test requests. This class must also be able to instantiate and delete test objects. This specification does not require this IOC to be instantiated. It may be abstract and used for inheritance purposes only. In this way the TARR-functionality may be included in any other IOC.

5.3.1.2
Attributes

Attribute name
Support Qualifier

supportedTOClasses
M

testActionPerformerId
 M (NOTE 1)

NOTE 1:
This attribute is only mandatory in case the IOC

TestActionPerformer is instantiated. In case this IOC is

an abstract class and used for inheritance purposes only the

attribute shall be omitted.

5.3.2
IOC TestObject
5.3.2.1
Definition

The IOC TestObject defines a generic test object (TO). It shall be used as an abstract class from which more specific test objects shall be derived by specialisation for each test category. The generic TO defines attributes pertaining to a test and required for all test categories. Some of these attributes are necessary for test monitoring, one for test identification and one for specifying the resources to be tested.
Each instance of a test has one and only one associated specialised TO. Their purpose is to monitor and control the test. Specialised TOs are instantiated by managed objects with TARR-functionality after reception of a test initiation request. They are deleted after termination of the test. Specialised TOs are also responsible for the emission of the test result notifications.

5.3.2.2
Attributes

Attribute name
Support Qualifier

testInvocationId
M

mORTs
M

operationalState
M

proceduralStatus
M

testState
O

testOutcome
M

testObjectId
M

5.3.3
IOC ResourceSelfTestObject
5.3.3.1 Definition

The IOC ResourceSelfTestObject is a specialised TO for the resource self test. It inherits from the IOC TestObject and specifies the triggering events for the emission of the test result notifications.
5.3.3.2
Attributes

This IOC has no own attributes, only those inherited from the generic IOC TestObject.
5.3.4
IOC TestManagementIRP
5.3.4.1
Definition

The IOC TestManagementIRP represents the test management capabilities defined by this specification. TestManagementIRP inherits from the IOC ManagedGenericIRP specified in 3GPP TS 32.312 [2].

5.3.4.2 Attributes

The IOC TestManagementIRP has no own attributes, only those inherited from the IOC ManagedGenericIRP.
5.4
Information Relationships Definition
5.4.1
Relationship between TestManagementIRP and TestActionPerformer
5.4.1.1
Definition

The relationship between TestManagementIRP and TestActionPerformer is an aggregation. The name of the association (“represents”) has a direction and indicates that TestManagementIRP, in the system context outlined in Chapter 4, represents the capabilities of the TestActionPerformer.
5.4.1.2
Roles
Name
Definition

TARR
In the association between the IOC TestManagementIRP and the IOC TestActionPerformer the TestActionPerformer plays the role of the test action request receiver (TARR).

5.4.2
Relationship between TestManagementIRP and

ResourceSelfTestObject
5.4.2.1
Definition

The relationship between TestManagementIRP and ResourceSelfTestObject is a composition. The name of the association (“represents”) has a direction and indicates that TestManagementIRP, in the system context outlined in Chapter 4, represents the capabilities of the ResourceSelfTestObject.
5.4.3
Relationships between TestActionPerformer and

ResourceSelfTestObject
Two relationships exist between the TestActionPerformer and the ResourceSelfTestObject, an association and a dependency.
5.4.3.1
Association between TestActionPerformer and ResourceSelfTestObject

5.4.3.1.1
Definition

This relationship defines the association between the TestActionPerformer and the ResourceSelfTestObject.

5.4.3.1.2
Roles
Name
Definition

TestManager
In the association between the IOC TestActionPerformer and the IOC ResourceSelfTestObject the TestActionPerformer plays the role of the test manager.

TestExecuter
In the association between the IOC TestActionPerformer and the IOC ResourceSelfTestObject the ResourceSelfTestObject plays the role of the test executer.

5.4.3.2
Dependency between TestActionPerformer and ResourceSelfTestObject
5.4.3.2.1
Definition

This relationship defines a dependency between the TestActionPerformer and the ResourceSelfTestObject by specifying that instances of the latter are instantiated by the former.
5.5
Information Attributes Definition

5.5.1
Definition and legal Values

Attribute Name
Definition
Legal Values

testInvocationId
This attribute identifies a specific test. Each test shall have its own unique test invocation identifier. The test invocation identifier is assigned by the IRPAgent and shall be held in the corresponding TO attribute. The identifier shall be either equal to the name of the TO associated with the test or equal to the concatenation of the name of the object with TARR-functionality which received the test request and an integer.

mORTs
This attribute identifies the managed object instances representing the resources to be tested. They are provided by the test request.
SET OF objectInstance

operationalState
This state attribute reflects the operability state of the TO (3GPP TS 32.672 [9]).
ENUM {disabled, enabled}

proceduralStatus
This status attribute specifies the procedural status of the TO (3GPP TS 32.672 [9]).
ENUM {notInitialized, initializing, reporting, terminating}

testState
This attribute reflects the test state (ITU-T X.745 [5]).
ENUM {notInitialized, idle, initializing, testing, terminating, suspended, disabled}

testOutcome
This attribute provides information about the test result in a standardised manner.
ENUM {inconclusive, pass, fail, timed-out, premature-termination}

supportedTOClasses
This attribute identifies the TO classes that are supported by a certain managed object with TARR functionality.
SET OF objectClassIdentifier

testActionPerformerId
This attribute unambiguously identifies an instance of a TO. It is used as a component in a DN.
INTEGER

testObjectId
This attribute unambiguously identifies an instance of a TO. It is used as a component in a DN.
INTEGER

6
Interface Definition

6.1
Class diagram representing interfaces

The following diagram depicts the interfaces of the Test Management IRP with their corresponding operations and notifications.

[image: image5.wmf]1

+

initiateTest()

+

terminateTest()

<<Interface>>

TestManagemnetIRPControlOperations

<<

InformationObjectClass>>

TestActionPerformer

1

+

notifyTestResults()

<<Interface>>

TestManagementIRPNotifications

<<

InformationObjectClass>>

TestObject

1

+

monitorTest()

<<Interface>>

TestManagementIRPMonitorOperations

6.2
Generic rules

Rule 1: each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named optional input parameter is carrying information. The exception has the same entry and exit state.

Rule 3: each operation shall support a generic exception operation_failed_internal_problem that is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.

6.3
Interface testManagementIRPControlOperations
The interface TestManagementIRPControlOperations contains the operations initiateTest and terminateTest. It must be implemented by every object with TARR-functionality, for example by every instance of TestActionPerformer.
6.3.1
Operation initiateTest (M)

6.3.1.1
Definition

The IRPManager uses this operation to request the IRPAgent to initiate controlled tests. A single test request may initiate multiple (one or more) tests.
6.3.1.2 Input parameters

Parameter Name
Qualifier
Information Type
Comment

tARRObjectInstance
M

This parameter specifies the object with TARR-functionality to which the test initiation request shall be directed.

toBeTestedMORTs
O
CHOICE {

SET OF objectInstance,

SEQUENCE {

baseObjectInstance,

scope,

filter

}
}
This parameter identifies one or more instances of managed objects representing resources to be tested.

MORTs can be specified either by a list of object instances or by a scoping and filtering mechanism.

The selected object instances shall be stored in the mORTs attribute of the TOs created in response to the test initiation request.

testObjectList
M
SEQUENCE OF tOClass

This parameter specifies the classes of the TOs to be created in response to the test request.

6.3.1.3
Output parameters

Parameter Name
Qualifier
Matching Information
Comment

successResponse
M
SEQUENCE OF
TestObject.testInvocationId

This parameter is returned if the test initiation request was successful.

It returns the test invocation identifiers of the invoked tests. The identifiers are assigned by the IRPAgent.

failureResponse
M
Resource self test:

SET {

noSuchMort

mORTNotAvailable

testInvocationError
}
noSuchMort = SET OF
objectInstance

mORTNotAvailable = SET OF objectInstance
testInvocationError =
SEQUENCE OF CHOICE {

testInstanceCreated

testInstanceNotCreated
}
testInstanceCreated = testInvocationId

testInstanceNotCreated = reason
This structured parameter is returned, if the test initiation request failed completely or partly.
The parameter noSuchMORT indicates that one or more MORTs specified in the test request cannot be recognized. The parameter returns the object instances of these MORTs.
The parameter mORTNotAvailable indicates that one or more MORTs specified in the test request are not in the appropriate state for testing. The parameter returns the object instances of these MORTs.
The subparameter testInvocationError indicates that one or more TOs specified in the test request paramter tOList could not be instantiated. This parameter is returned for every test specified in the request. The order shall be the same as in the request. For a successfully instantiated test the parameter testInstanceCreated returns the test invocation identifier of the test. For a failed test instantiation the parameter testInstanceNotCreated returns the reason why the instantiation of the test failed.

6.3.1.4
Pre-condition
The pre-condition depends on the test category.

Resource Self Test:
allIndicatedMORTsExist AND allIndicatedMORTsAreAvailable
Assertion Name
Definition

allIndicatedMORTsExist
All indicated MORTs exist.

allIndicatedMORTsAreAvailable
All indicated MORTs are in a state in which they are available for testing.

6.3.1.5
Post-condition

allIndicatedTOsInstantiated

Assertion Name
Definition

allIndicatedTOsInstantiated
All TOs specified in the test initiation request have been instantiated successfully.

6.3.1.6
Exceptions

Exception Name
Definition

notAllIndicatedMORTsExist
Condition: allIndicatedMORTsExist NOT TRUE

Returned information: The error parameter is set to the object identifiers of the not existing or not recognized MORTs.

Exit state: Entry state

notAllIndicatedMORTsAreAvailable
Condition: allIndicatedMORTsAreAvailable NOT TRUE

Returned information: The error parameter mORTNotAvailable indicates the MORTs which are in a state where they are not available for testing.

Exit state: Entry state

notAllIndicatedTOsInstantiated
Condition: allIndicatedTOsInstantiated NOT TRUE

Returned information: The error parameter independentTestInvocationError returns information about the TOs that have been instantiated successfully and information about the TOs that failed to be instantiated, for example the failure reason.

Exit state: Entry state

6.3.2
Operation terminateTest (M)

6.3.2.1
Definition

The IRPManager uses this operation to request the IRPAgent to terminate tests during their life time. The test termination request must be directed to the object which received the test initiation request. For a successful termination of a test all associated TOs shall be deleted. Prior to its deletion the TO shall terminate the executing test properly. This may include ending the test activity of the MORTs and shall include the emission of the test result notifications. In case the test is not conclusive the test outcome parameter shall indicate the premature termination of the test.

Alternatively to issuing a test termination request, IRPManager shall be able to abort tests by deleting the associated TOs. After acceptance of a deletion request TOs shall not emit any further test result notifications.

6.3.2.2
Input parameters

Parameter Name
Qualifier
Information Type
Comment

tARRObjectInstance
M

This parameter specifies the object with TARR-functionality, on which the operation shall be invoked.

indicatedTests
M
SET OF testInvocationId
This parameter indicates the tests that shall be terminated.

6.3.2.3
Output parameters

Parameter Name
Qualifier
Matching Information
Comment

successResponse
M
SET OF TestObject.testInvocationId
This parameter is returned, if the test terminate request was successful. It contains the test invocation identifiers of the terminated tests.

failureResponse
M
SET{

invalidTestOperation,

noSuchTestInvocationId,

testTerminateError
}
invalidTestOperation = objectIdentifier
noSuchTestInvocationId = testInvocationId
testTerminateError = SET OF CHOICE {

testTerminateSuccess,

testTerminateFailure
}

testTerminateSuccess ::= TestObject.testInvocationId

testTerminateFailure ::= TestObject.testInvocationId
This structured parameter is returned, if the test terminate request failed completely or partly.
In case the test terminate request is not valid, the parameter invalidTestOperation returns the object identifier of the operation.
In case some test invocation identifiers in the request do not exist the parameter noSuchTestInvocationId returns these identifiers.
The parameter testTerminateError specifies the test invocation ids of the tests, that were successfully terminated, and the ids of the test, that failed to be terminated successfully.

6.3.2.4
Pre-condition

testOperationIsValid AND allIndicatedTestInvocationIdsExist
Assertion Name
Definition

testOperationIsValid
The test operation requested to be performed is valid.

allIndicatedTestInvocationIdsExist
All specified test invocation identifiers exist.

6.3.2.5
Post-condition

allIndicatedTestsTerminated

Assertion Name
Definition

allIndicatedTestsTerminated
All tests indicated in the test terminate request are terminated successfully.

6.3.2.6
Exceptions

Exception Name
Definition

testOperationIsInvalid
Condition: testOperationIsValid NOT TRUE

Returned information: The error parameter invalidTestOperation is set to the object identifier of the invalid test operation.

Exit state: Entry state

notAllIndicatedTestInvocationIdsExist
Condition: allIndicatedTestInvocationIdsExist NOT TRUE

Returned information: The error parameter noSuchTestInvocationId is set to the not existing test invocation identifiers.

Exit state: Entry state

operationFailed
Condition: allIndicatedTestsTerminated NOT TRUE

Returned information: The error parameter testTerminateError is set to the test invocation ids of the tests, that failed to terminate and the error parameter testTerminateSuccess is set to the test invocation ids of the tests, that terminated successfully.

Exit state: Entry state

6.4
Interface TestManagementIRPMonitorOperations
The interface TestManagementIRPMonitorOperations contains the operation monitorTest. It must be implemented by every TO.
6.4.1
Operation monitorTest (M)

6.4.1.1
Definition

IRPManager shall be able to retrieve information about the test during test execution by reading the relevant attributes of the TO associated to the test. Attributes conveying information about the test execution are operationalState, proceduralStatus, testState and testOutcome. This operation must be invoked directly on the TOs, whose attribute values shall be retrieved. The TOs to be monitored are selected either by specifying the object instance or by a scoping and filtering mechanism.
6.4.1.2
Input parameters

Parameter Name
Qualifier
Information Type
Comment

baseObjectInstance
M

This parameter specifies the instance of the object, which is used as the base object for the selection of the managed objects to which the operation shall be applied.

scope
O

This parameter indicates the subtree, rooted at the base managed object, which is to be searched. The levels of search that may be performed are:

 -
the base object alone;
 -
the nth level subordinates of the base
object;
 -
the base object and all of its
subordinates down to and including the
nth level;
 -
the base object and all of its
subordinates.

The default scope is the base object alone.

filter
O

This parameter specifies the set of assertions that defines the filter test to be applied to the scoped managed object(s). Multiple assertions may be grouped using the logical operators AND, OR and NOT. The managed object(s) for which the filter test evaluates to TRUE is (are) selected for the application of the operation. If the filter is not specified, all of the managed objects included by the scope are selected

6.4.1.3
Output parameters

Parameter Name
Qualifier
Matching Information
Comment

monitoredAttributes
M
SET OF SEQUENCE {

tOInstance

SET OF SEQUENCE {

attributeId

attributeValue

}
}
This parameter is returned if the test monitor request was successfull.
It contains, for every TO instance to be monitored, the attribute identifiers and the attribute values of the attributes to be retrieved. These TO attributes are operationalState, proceduralState, testState and testOutcome. The values to be returned are those prevalent at the time of the reception of the test monitor request.

failureResponse

M
SET{

noSuchTO

testMonitorError
}
noSuchTO = objectInstance
testMonitorError = SET OF CHOICE{

testMonitorSuccess

testMonitorFailure
}

testMonitorSuccess = SEQUENCE {

attributeId

attributeValue
}

testMonitorFailure = attributeId
This parameter is returned if the test monitor request failed completely or partly.
The parameter noSuchTO indicates that the TO specified in the request does not exist. The parameter returns the corresponding TO instance.
The parameter testMonitorError indicates that one or more attribute values could not be read. The paramter returns in testMonitorSuccess the attribute identifiers and the attribute values of the atrributes that could be read and in testMonitorFailure the attribute identifiers of the attributes that could not be read.

6.4.1.4
Pre-condition

toBeMonitoredTOExist

Assertion Name
Definition

toBeMonitoredTOExist
All indicated MORTs exist.

6.4.1.5
Pre-condition

allAttributeValuesRead

Assertion Name
Definition

allAttributeValuesRead
The values of all attributes indicated in the request were read successfully.

6.4.1.5
Exception

Exception Name
Definition

toBeMonitoredTOExist
Condition: toBeMonitoredTOExist NOT TRUE

Returned information: The error parameter noSuchTO is set to the object identifier of the TO that does not exist.

Exit state: Entry state

notAllAttributeValuesRead
Condition: allAttributeValuesRead NOT TRUE

Returned information: The error parameter testMonitorError is set to the attribute identifiers and attribute values of the attributes that were read successfully and the error parameter testMonitorFailure is set to the attribute identifiers that failed to be read.

Exit state: Entry state

6.4
Interface TestManagementIRPNotifications
6.4.1
Notification notifyTestResults
6.4.1.1
Definition

TOs shall emit notifications carrying the test results (unsolicited reporting). After emission of the last notification the TO shall be deleted. The last notification shall be indicated by including the testOutcome parameter. The events triggering the emission of test result notifications depend on the test category.

6.4.1.2
Input Parameters

Parameter Name
Qualifier
Matching Information
Comment

objectClass
M

Inherited from NotificationIRPNotification defined in 3GPP TS 32.302 [1]

objectInstance
M

Inherited from NotificationIRPNotification defined in 3GPP TS 32.302 [1]

notificationId
O

Inherited from NotificationIRPNotification defined in 3GPP TS 32.302 [1]

eventTime
M

Inherited from NotificationIRPNotification defined in 3GPP TS 32.302 [1]

systemDN
C

Inherited from NotificationIRPNotification defined in 3GPP TS 32.302 [1]

notificationType
M
“notifyTestResults”
Inherited from NotificationIRPNotification defined in 3GPP TS 32.302 [1]

testInvocationId
O
TestObject.testInvocationId

testOutcome
O
TestObject.testOutcome
This parameter shall be included only in the last notification emitted by a TO. In this way the TO indicates that it is sending no more notifications

mORTs
O
TestObject.mORTs

proposedRepairActions
O
SET OF
CHOICE {

objectIdentifier

integer}
This parameter suggests one or more repair actions if the reason for a failure is known, see ITU-T X.733 [4].

additionalInformation
O
SET OF
= SEQUENCE {

identifier,

significance,

information
}

This parameter may contain a set of additional information pertaining to the test, see ITU-T X.733 [4].

The identifier subparameter carries an identifier for the data type of the information subparameter.

The significance subparameter indicates if parsing the information subparameter is required for understanding the notification.

The information subparameter carries the additional information about the test.

6.4.1.3 Triggering Events for the Resource Self Test

For the resource self test the events triggering the emisson of test result notifications are:

·
· Termination of the test execution (final test result reporting)

The resource self test may be terminated explicitly by a test termination request. The events triggering an implicit termination are

· Fulfillment of the conditions for a successful termination of the test

· Fulfillment of the conditions for a premature termination of the test

·
· Occurance of an error situation

6.4.1.3.1
From-State

testTerminateRequestReceived OR testCompleted OR prematureTermination OR testTimedOut OR errorSituationOccured

Assertion Name
Definition

testTerminateRequestReceived
The object with TARR-functionality has received a test termination request.

testCompleted
The predefined conditions for a successful completion of the test are fulfilled.

prematureTermination
The predefined conditions for a premature termination of the test are fulfilled.

errorSituationOccured
An error situation has occurred during the test execution. The test is aborted prematurely.

6.4.1.3.2
To-State

testTerminated

Assertion Name
Definition

testTerminated
The test has been terminated successfully.

Annex A (informative):
Change history

This annex lists all change requests approved for the present document since the specification was first approved by 3GPP TSG-SA.

Change history

Date
TSG #
TSG Doc.
CR
Rev
Subject/Comment
Old
New

IRPAgent

NM

IRPManager

nager

Itf-N

Test Management IRP

Notification IRP

NEs

EM

Itf-N

IRPAgent

IRPManager

NE

NM

Test Management IRP

Notification IRP

_1074683094.doc

<<InformationObjectClass>>

TestManagementIRP

<<InformationObjectClass>>

ResourceSelfTestObject

<<Interface>>

TestManagementIRPNotifications

<<InformationObjectClasses>>

TestObject

<<InformationObjectClass>>

ManagedGenericIRP

<<Interface>>

NotificationIRPNotification

_1075294373.doc

<<InformationObjectClass>>

TestActionPerformer

1...*

<<InformationObjectClass>>

TestManagementIRP

supportedTOClasses

testActionPerformerId

*

1

represents

<<InformationObjectClass>>

ResourceSelfTestObject

1

TARR

<<instantiate>>

<<InformationObjectClass>>

TestObject

testInvocationId

mORTs

operationalState

proceduralStatus

testState

testOutcome

testObjectId

represents

TestManager

TestExecuter

1

*

_1075030592.doc

+ notifyTestResults()

1

<<InformationObjectClass>>

TestActionPerformer

1

<<InformationObjectClass>>

TestObject

<<Interface>>

TestManagementIRPNotifications

<<Interface>>

TestManagemnetIRPControlOperations

+ initiateTest()

+ terminateTest()

<<Interface>>

TestManagementIRPMonitorOperations

+ monitorTest()

1

_1069660254.doc

+ notifyTestResults()

1

<<InformationObjectClass>>

TestActionPerformer

1

<<InformationObjectClass>>

TestObject

<<Interface>>

TestIRPNotifications

<<Interface>>

TestIRPOperations

+ initiateTest()

+ terminateTest()

+ monitorTest()

