
3GPP TSG-SA5 (Telecom Management)

Meeting #23, Sundsvall, Sweden 15 - 19 October 2001
S5-0106xy
S5C010422

Source:
Motorola (Trevor.Pirt@motorola.com)

Title:
Requirements for Inventory Management

Document for:
Discussion / Decision

Agenda Item:
SWG-C / SWG-A

Category:
Proposal for TS 32.6**

Work Item ID:
OAM-CM
Doc Summary:
This document contains a proposal for (additional) requirements for Inventory Management.

Specs involved:
TS 32.***

Please find attached Inventory Management Requirements for comment and discussion. These requirements are essentially based off preliminary requirements drafted by OSS Through Java ™ Expert Group for OSS Inventory Management API – JSR 142. Some updates and clarifications are pending, but nothing major is envisaged at this stage. The Expert Group would like to share these requirements with SA5 so they may be considered as part of SA5’s Inventory Management Work Task. Hopefully by sharing this requirements level information it will be of mutual benefit to both groups and lead to a good alignment in the future in this area.

It is understood some of the API requirements and specifically the references to ‘API’ will not be relevant to 3GPP SA5 IRP generic requirements, for example where they effectively give some explicit Solution Set requirements. Please ignore these as appropriate.

It is envisaged these requirements should be reviewed in conjunction with other associated contributions for Inventory Management Work Task.

1 General Requirements

1.1 File Based Import/Export of Inventory Data

The API should provide operations for import and export of inventory information through XML files.

1.2 Export of Inventory Data

It should be possible to define the scope using various criteria (not necessarily in terms of containment) for the inventory data exported through an XML file.

1.3 Import of Inventory Data

It should be possible to define the type of reconciliation (e.g. automatic/ manual or overwrite/no overwrite of existing data, etc.) expected for the inventory data imported through an XML file.

1.4 Operations on Entities, Templates and Associations

It should be possible to create, delete, update and query inventory entities, templates and associations through the Inventory API.

1.5 Creation of Entities with Templates

The API should allow the creation of inventory entities using templates defined during the planning phase.

1.6 Template Catalogs

The API should allow queries of available entity templates and entity template types (e.g. query of available product types and the templates for specific product type from the product catalogs)

1.7 Query Results

Inventory queries should be able return large collections of inventory entities, associations and templates of different types.

1.8 Metadata Queries

It should be possible to retrieve the metadata description, which defines entities, entity templates and associations through Inventory API. (For example, a metadata description for an association is the corresponding association rule.)

1.9 Queries and Update Procedures

It should be possible to invoke queries and update procedures through the Inventory API.

A client should be able to query the supported by the API update procedures and business queries.

1.10 Traversal of Relationships

In case the inventory information is distributed over several repositories, the Inventory API should provide traversal of relationships (in the context of queries and update procedures) across repositories.

1.11 Relationships with Other OSS Components

The Inventory API should allow the definition of associations with entities managed by other OSS components (e.g. Service Level Agreements, Policies, etc.)

1.12 Notifications

It should be possible to receive notifications from the Inventory API when inventory entities and associations are created, deleted and modified or resource utilization thresholds are crossed.
A client should be able to query the supported by the API event types.

1.13 Current and Planned Resources

The Inventory API should allow the management of current and planned physical and logical resources. Information on resource utilization and allocation of resources should be related to specific date or a period of time.
Through this functionality the Inventory API should allow investigating “what-if” scenarios for resource utilization.
No assumptions should be made at the interface level with regard to the underlying implementation. (The inventory repository may use a coarse grain approach where the inventory information is stored in current and planned views, or a fine grain approach where each resource has associated chronological attributes. It is also possible that no such functionality is available.)

1.14 Resource Queries and Allocation

The Inventory API should also allow clients to query the physical and logical resources availability by variety of criteria (protection, load balancing, specific route selection algorithm, etc.).

The Inventory API should also allow clients to reserve and allocate physical and logical resources supporting current or planned services.

1.15 Resource Utilization Monitoring

It should be possible to monitor physical (e.g. ports) and logical (e.g. bandwidth) resource utilization through the Inventory API.
The Inventory API should allow setting thresholds on the utilization of specific resource or a set of resources.
The Inventory API should also allow clients to query the physical and logical resources availability by variety of criteria.

1.16 XML Messaging for EAI and B2B Integration

The Inventory API should support a mechanism for loosely coupled and asynchronous XML based interactions for integration with workflow systems or B2B integration.

1.17 Definition of New Entity and Template Types

For the portions of the inventory model, which require constant innovation and change (e.g. introduction of new products and product templates) the Inventory API should allow the definition of new entity and template types at run-time. No assumptions should be made at the interface level with regard to the ability of the inventory repository to support dynamic schema changes.

For the more “static” portions of the inventory model (e.g. network equipment) the definition of new entity and templates at run time may not be provided.

1.18 Strongly Typed API

The Inventory API should be strongly typed.

1.19 Core Inventory Model

The Inventory API should define a core inventory model, which is based on concepts common to existing inventory models adopted in the industry (e.g. MTNM, 3GPP CM, SP-DNA, CIM). The purpose of the core model should be to capture the essential entities and relationships in order to allow traversal across repositories. The core model should coexist with the adopted vendor specific or standard information models. Supporting the core model (or the portion of the core model for specific inventory function) should be mandatory for components implementing the Inventory API.

1.20 Naming

t.b.d. (requirement for the primary key only, the OSS/J managed entity key is defined in the DG)

1.21 Flexibility

It should be possible to extend the data types, queries and update procedures supported by the Inventory API.

1.22 Security and Access Control

t.b.d. (should rely on the functionality provided by the application server)

1.23 Federation

t.b.d.

1.24 OSS through JAVA Compliance

The Inventory API should reuse the OSS through JAVA patterns and should be compliant to the OSS through JAVA Design Guidelines.

