
3GPP TS 32.602-3 V0.0.1 (2001-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication Management;

3G Configuration Management:

Part 3: Bulk CM IRP:

CORBA Solution Set

(Release 4)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

Configuration Management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

5Foreword

Introduction
5
1
Scope
7
2
References
7
3
Definitions, symbols and abbreviations
7
3.1
Definitions
8
3.2
Symbols
Error! Bookmark not defined.
3.3
Abbreviations
8
4
Examples for Styles
8
4.1
Heading Styles
8
4.2
Other common styles
Error! Bookmark not defined.
"TSG <Name>" on the front page
Error! Bookmark not defined.
Page setup parameters
Error! Bookmark not defined.
Proforma copyright release text block
Error! Bookmark not defined.
Abstract Test Suite (ATS) text block
Error! Bookmark not defined.
<x1>
The TTCN Graphical form (TTCN.GR)
Error! Bookmark not defined.
<x2>
The TTCN Machine Processable form (TTCN.MP)
Error! Bookmark not defined.
Annex <A> (normative):
<Normative annex title>
15
Annex (informative):
<Informative annex title>
Error! Bookmark not defined.
B.1
Heading levels in an annex
24
Annex <X> (informative):
Change history
26

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the Network Element (NEs) and Network Resources (NRs), and they may be initiated by the operator or functions in the Operations Systems (OSs) or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service. The CM actions are initiated either as a single action on a NE of the 3G network or as part of a complex procedure involving actions on many NEs.

The interface Itf-N, defined in 3GPP TS 32.102, for CM is built up by a number of Integration Reference Points (IRPs) and a related Name Convention, which realise the functional capabilities over this interface. The basic structure of the IRPs is defined in 3GPP TS 32.101 and 3GPP TS 32.102. For CM, a number of IRPs (and the Name Convention) are defined herein, used by this as well as other Technical Specifications for Telecom Management produced by 3GPP.

Due to the growing number of specifications to model new services and Resource Models for Configuration Management (CM), as well as the expected growth in size of each of them from 3GPP Release 4 onwards, a new structure of the specifications is already needed in Release 4. This structure is needed for several reasons, but mainly to enable more independent development and release for each part, as well as a simpler document identification and version handling. Another benefit would be that it becomes easier for bodies outside 3GPP, such as the ITU-T, to refer to specifications from 3GPP SA5/CM.

The need to define some new IRPs for CM, compared to Release 1999, has been identified. Firstly, a new IRP for the Bulk CM, and secondly, one for each of the NRM parts (Generic, CN, UTRAN and GERAN).

The new structure of the specifications does not lose any information or functionality supported by the Release 1999. Finally, the Notification IRP (32.106-1 to -4) and the Name convention for Managed Objects (32.106-8) are moved to a separate number series used for specifications common between several SA5 Rapporteur Groups (e.g. CM, FM, PM).

Table: Mapping between Release '99 and the new specification numbering scheme

R99 Old no.
Old (R99) specification title
Rel-4 New no.
New (Rel-4) specification title

32.106-8
Name convention for Managed Objects
32.300
Name convention for Managed Objects

32.106-1
<Notification IRP requirements from 32.106-1 or 32.106-2>
32.301-1
Notification IRP: Requirements

32.106-2
Notification IRP: IS
32.301-2
Notification IRP: Information Service

32.106-3
Notification IRP: CORBA SS
32.301-3
Notification IRP: CORBA SS

32.106-4
Notification IRP: CMIP SS
32.301-4
Notification IRP: CMIP SS

32.106-1
3G Configuration Management: Concept and Requirements
32.600
3G Configuration Management: Concept and Main Requirements

32.106-1
<Basic CM IRP IS requirements from 32.106-1 or 32.106-5>
32.601-1
Basic CM IRP: Requirements

32.106-5
Basic CM IRP IM (Intro & IS part)
32.601-2
Basic CM IRP: Information Service

32.106-6
Basic CM IRP (Intro & IS part) CORBA SS
32.601-3
Basic CM IRP: CORBA SS

32.106-7
Basic CM IRP (Intro & IS part) CMIP SS
32.601-4
Basic CM IRP: CMIP SS

-
<Bulk CM IRP Requirements from Tdoc S5C010155>
32.602-1
Bulk CM IRP: Requirements

-
<Bulk CM IRP IS from Tdoc S5C010156>
32.602-2
Bulk CM IRP: Information Service

-
<Bulk CM IRP CORBA SS from Tdoc S5C010159>
32.602-3
Bulk CM IRP: CORBA SS

-
-
32.602-4
Bulk CM IRP: CMIP SS (not yet produced)

-
< Bulk CM IRP XML file format from Tdoc S5C010160>
32.602-5
Bulk CM IRP: XML file format definition

32.106-1
<Basic CM IRP Generic NRM requirements from 32.106-1 or 32.106-5>
32.620-1
Generic Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (Generic NRM part) + Tdoc S5C010157
32.620-2
Generic Network Resources IRP: NRM

32.106-6
Basic CM IRP (Generic NRM part) CORBA SS
32.620-3
Generic Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (Generic NRM part) CMIP SS
32.620-4
Generic Network Resources IRP: CMIP SS

32.106-1
<Basic CM IRP CN NRM requirements from 32.106-1 or 32.106-5>
32.621-1
Core Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (CN NRM part)
32.621-2
Core Network Resources IRP: NRM

32.106-6
Basic CM IRP (CN NRM part) CORBA SS
32.621-3
Core Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (CN NRM part) CMIP SS
32.621-4
Core Network Resources IRP: CMIP SS

32.106-1
<Basic CM IRP UTRAN NRM requirements from 32.106-1 or 32.106-5> and Tdoc S5C010157
32.622-1
UTRAN Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (UTRAN NRM part) and Tdoc S5C010157
32.622-2
UTRAN Network Resources IRP: NRM

32.106-6
Basic CM IRP (UTRAN NRM part) CORBA SS
32.622-3
UTRAN Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (UTRAN NRM part) CMIP SS
32.622-4
UTRAN Network Resources IRP: CMIP SS

32.106-1
<Basic CM IRP GERAN NRM requirements from 32.106-1 or 32.106-5> and Tdoc S5C010158
32.623-1
GERAN Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (GERAN NRM part) and Tdoc S5C010158
32.623-2
GERAN Network Resources IRP: NRM

32.106-6
Basic CM IRP (GERAN NRM part) CORBA SS
32.623-3
GERAN Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (GERAN NRM part) CMIP SS
32.623-4
GERAN Network Resources IRP: CMIP SS

The present document is CORBA Solution Set - Part 3 of 3GPP TS 32.602 “Bulk Configuration Management IRP”.

1
Scope

The purpose of this Bulk CM IRP: CORBA Solution Set is to define the mapping of the IRP information service (see 3GPP TS 32.602-2 [3]) to the protocol specific details necessary for implementation of this IRP in a CORBA/IDL environment.

The present document does not describe any Network Resource Model (NRM) – they are described in Generic Network Resources IRP: NRM 3GPP TS 32.620-2 [4], UTRAN Network Resources IRP: NRM 3GPP TS 32.622-2 [11], GERAN Network Resources IRP: NRM 3GPP TS 32.623-2 [12].
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[2]
3GPP TS 32.102: "3G Telecom Management architecture".

[3]
3GPP TS 32.602-2: "Telecommunication Management; Configuration Management;
Part 2: Bulk CM IRP; Information Service".

[4]
3GPP TS 32.620-2: "Telecommunication Management; Configuration Management;
Part 2: Generic Network Resources IRP: NRM".
[5]
3GPP TS 32.300: "Telecommunication Management; Configuration Management;
Part 8: Name convention for Managed Objects".
[6]
OMG Notification Service, Version 1.0.
[7]
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996.
[8]
The Common Object Request Broker: Architecture and Specification (for specification of valid version, see [1]).
[9]
3GPP TS 32.301-3: "Telecommunication Management; Configuration Management;
Part 3: Notification Integration Reference Point: CORBA solution set".
[10]
3GPP TS 32.111-3: "Telecommunication Management; Fault Management;
Part 3: Alarm Integration Reference Point: CORBA solution set".

[11]
3GPP TS 32.622-2: "Telecommunication Management; Configuration Management;
Part 2: UTRAN Network Resources IRP: NRM".
[12]
3GPP TS 32.623-2: "Telecommunication Management; Configuration Management;
Part 2: GERAN Network Resources IRP: NRM".

3
Definitions and abbreviations

3.1
Definitions

For terms and definitions please refer to 3GPP TS 32.101 [1], 3GPP TS 32.102 [2], 3GPP TS 32.602-2 [3], 3GPP TS 32.620-2 [4], 3GPP TS 32.622-2 [11] and 3GPP TS 32.623-2 [12].
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA
Common Object Request Broker Architecture

DN
Distinguished Name

IS
Information Service

IDL
Interface Definition Language (OMG)

IRP
Integration Reference Point

MO
Managed Object

MOC
Managed Object Class

NRM
Network Resource Model

OMG
Object Management Group

SS
Solution Set

4
Itf-N Service Interface

4.1
The class interfaces

This section specifies the operations and notifications that are visible over the Itf-N. The following figure illustrates the operations and notifications defined as interfaces implemented and used by IRPagent and IRPManager (described using UML notation). Parameters and return status are not indicated.

Two interfaces are defined. One is called BulkCmOperations. This interface defines operations implemented by the IRPAgent. The second is called BulkCmNotifications. This interface defines notifications mechanism implemented by the IRPManager.

[image: image2.wmf]Figure

1

: UML Interface Class Diagram

BulkCmOperations

 upload()

 download()

 activate()

<<Interface>>

BulkCmNotifications

 notification()

IRPAgent

use

implement

implement

use

 getSessionStatus()

 startSession()

 getLog()

 endSession()

IRPManager

<<Interface>>

 fallback()

 notify_LogState()

 notify_SessionStateChanged()

 abortSessionOperation()

 subscribe()

 get_basicCm_IRP_version()

 getSessionIds()

 unsubscribe()

The operations upload, download, activate, getLog, startSession, fallback and abortSessionOperation are performed asynchronously in that when the operations are initiated, the IRPAgent returns an indication that the requested activity has begun, and the IRPManager may release and continue with other tasks. If the IRPManager has subscribed on event notifications, then the IRPAgent will receive a notification when the task requested in the operation is complete.

The operations subscribe, unsubscribe, getSessionStatus, getSessionIds and get_basicCm_IRP_version are performed synchronously in that the result of the operation is returned as a callback to the operation, and the IRPManager will wait until the response is received before continuing.

4.2
ORB Interoperability

Different vendors will use different ORB implementations. Even if CORBA is standard, experience tells us that there may be problems if the interoperability aspect is not considered.

· No ORB vendor specific features that are not CORBA standard should be used

· No complicated datatypes should be used in the IDL specification. This means that only simple datatypes are used (string, integer etc).

5
Mapping

5.1
General Mappings

All MOs are arranged in a containment structure, according to the containment relations defined in the NRM. This structure is held internally by the IRPAgent. Externally, the MO containment structure is defined by the semantics in the distinguished name syntax. The distinguished name for an MO contains the distinguished name of the parent plus the Relative Distinguished Name for the MO itself.

Associations as defined in the NRM (UML) are in this document mapped to attributes in the MIB. The names of the roles for an association in the NRM are used for defining attribute names in the MIB. When the cardinality for a role is 0..1 or 1..1 the datatype for the attribute is defined as a MO reference. The value of a MO reference contains the distinguished name of the referred MO. When the cardinality for a role allows more than one referred MO, the attribute will contain a sequence of MO references (distinguished names).

Notifications are in this document mapped to a callback interface implemented by the IRPManager.

5.2
Operation and Notification mapping

The Information Model document defines semantics of operations and notifications visible across the Common Configuration Itf-N. The table below indicates mapping of these operations and notifications to their equivalents defined in this document.

Table 1: Mapping from IM Notification/Operation to SS equivalents

IM Operation/ notification
SS Method
Interface
Qualifier

startSession
startSession
BulkCmOperations
M

endSession
endSession
BulkCmOperations
M

upload
upload
BulkCmOperations
M

download
download
BulkCmOperations
M

activate
activate
BulkCmOperations
M

getSessionStatus
getSessionStatus
BulkCmOperations
M

getSessionIds
getSessionIds
BulkCmOperations
M

getSessionLog
getLog
BulkCmOperations
M

fallback
fallback
BulkCmOperations
M

abortSessionOperation
abortSessionOperation
BulkCmOperations
M

GetBulkCmIRPVersion
get_basicCm_IRP_version
BulkCmOperations
M

NotifySessionStateChanged
notify_SessionStateChanged
BulkCmNotifications
M

NotifySessionLogStatus
notify_LogState
BulkCmNotifications
M

5.3
Operation Parameter Mapping

Reference Bulk CM IRP; Information Service [3] defines semantics of parameters carried in operations. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IM startSession parameters to SS equivalents

IM Operation parameter
SS parameter
Qualifier

SessionId
session_id
M

-
subscriberThis is a reference to a callback interface. This is needed in this SS to identify the receiver of notifications. The parameter is not identified in the IM, because other protocols may have other ways of solving this
M

status
exception SessionIdInUseException
M

Table 3: Mapping from IM endSession parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

status
exception UnknownSessionIdException, exception TransitionStateException
M

Table 4: Mapping from IM upload parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

uploadDataFile Reference
sink
M

baseObjectInstance
base_object
M

scope
search_control combined with filter, this gives the search_control
M

filter
search_control combined with scope, this gives the search_control
M

status
exception UnknownSessionIdException, exception TransitionStateException, exception ConcurrencyException, exception IllegalDistinguishedNameFormatException, exception IllegalFilterFormatException, exception IllegalScopeTypeException, exception IllegalScopeLevelException
M

Table 5: Mapping from IM download parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

downloadDataFileReference
source
M

status
exception UnknownSessionIdException
M

Table 6: Mapping from IM activate parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

activationMode
activation_mode
O

saveFallback
fallback
O

status
exception UnknownSessionIdException, exception TransitionStateException, exception ConcurrencyException, exception ActivationModeException
M

Table 7: Mapping from IM abortSessionOperation parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

status
exception UnknownSessionIdException
M

Table 8: Mapping from IM getSessionIds parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionIdList
sessionIdList
M

status
- no errorconditions identified
M

Table 9: Mapping from IM getSessionStatus parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

sessionState
sessionState
M

status
exception UnknownSessionIdException

M

Table 10: Mapping from IM getSessionLog parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

logFileReference
sink
M

contentType
only_error_info
M

status
exception UnknownSessionIdException, exception ConcurrencyException
M

Table 11: Mapping from IM getBulkCmIRPVersion parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

versionNumberList
VersionNumberSet
M

status
- no errorconditions identified or described in SS
M

Table 12: Mapping from IM notifySessionStateChanged parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

sourceIndicator
-
O

sessionState
session_event
M

Table 13: Mapping from IM notifyGetSessionLogEnded parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

sessionId
session_id
M

notificationHeader
-
M

sourceIndicator
-
O

sessionLogStatus
log_event
M

6
Finding/Registering the System Interface

Each IRPAgent shall instantiate one instance of the BulkCmOperations interface. This interface is registered in a CORBA Naming Service running in the network. The ORB Vendor specific methods provided for getting a handle to the Name Service (root context) is not standardized by OMG. Therefore FTP is used for this.

6.1
Finding the CORBA Name Service

A program (IRPManager/MCCM/NE Manager) that wants to resolve/register CORBA objects in the naming service must first get a reference to the naming service itself. This reference must be stored by the Name Server in a root naming context ior file. The contents of the file is fetched by using FTP, like ftp://<name-server>/ior_files/nameroot.ior , where <name-server> is the IP-adress of the host running the CORBA naming service.

6.2
Registering the BulkCmOperations Interface

Each IRPAgent simulator must register its BulkCmOperations interface in the CORBA Naming Service. The Naming Service is found according to section 4.1.

The host where the naming service is running and which name the IRPAgent should be registered as must be defined by means of runtime properties in the IRPAgent. All names should be registered in the root naming context.

6.3
Finding the BulkCmOperations Interface

The IRPManager must get the naming service according to section 4.1, and resolve each IRPAgent.

6.4
Naming the BulkCmOperations Interface

The name of the instance of the interface shall be the same names as on the OMC instance.

Annex A (normative):
Itf-N CORBA IDL: BulkCmCommonTypes

/**

 *

 * Workfile: BulkCmCommonTypes_idl.id

 * Revision: 2.0

 * State:
 Draft Product defintion

 *

 * PURPOSE: IDL definitions of the common types of the BulkCm interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

; Rev 2.1 22 April 2001 Anders Frisk, LM Ericsson

;
updated after 3GPP SA5 meeting in Budapest

***/

#ifndef BULK_CM_COMMON_TYPES_IDL

#define BULK_CM_COMMON_TYPES_IDL

module BulkCmIRPSystem {

/* @Type: SessionId

 * For each started configuration session a unique identifier is generated

 * by the IRPManager. An sessionId can not be used for an upload if it is

 * already in use of a download configuration and vice versa.

 */

typedef string SessionId;

/* @Type: ErrorInformation

 * This string field is used in order to provide additional error information

 * on none working MCCM functionality.

 */

typedef string ErrorInformation;

/* @Type: SubPhase

 * defines the different subphases of a configuration session

 * e.g. thus it is easy to implement a detection of an upload

 *or a download/activate session.

 */

enum SubPhase { IDLE_PHASE,

 DOWNLOAD_PHASE,

 UPLOAD_PHASE,

 ACTIVATION_PHASE,

 FALLBACK_PHASE

};

/* @Type: SubState

 * defines the different substates of a configuration session. This includes

 * the transition state as well.

 */

enum SubState { COMPLETED,

 FAILED,

 PARTLY_REALISED,

 IN_PROGRESS //transition state

};

/* @Type: SessionState

 * defines state of a configuration session with the phase and the substate

 * of the configuration.

 */

struct SessionState { SubPhase sub_phase;

 SubState sub_state;

};

};

#endif

Annex B (normative):
Itf-N CORBA IDL: BulkCmOperations

/**

 *

 * Workfile:
 BulkCmOperations_idl.idl

 * Revision: 2.0

 * State:
 Draft Product Definition

 *

 * PURPOSE: IDL definitions of the BulkCm EM interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

; Rev 2.1 22 April 2001 Anders Frisk, LM Ericsson

;
updated after 3GPP SA5 meeting in Budapest

***/

#ifndef BULK_CM_OPERATIONS_IDL

#define BULK_CM_OPERATIONS_IDL

#include <BulkCmNotifications_idl.idl>

// copied for compile cleaness from file CommonIRPConstDefs.idl

module CommonIRPConstDefs {

 typedef sequence <string> VersionNumberSet;

};

module BulkCmIRPSystem {

/* @Class: BulkCmOperations

 * this class defines the System interface of a EM. It defines all methods

 * which are necessary to control a configuration session from a IRPManager.

 */

interface BulkCmOperations {

 // Exceptions begin

 // The ActivationMode is not supported

 exception ActivationModeException {

 string reason;

 };

 // The addressed configuration session can not be performed because

 // of a concurrency situation

 exception ConcurrencyException {

 string reason;

 };

 // The string contents of type FilterType is not valid

 exception IllegalFilterFormatException {

 string reason;

 };

 // The string contents of type DistinguishedName is not valid

 exception IllegalDNFormatException {

 string reason;

 };

 // The value of the filter ScopeType is not valid

 exception IllegalScopeTypeException {

 string reason;

 };

 // The value of the filter level field is not valid

 exception IllegalScopeLevelException {

 string reason;

 };

 // The maximum number of subscriber is exceeded

 exception MaxSubscriberException{

string reason;

 };

 // No fallback position has been saved

 exception NoFallbackException{};

 // The value of the sessionId is already in used by a current

 // configuration session

 exception SessionIdInUseException {

 string reason;

 };

 // The addressed configuration session is in a Transition state:

 // s. substate IN_PROGRESS

 exception TransitionStateException {

 string reason;

 };

 // the subscriber is not known

 exception UnknownSubscriberException{

 string reason;

 };

 // The provided URL is malformed or invalid

 exception IllegalURLFormatException{

 string reason;

 };

 // The value of the sessionId does not identify a configuration session

 exception UnknownSessionIdException{};

 // Exceptions end

 /* @Type: ActivationMode

 * in most cases it can shorten the activation time of new configuration

 * data within the mobile subnetwork if the IRPManager suggest an

 * activation mode. E.g. a low amount of configuration data will be

 * indicated with the mode "soft" thus the EM could decide to introduce

 * the configurations changes to the subnetwork via single commands

 * instead of exchanging the complete MIB of a network element.

 */

 enum ActivationMode {

 SOFT_ACTIVATE,

 HARD_ACTIVATE

 };

 /* @Type: SessionIdList

 * contains the list of all current sessionIds

 */

 typedef sequence< SessionId> SessionIdList;

 /* @Type: FileDestination

 * specifies a ftp path and filename.

 */

 typedef string FileDestination;

 /* @Type: DistinguishedName

 * The format of Distinguished Name is specified in

 * the Naming Conventions for Managed Objects; 3G TS 32.106 Annex H.

 * e.g. "g3SubNetwork=10001,g3ManagedElement=400001" identifies an

 * G3ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /* @Type: FilterType

 * is used within in the upload function as an optional feature in order to give a filter criteria

 * for the confiuration data which will be uploaded. In general there are

 * three different kind of string information as a filter argument to the

 * object model:

 * @Subtype: IM_Identifier

 * the contents depends on the used scope within the struct

 * e.g .className="ExternalUtranCell" or

 * e.g. attributeName="externalCellId"

 * e.g. attributeValue="powerControlAttributes", s. vsDataType

 * The name or value must fit to the definition of the object model.

 * @Subtype: LogicalOperator

 * How a filter string gets evaluated is defined by the given

 * logical operator:

 * EQUAL: the related string value must equal

 * NOT: the related string must not equal

 * DONT_CARE: the related string is not evaluated as filter criteria

 * (substitutes null string evaluation)

 * Restriction: The support of the logical operator NOT is only required

 * for className. The support of the attribute value is only

 * required for base types or value names of vsDataType.

 */

 typedef string IM_Identifier;

 enum LogicalOperator { EQUAL,

 NOT,

 DONT_CARE };

 struct FilterAttributeValue { IM_Identifier attributeValue;

 LogicalOperator operator; };

 struct FilterAttribute { IM_Identifier attributeName;

 FilterAttributeValue attrValueStruct;

 LogicalOperator operator; };

 struct FilterClassType { IM_Identifier className;

 LogicalOperator operator;};

 struct FilterType { FilterClassType filter_classType;

 FilterAttribute filter_attribute; };

 /* @Type: ScopeType

 * defines the kind of scope to use in a search together with

 * SearchControl.level, in a SearchControl value.

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * @Value: BASE_ONLY

 *
 level ignored, just return the base object.

 * @Value: BASE_NTH_LEVEL

 * return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * @Value: BASE_SUBTREE

 * return the base object and all of its subordinates

 *
 down to and including the nth level.

 * @Value: BASE_ALL

 * level ignored, return the base object and all of

 * it's subordinates

 */

 enum ScopeType {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /* @Type: SearchControl

 * controls the searching for MOs during upload, and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field),

 * the filter ("filter" field),

 * The type and level fields are mandatory.

 * The filter field is optional (defined by an empty string).

 */

 struct SearchControl {

 ScopeType type;

 unsigned long level;

 FilterType filter;
 // optional paramter

 };

 /* @Method: upload

 * @Algorithm: asynchronous

 * Uploads a configuration from the subnetwork. The result is put in a

 * XML file in a ftp area specified by the IRPManager.

 * The MIB of the subnetwork is iterated by means of containment search,

 * using a SearchControl to control the search and the returned results.

 * All MOs in the scope constitutes a set that the filter works on.

 * In case of a concurrent running session the function will

 * return an exception. If the value of the given baseObject or FiterType

 * does not exist then this asynchronous error condition will be notified.

 * @Precond: IDLE_PHASE & COMPLETED or

 * UPLOAD_PHASE & FAILED

 * @Postcond: UPLOAD_PHASE & COMPLETED

 * @Errcond: UPLOAD_PHASE & FAILED

 *

 * @Param: session_id

 * identifies the configuration session

 * @Param: sink

 * specifies the FTP address and filename where the result

 * shall be placed in the file by the EM.

 *
 It shall contain an URL: "ftp://<path>/<filename>"

 * @Param: baseObject

 * The start MO in the containment tree. A null here means

 * the search shall start at the subnetwork root instance.

 * @Param: search_control

 *
 the SearchControl to use.

 */

 void upload(in SessionId session_id,

 in FileDestination sink,

 in DistinguishedName base_object,

 in SearchControl search_control)

 raises(UnknownSessionIdException,

TransitionStateException,

ConcurrencyException,

 IllegalDistinguishedNameFormatException,

 IllegalFilterFormatException,

 IllegalScopeTypeException,

 IllegalScopeLevelException

);

 /* @Method: download

 * @Algorithm: asynchronous

 * Indicates the EM that it can download a configuration XML file from

 * a given ftp area. The downloaded XML file will be parsed and checked

 * against the XML schema. The EM will check the consistence of the

 * configuration data and the software compatibilty.

 * @Precond: IDLE_PHASE & COMPLETED or

 * DOWNLOAD_PHASE & FAILED

 * @Postcond: DOWNLOAD_PHASE & COMPLETED

 * @Errcond: DOWNLOAD_PHASE & COMPLETED

 *

 * @Param: session_id

 * identifies the configuration session

 * @Param: source

 *
 specifies the FTP address and the filname where the new

 * configuration shall be fetched by the EM.

 * It shall contain an URL: "ftp://<path>/<filename>"

 */

 void download(in SessionId session_id,

 in FileDestination source)

 raises (UnknownSessionIdException, TransitionStateException);

 /* @Method: activate

 * @Algorithm: asynchronous

 * Activates a previously downloaded and sucessfully parsed configuration inside a session.

 * This means that the configuration will be introduced in the live

 * sub-network. In case of a concurrent running session the function will

 * return an exception.

 * @Precond: DOWNLOAD_PHASE & COMPLETED or

 * ACTIVATION_PHASE & PARTLY_REALISED or

 * ACTIVATION_PHASE & FAILED

 * @Postcond: ACTIVATION_PHASE & COMPLETED or

 * ACTIVATION_PHASE & PARTLY_REALISED

 * @Errcond: ACTIVATION_PHASE & FAILED

 *

 * @Param: session_id

 *
 defines a configuration session created by a subscribe

 * @Param: activation_mode

 *
 the IRPManager suggest an activation mode.

 * @Param: fallback

 * if TRUE a fallback position will be saved before configuration

 * data are changed. If FALSE no fallback will be saved.

 */

 void activate(in SessionId session_id,

 in ActivationMode activation_mode,

 in boolean fallback)

 raises (UnknownSessionIdException,

 TransitionStateException,

 ConcurrencyException,

 ActivationModeException);

 /* @Method: getLog

 * @Algorithm: asynchronous

 * Uploads an log from the subnetwork which is usally used for error

 * analysis. The log is put in an XML file in the filesystem which can

 * be accessed by the EM. If there are no log entries an empty log file

 * is uploaded.

 * @Precond: none

 * @Postcond: event send GET_LOG_COMPLETED

 * @Errcond: event send GET_LOG_FAILED

 *

 * @Param: session_id

 *
 defines a configuration session created by a startSession

 * @Param: sink

 * specifies the FTP address and filename where the result

 * shall be placed in the by the EM.

 *
 It shall contain an URL: "ftp://<path>/<filename>"

 * @Param: only_error_info

 * if TRUE only error information is put into file.

 */

 void getLog(in FileDestination sink,

 in SessionId session_id,

 in boolean only_error_info)

 raises (UnknownSessionIdException,

 ConcurrencyException);

 /* @Method: startSession

 * @Algorithm: asynchronous

 * creates an instance of the configuration session state machine. The

 * IDLE_PHASE & COMPLETED is notified. This entry point enables

 * together with the reset function an IRPManager to control

 * a session with a maximum of flexibilty.

 * @Precond: session_id not in use

 * @Postcond: IDLE_PHASE & COMPLETED

 *

 * @Param: session_id

 * defines the configuration to subscribe on

 */

 void startSession(in SessionId session_id)

 raises(SessionIdInUseException);

 /* @Method: getSessionStatus

 * @Algorithm: synchronous

 * Returns the state of a configuration session.

 * states.

 * @Precond: none

 * @Postcond: none

 * @Errcond: none

 *

 * @Param: session_id

 *
 defines the configuration to subscribe on

 * @Param: error_information

 *
 defines error information which gives the IRPManager

 * additional information when a task has failed.

 * @Return:the current status of the configuration

 */

 SessionState

 getSessionStatus(in SessionId session_id,

 out ErrorInformation error_information)

 raises (UnknownSessionIdException);

 /* @Method: fallback

 * @Algorithm: asynchronous

 * Actives a fallback area. Each time a configuration is activated a

 * fallback area can be created, s. activate parameter.

 * This area is backup of the complete configuration which can be

 * restored by this method. The process is as follows:

 * 1. When the method activate(...,..., TRUE) is used,

 * a copy of the valid area is taken before the activation

 * of the new planned data has started. Only one fallback area can

 * exists at a time for a specific scope of the subnetwork.

 * 2. When a fallback area is avilable and triggered by this method, the

 * previous valid area is replaced with the data stored in

 * the fall back area.

 * If the EM detects that the former configuration has never been

 * changed it returns an exception because it does not trigger an

 * activation of the former data.

 * @Precond: ACTIVATION_PHASE & COMPLETED or

 * ACTIVATION_PHASE & PARTLY_REALISED

 * @Postcond: FALLBACK_PHASE & COMPLETED or

 * FALLBACK_PHASE & PARTLY_REALISED

 * @Errcond: FALLBACK_PHASE & FAILED

 *

 * @Param: session_id

 *
 identifies the configuration session

 */

 void fallback(in SessionId session_id)

 raises (UnknownSessionIdException,

 NoFallbackException,

 TransitionStateException,

 ConcurrencyException);

 /* @Method: endSession

 * @Algorithm: synchronous

 * The IRPManager invokes this operation to delete all its temporary

 * entities and the related sessionId which belong to the scope of

 * a configuration session. This includes the related error and log

 * informationen too.

 * @Precond: not in a Transition state, s. IN_PROGRESS

 * @Postcond: sessionId is released

 *

 * @Param: sessionId

 *
 identifies the configuration session

 */

 void endSession(in SessionId session_id)

 raises (UnknownSessionIdException,

 TransitionStateException);

 /* @Method: abortSessionOperation

 * @Algorithm: asynchronous

 * The IRPManager invokes this operation to abort a configuration sesssion.

 * This operation can be called in any state. But it is only effecting

 * a configuration session in state IN_PROGRESS. In this case the

 * current session task is interrupted, e.g. the activating in progress

 * and a state change is notified

 * @Precond: none

 * @Postcond: if IN_PROGRESS then

 * (UPLOAD_PHASE and FAILED) or

 * (DOWNLOAD_PHASE and FAILED) or

 *

(ACTIVATION_PHASE and FAILED) or

 * (ACTIVATION_PHASE and PARTLY_REALISED)

 * @Param: session_id

 *
 identifies the configuration session

 */

 void abortSessionOperation(in SessionId session_id)

 raises (UnknownSessionIdException);

 /* @Method: getSessionIds

 * @Algorithm: synchronous

 * returns a list all sessionIds of current running configuration

 * sessions.

 * @Precond: none

 * @Postcond: none

 * @Errcond: none

 *

 */

 SessionIdList getSessionIds();

 /* @Method: get_basicCm_IRP_version

 * Get the version of the interface and all supported resource

 * model versions.

 * @Return: all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

};

};

#endif

Annex C (normative):
Itf-N CORBA IDL: BulkCmNotifications

/***

 *

 * Workfile:
 BulkCmNotifications_idl.idl

 * Revision: 2.0

 * State:
 draft

 *

 * PURPOSE: IDL definitions of the BulkCm IRPManager interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

; Rev 2.1 22 April 2001 Anders Frisk, LM Ericsson

;
updated after 3GPP SA5 meeting in Budapest

;

***/

#ifndef BULK_CM_NOTIFICATIONS_IDL

#define BULK_CM_NOTIFICATIONS_IDL

#include <BulkCmCommonTypes_idl.idl>

module BulkCmIRPSystem {

/* @Class: BulkCmNotifications

 * this class defines the notification interface of the IRPManager.

 * The control of a configuration session from IRPManager is based on the

 * session state notifications.

 */

interface BulkCmNotifications {

 // @Type: LogState

 // defines the different states at the end of an upload of a log file

 enum LogState { GET_LOG_COMPLETED,

 GET_LOG_FAILED

 };

 /* @Method: notify_SessionStateChanged

 * It informs the IRPManager about the session state changes of

 * a configuration session.

 * @Precond: none

 * @Postcond: changes into transmission states are not send.

 *

 * @Param: session_id

 *
 identifies the configuration session

 * @Param: session_event

 * state of the configuration

 * @Param: error_information

 *
 additional error information used when a task has failed.

 */

 void notify_SessionStateChanged (

 in SessionId session_id,

 in SessionState session_event,

 in ErrorInformation error_information);

 /* @Method: notify_LogState

 * It informs the IRPManager that the log file had been written to the

 * ftp area

 *

 * @Precond: none

 * @Postcond: state GET_LOG_COMPLETED or GET_LOG_FAILED

 *

 * @Param: session_id

 *
 the Log informnation belonging to the configuration session

 * @Param: log_event

 * state of the written log file

 * @Param: error_information

 *
 additional error information used when a task has failed.

 */

 void notify_LogState (in SessionId session_id,

 in LogState log_event,

 in ErrorInformation error_information);

};

};

#endif

 Annex D (informative):
Change history

Change history

Date
TSG #
TSG Doc.
CR
Rev
Subject/Comment
Old
New

_1051011465.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]Figure 1: UML Interface Class Diagram

 endSession()

 fallback()

 notification()

 getSessionIds()

 notify_SessionStateChanged()

implement

 get_basicCm_IRP_version()

 notify_LogState()

BulkCmNotifications

<<Interface>>

use

<<Interface>>

 upload()

 download()

 activate()

 getLog()

 startSession()

IRPAgent

 getSessionStatus()

 abortSessionOperation()

 subscribe()

 unsubscribe()

BulkCmOperations

implement

use

IRPManager

