
	3GPP TSG-SA5 (Telecom Management)

CM Ad-Hoc meeting #19bis, Budapest

17th – 20th Apr 2001
	
	Tdoc S5C010142

	Title:
	Nokia’s contribution for IDL definitions of S5C010089-BCM-CSS-Preliminary.doc

	
	

	Source:
	Nokia (juhana.hakkinen@nokia.com)

	
	

	Agenda item:
	8.6
S5C010089: TMF contribution - Bulk CM IRP: CORBA Solution Set (draft)

	
	

	Document for:
	Discussion and Decision

	
	

	
	

	Category:
	Comments and Contribution for CM group

	
	

	Document Summary:
	

	
	

	Specification(s) involved:
	

	
	

	
	

Background

Nokia has investigated Bulk CM IDL definition file and has found some errors and/or open issues on it.

Conclusion

Nokia proposes that these open issues are solved and errors are fixed before these IDL definitions will be introduced in the 3GPP specifications as a part of Bulk-data transfer IRP concept.

Annex A: Itf-N CORBA IDL: BulkCmCommonTypes

// @Module:
 MobileCommonConfiguarionManagement

// @Interface:
 N-Interface MCCM

// @Source file: mccm_BulkCmCommonTypes_idl.idl

/**

 *

 * Workfile: mccm_BulkCmCommonTypes_idl.id

 * Revision: 2.0

 * State:
 Draft Product defintion

 *

 * PURPOSE: IDL definitions of the common types of the BulkCm interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

***/

// MobileCommonConfigurationManagement

#ifndef MCCM_BULK_CM_COMMON_TYPES_IDL

#define MCCM_BULK_CM_COMMON_TYPES_IDL

/* @Type: MCCM_SessionId

 * For each started configuration session a unique identifier is generated

 * by the IRPManager. An sessionId can not be used for an upload if it is

 * already in use of a download configuration and vice versa.

 */

typedef string MCCM_SessionId;
 // "If" the meaning is that the document is common standard all references to MCCM hace to be deleted (?). Could be confusing for the people not familiar with MCCM.
/* @Type: MCCM_ErrorInformation

 * This string field is used in order to provide additional error information

 * on none working MCCM functionality.

 */

typedef string MCCM_ErrorInformation;

/* @Type: MCCM_SubPhase

 * defines the different subphases of a configuration session

 * e.g. thus it is easy to implement a detection of an upload

 *or a download/activate session.

 */

enum MCCM_SubPhase { MCCM_IDLE_PHASE,

 MCCM_DOWNLOAD_PHASE,

 MCCM_UPLOAD_PHASE,

 MCCM_ACTIVATION_PHASE,

 MCCM_FALLBACK_PHASE

};

/* @Type: MCCM_SessionSubState

 * defines the different substates of a configuration session. This includes

 * the transition state as well. The substate IDLE is only defined for

 * reasons of consistency to the IDLE_LEVEL.
 // The meaning of the above sentence needs to be clarified (from developer point of view it is hard to find the meaning – clarification important for the people not familiar with MCCM).
 */

enum MCCM_SubState { MCCM_COMPLETED,

 MCCM_FAILED,

 MCCM_PARTLY_REALISED,

 MCCM_IN_PROGRESS //transition state

};

/* @Type: MCCM_SessionState

 * defines state of a configuration session with the phase and the substate

 * of the configuration.

 */

struct MCCM_SessionState { MCCM_SubPhase sub_phase;

 MCCM_SubState sub_state;

};

#endif

Annex B: Itf-N CORBA IDL: BulkCmOperations

// @Module:
 MobileCommonConfiguarionManagement

// @Interface:
 N-Interface MCCM

// @Source file: mccm_BulkCmOperations_idl.idl

/**

 *

 * Workfile:
 mccm_BulkCmOperations_idl.idl

 * Revision: 2.0

 * State:
 Draft Product Definition

 *

 * PURPOSE: IDL definitions of the BulkCm EM interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;
 // General comment : If/When there will be changes in IDL specifications between 3GPP releases 4 and 5 the mechanism for handling the IDL versions have to be developed/provided e.g. in the case that 2 vendors are using (at the certain moment) 2 different versions of the IDL in their NEMs (MCCM have to have a posiibility to know which version is to be used with certain NEM).

 // General comment : user rights & password – current understanding of "user information" is that if the user has the access rights to MCCM tool s/he has also access right to do operations (Corba/ftp) over int-N (MCCM also stores the information about who made the operation).
***/

// MobileCommonConfigurationManagement

#ifndef MCCM_BULK_CM_OPERATIONS_IDL

#define MCCM_BULK_CM_OPERATIONS_IDL

#include <mccm_BulkCmNotifications_idl.idl>

// copied for compile cleaness from file CommonIRPConstDefs.idl

module CommonIRPConstDefs {

 typedef sequence <string> VersionNumberSet;

};

/* @Class: MCCM_BulkCm_Operations

 * this class defines the System interface of a EM. It defines all methods

 * which are necessary to control a configuration session from a IRPManager.

 */

interface MCCM_BulkCm_Operations {

 // Exceptions begin

 // The ActivationMode is not supported

 exception ActivationModeException {

 string reason;

 };

 // The addressed configuration session can not be performed because

 // of a concurrency situation

 exception ConcurrencyException {

 string reason;

 };

 // The string contents of type FilterType is not valid

 exception IllegalFilterFormatException {

 string reason;

 };

 // The string contents of type DistinguishedName is not valid

 exception IllegalDistinguishedNameFormatException {

 string reason;

 };

 // The value of the filter ScopeType is not valid

 exception IllegalScopeTypeException {

 string reason;

 };

 // The value of the filter level field is not valid

 exception IllegalScopeLevelException {

 string reason;

 };

 // The maximum number of subscriber is exceeded

 exception MaxSubscriberException{

string reason;

 };

 // No fallback position has been saved

 exception NoFallbackException{};

 // The value of the sessionId is already in used by a current

 // configuration session

 exception SessionIdInUseException {

 string reason;

 };

 // The addressed configuration session is in a Transition state:

 // s. substate IN_PROGRESS

 exception TransitionStateException {

 string reason;

 };

 // the subscriber is not known

 exception UnknownSubscriberException{

 string reason;

 };

 // The value of the sessionId does not identify a configuration session

 exception UnknownSessionIdException{};

 // Exceptions end

 // New exception needed : "PreconditionViolatedException" – i.e. no previous operation done e.g. you try to Activate without Download or Fallback without Activation.
 /* @Type: ActivationMode

// ActivationMode implementation have to be stated as optional (decision about implementation/support have to made based on agreement between operator and vendor).

 * in most cases it can shorten the activation time of new configuration

 * data within the mobile subnetwork if the IRPManager suggest an

 * activation mode. E.g. a low amount of configuration data will be

 * indicated with the mode "soft" thus the EM could decide to introduce

 * the configurations changes to the subnetwork via single commands

 * instead of exchanging the complete MIB of a network element.

 */

 enum ActivationMode {

 SOFT_ACTIVATE,

 HARD_ACTIVATE

 };

// "… subnetwork if the IRPManager suggest an activation mode" – if "only" suggest the exception "ActivationModeException" not really needed/required because of "proposition". If wording is changed from "suggest" to "require"/"command" the exception is relevant. If this is left as it is – it's a vendor task to define if the exception is implemented or if "activationMode" is simply skipped. Btw, we prefer the current wording but it have to be stated that it is vendor task to define if exception is used or not.
 /* @Type:MCCM_SessionIdList

 * contains the list of all current sessionIds

 */

 typedef sequence<MCCM_SessionId> MCCM_SessionIdList;

 /* @Type: FileDestination

 * specifies a ftp path and filename.

 */

 typedef string FileDestination;

 /* @Type: DistinguishedName

 * The format of Distinguished Name is specified in

 * the Naming Conventions for Managed Objects; 3G TS 32.106 Annex H.

 * e.g. "g3SubNetwork=10001,g3ManagedElement=400001" identifies an

 * G3ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /* @Type: FillterType
// FilterType implementation have to be stated as optional (decision about implementation/support have to made based on agreement between operator and vendor).

 * is used within in the upload function in order to give a filter criteria

 * for the confiuration data which will be uploaded. In general there are

 * three different kind of string information as a filter argument to the

 * object model:

 * @Subtype: IM_Identifier

 * the contents depends on the used scope within the struct

 * e.g .className="ExternalUtranCell" or

 * e.g. attributeName="externalCellId"

 * e.g. attributeValue="powerControlAttributes", s. vsDataType
 // Some more clarification to the last example needed. It is unclear how the attribute value can be something like in above example.
 * The name or value must fit to the definition of the object model.

 * @Subtype: LogicalOperator

 * How a filter string gets evaluated is defined by the given

 * logical operator:

 * EQUAL: the related string value must equal

 * NOT: the related string must not equal

 * DONT_CARE: the related string is not evaluated as filter criteria

 * (substitutes null string evaluation)

 * Restriction: The support of the logical operator NOT is only required

 * for className. The support of the attribute value is only

 * required for base types or value names of vsDataType.

 */
 // Clarification e.g. example needed about "base types" and "value names" that people who are not involved in MCCM can understand them.
 typedef string IM_Identifier;

 enum LogicalOperator { EQUAL,

 NOT,

 DONT_CARE };

 struct FilterAttributeValue { IM_Identifier attributeValue;

 LogicalOperator operator; };

 struct FilterAttribute { IM_Identifier attributeName;

 FilterAttributeValue attrValueStruct;

 LogicalOperator operator; };

 struct FilterClassType { IM_Identifier className;

 LogicalOperator operator;};

 struct FilterType { FilterClassType filter_classType;

 FilterAttribute filter_attribute; };
 /* @Type: ScopeType

 * defines the kind of scope to use in a search together with

 * SearchControl.level, in a SearchControl value.

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * @Value: BASE_ONLY

 *
 level ignored, just return the base object.

 * @Value: BASE_NTH_LEVEL

 * return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * @Value: BASE_SUBTREE

 * return the base object and all of its subordinates

 *
 down to and including the nth level.

 * @Value: BASE_ALL

 * level ignored, return the base object and all of

 * it's subordinates

 */
 // "The old question" : When tha upload is requested e.g. for a RNC and all objects below it – does the upload file include common, VSD or both data and can we separate it.

How about the case that there are 2 vendors with 2 different object models – how we can get the same data from both vendors with one upload operation ? Seems impossible for me.

Btw, This is not an requirement – just a note and statement that more information may have needed. And also one base for the requirement that filter implementation has to be optional and agreed between an operator and a vendor.
 enum ScopeType {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /* @Type: SearchControl

 * controls the searching for MOs during upload, and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field),

 * the filter ("filter" field),

 * The type and level fields are mandatory.

 * The filter field is optional (defined by an empty string).
 */
 // "String" not valid – defined as a "Struct" earlier.

 struct SearchControl {

 ScopeType type;

 unsigned long level;

 FilterType filter;
 // optional paramter

 };

 // Reason for "long" ? ("Short" should be enough ?).
 /* @Method: upload

 * @Algorithm: asynchronous

 * Uploads a configuration from the subnetwork. The result is put in a

 * XML file in a ftp area specified by the IRPManager.
 // Acc. to above there is one (1) file. Of course, the size of the file is depending on the upload scope but e.g. in the situation that RNC and all it's child objects are uploaded the file size would be 10-20M. I'd like to ask XML experts to study how parsers can handle the files of that size (DOM used vs. SAX used) ? This is not a problem in NEM level but maybe in MCCM level.
 * The MIB of the subnetwork is iterated by means of containment search,

 * using a SearchControl to control the search and the returned results.

 * All MOs in the scope constitutes a set that the filter works on.

 * In case of a concurrent running session the function will

 * return an exception. If the value of the given baseObject or FiterType

 * does not exist then this asynchronous error condition will be notified.

 * @Precond: MCCM_IDLE_PHASE & MCCM_COMPLETED or

 * MCCM_UPLOAD_PHASE & MCCM_FAILED

 * @Postcond: MCCM_UPLOAD_PHASE & MCCM_COMPLETED

 * @Errcond: MCCM_UPLOAD_PHASE & MCCM_FAILED

 *

 * @Param: session_id

 * identifies the configuration session

 * @Param: sink

 * specifies the FTP address and filename where the result

 * shall be placed in the file by the EM.

 *
 It shall contain an URL: "ftp://<path>/<filename>"
 // FTP username and password ? To be included in URL ?
 // "IllegalURLFormatException" needed.
 * @Param: baseObject

 * The start MO in the containment tree. A null here means

 * the search shall start at the subnetwork root instance.

 * @Param: search_control

 *
 the SearchControl to use.

 */

 void upload(in MCCM_SessionId session_id,

 in FileDestination sink,

 in DistinguishedName base_object,

 in SearchControl search_control)

 raises(UnknownSessionIdException,

TransitionStateException,

ConcurrencyException,

 IllegalDistinguishedNameFormatException,

 IllegalFilterFormatException,

 IllegalScopeTypeException,

 IllegalScopeLevelException

);

 /* @Method: download

 * @Algorithm: asynchronous

 * Indicates the EM that it can download a configuration XML file from

 * a given ftp area. The downloaded XML file will be parsed and checked

 * against the XML schema. The EM will check the consistence of the

 * configuration data and the software compatibilty.
 // XML schema implementation has to be stated as optional (Implementation issue : have to be freedom to select the checking-method in a NEM).
 // The use of XML schema : It also has to be possible to skip in download if it is noticed to be slow (and other checking methods available).
 * @Precond: MCCM_IDLE_PHASE & MCCM_COMPLETED or

 * MCCM_DOWNLOAD_PHASE & MCCM_FAILED

 * @Postcond: MCCM_DOWNLOAD_PHASE & MCCM_COMPLETED

 * @Errcond: MCCM_DOWNLOAD_PHASE & MCCM_COMPLETED

 *

 * @Param: session_id

 * identifies the configuration session

 * @Param: source

 *
 specifies the FTP address and the filname where the new

 * configuration shall be fetched by the EM.

 * It shall contain an URL: "ftp://<path>/<filename>"

 */

 void download(in MCCM_SessionId session_id,

 in FileDestination source)

 raises (UnknownSessionIdException);

 /* @Method: activate

 * @Algorithm: asynchronous

 * Activates a previously downloaded and sucessfully parsed configuration.
 // " …. Inside a session …" (to be added for the clarification point of view).
 * This means that the configuration will be introduced in the live

 * sub-network. In case of a concurrent running session the function will

 * return an exception.

 * @Precond: MCCM_DOWNLOAD_PHASE & MCCM_COMPLETED or

 * MCCM_ACTIVATION_PHASE & MCCM_PARTLY_REALISED or

 * MCCM_ACTIVATION_PHASE & MCCM_FAILED

 * @Postcond: MCCM_ACTIVATION_PHASE & MCCM_COMPLETED or

 * MCCM_ACTIVATION_PHASE & MCCM_PARTLY_REALISED

 * @Errcond: MCCM_ACTIVATION_PHASE & MCCM_FAILED

 *

 * @Param: session_id

 *
 defines a configuration session created by a subscribe

 * @Param: activation_mode

 *
 the IRPManager suggest an activation mode.

 * @Param: fallback

 * if TRUE a fallback position will be saved before configuration

 * data are changed. If FALSE no fallback will be saved.

 */

 void activate(in MCCM_SessionId session_id,

 in ActivationMode activation_mode,

 in boolean fallback)

 raises (UnknownSessionIdException,

 TransitionStateException,

 ConcurrencyException,

 ActivationModeException);

 // refer to "ActivationMode" and comments to it i.e. to be optional and decided by vendor if implemented or not.

 // As stated in exceptions : " New exception needed : "PreconditionViolatedException" – i.e. no previous operation done e.g. you try to Activate without Download or Fallback without Activation.

 /* @Method: getLog

 * @Algorithm: asynchronous

 * Uploads an log from the subnetwork which is usally used for error

 * analysis. The log is put in an XML file in the filesystem which can

 * be accessed by the EM. If there are no log entries an empty log file

 * is uploaded.

 * @Precond: none

 * @Postcond: event send MCCM_GET_LOG_COMPLETED

 * @Errcond: event send MCCM_GET_LOG_FAILED

 *

 * @Param: sink

 * specifies the FTP address and filename where the result

 * shall be placed in the by the EM.

 *
 It shall contain an URL: "ftp://<path>/<filename>"

 * @Param: session_id
 *
 defines a configuration session created by a subcribe
 // The order of above parameters have to be changed (that they are in line with other methods)

 // " … created by a subcribe" to be " … created by StartSession".
 * @Param: only_error_info

 * if TRUE only error information is put into file.
 */
 // If FALSE all information is put into file (to be added).

 void getLog(in FileDestination sink,

 in MCCM_SessionId session_id,

 in boolean only_error_info)

 raises (UnknownSessionIdException,

 ConcurrencyException);

 /* @Method: startSession

 * @Algorithm: asynchronous

 * creates an instance of the configuration session state machine. The

 * MCCM_IDLE_PHASE & MCCM_COMPLETED is notified. This entry point enables

 * together with the reset function an IRPManager to control

 * a session with a maximum of flexibilty.

 * @Precond: session_id not in use

 * @Postcond: MCCM_IDLE_PHASE & MCCM_COMPLETED

 *

 * @Param: session_id

 * defines the configuration to subscribe on
 // " …. to be started"
 * @Param: subscriber

 * defines the subscriber which is a handle to the IRPManager.

 */
 // To be deleted (?) : not used in the following "void" – clause OR has to be added to "void" – clause.
 void startSession(in MCCM_SessionId session_id)

 raises(SessionIdInUseException);

 /* @Method: getSessionStatus

 * @Algorithm: synchronous

 * Returns the state of a configuration session.

 * states.

 * @Precond: none

 * @Postcond: none

 * @Errcond: none

 *

 * @Param: session_id

 *
 defines the configuration to subscribe on

 * @Param: error_info

 *
 defines error information which gives the IRPManager

 * additional information when a task has failed.

 * @Return:the current status of the configuration

 */

 MCCM_SessionState

 getSessionStatus(in MCCM_SessionId session_id,

 out MCCM_ErrorInformation error_information)

 raises (UnknownSessionIdException);

 // To be aligned : error_info vs. error_information
 //Param: error_info has to be optional. Some information/clarification needed what this one should return.
 /* @Method: fallback

 * @Algorithm: asynchronous

 * Actives a fallback area. Each time a configuration is activated a

 * fallback area can be created, s. activate parameter.

 * This area is backup of the complete configuration which can be

 * restored by this method. The process is as follows:
 // " complete configuration" should be " complete radio network configuration" (i.e we have to be careful with "terms" that there is no misunderstanding danger)
 // " complete configuration " - implementation question : vendor should be possible to define if the complete configuration is fallbacked or if only changed configuration is fallbacked. This should be stated here.
 * 1. When the method activate(...,..., TRUE) is used,

 * a copy of the valid area is taken before the activation

 * of the new planned data has started. Only one fallback area can

 * exists at a time for a specific scope of the subnetwork.
 // Clarification to be added : e.g. 1 RNC can be in 1 fallback area (inside the session).
 * 2. When a fallback area is avilable and triggered by this method, the

 * previous valid area is replaced with the data stored in

 * the fall back area.

 * If the EM detects that the former configuration has never been

 * changed it returns an exception because it does not trigger an

 * activation of the former data.
 // A clarification needed what to do in "activation retry" situation : new fallback or exception ? We prefer the method that if the fallback is already taken/saved the original fallback is used in "retry" situation (especially in "partly-realised" that we do not lost the original by accident).
 // General comment about "retry" in activation : should be NEM task to decide how the new try is performed e.g. in "partly-realised" situation : only missing part of activation or totally new activation.
 * @Precond: MCCM_ACTIVATION_PHASE & MCCM_COMPLETED or

 * MCCM_ACTIVATION_PHASE & MCCM_PARTLY_REALISED

 * @Postcond: MCCM_FALLBACK_PHASE & MCCM_COMPLETED or

 * MCCM_FALLBACK_PHASE & MCCM_PARTLY_REALISED

 * @Errcond: MCCM_FALLBACK_PHASE & MCCM_FAILED

 *

 * @Param: session_id

 *
 identifies the configuration session

 */

 void fallback(in MCCM_SessionId session_id)

 raises (UnknownSessionIdException,

 NoFallbackException,

 TransitionStateException,

 ConcurrencyException);

 // As stated in exceptions : " New exception needed : "PreconditionViolatedException" – i.e. no previous operation done e.g. you try to Activate without Download or Fallback without Activation.
 /* @Method: endSession

 * @Algorithm: synchronous

 * The IRPManager invokes this operation to delete all its temporary

 * entities and the related sessionId which belong to the scope of

 * a configuration session. This includes the related error and log

 * informationen too.
 // Should be possible to define with a parameter (true/false) if the temporary entities are deleted or not or it should be stated that entities "are free to delete". This is based on the situation that the downloaded plan can be handled with other tool(s) than MCCM e.g. download from MCCM and activation with vendor specific tool (could be a situation that planning is done globally but activation is only allowed to perform in region level).
 * @Precond: not in a Transition state, s. MCCM_IN_PROGRESS

 * @Postcond: sessionId is released

 *

 * @Param: sessionId

 *
 identifies the configuration session

 */

 void endSession(in MCCM_SessionId session_id)

 raises (UnknownSessionIdException,

 TransitionStateException);

 // General about endSession : Should be possible to perform "endSession" automatically (e.g. by NEM) if the session has been "ON" over the defined time limitation e.g. in the situation that the user has forgotten to perform "endSession". Should be defined in state machine description.
 /* @Method: abortSessionOperation

 * @Algorithm: asynchronous

 * The IRPManager invokes this operation to abort a configuration sesssion.

 * This operation can be called in any state. But it is only effecting

 * a configuration session in state MCCM_IN_PROGRESS. In this case the

 * current session task is interrupted, e.g. the activating in progress

 * and a state change is notified
 // "Best effort" strategy to be used : can be the situation that e.g. RNC have to do it's current task completely before abort can be performed (e.g. to avoid the situation that the network will go disorganised situation or an old NE do not know the command).
 * @Precond: none

 * @Postcond: if MCCM_IN_PROGRESS then

 * (MCCM_UPLOAD_PHASE and MCCM_FAILED) or

 * (MCCM_DOWNLOAD_PHASE and MCCM_FAILED) or

 *

(MCCM_ACTIVATION_PHASE and MCCM_FAILED) or

 * (MCCM_ACTIVATION_PHASE and MCCM_PARTLY_REALISED)

 * @Param: session_id

 *
 identifies the configuration session

 */

 void abortSessionOperation(in MCCM_SessionId session_id)

 raises (UnknownSessionIdException);
 // For the situations that the sessionState is different than "in_progress" the exception "AbortNotAllowedException" is needed (or something like that).
 /* @Method: subscribe

 * @Algorithm: synchronous

 * This is the initial method for the IRPManager to register at the system.

 * This registration ensures that the it gets all seesion state and

 * log state notifications. The subscription can be started at anytime.

 * @Precond: max. number of subcriber in not exceeded

 * @Postcond: no

 * @Errcond: none

 *

 * @Param: subscriber

 * defines the subscriber which is a handle to the IRPManager.

 */

 void subscribe(in MCCM_BulkCm_Notications subscriber)

 raises (MaxSubscriberException);

 /* @Method: unsubscribe

 * @Algorithm: synchronous

 * the IRPManager unregister at the system. Notification are not anymore

 * send to the IRPManager.

 * @Precond: none

 * @Postcond: new subcribe possible

 * @Errcond: none

 *

 * @Param: subscriber

 * defines the subscriber which is a handle to the IRPManager.

 */

 void unsubscribe(in MCCM_BulkCm_Notications subscriber)

 raises (UnknownSubscriberException);

 /* @Method: getSessionIds

 * @Algorithm: synchronous

 * returns a list all sessionIds of current running configuration

 * sessions.

 * @Precond: none

 * @Postcond: none

 * @Errcond: none

 *

 */

 MCCM_SessionIdList getSessioIds();

 /* @Method: get_basicCm_IRP_version

 * Get the version of the interface and all supported resource

 * model versions.

 * @Return: all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

};

#endif

Annex C: Itf-N CORBA IDL: BulkCmNotifications

// @Module:
 MobileCommonConfiguarionManagement

// @Interface:
 N-Interface MCCM

// @Source file: mccm_BulkCmNotifications_idl.idl

/***

 *

 * Workfile:
 mccm_BulkCmNotificatios_idl.id

 * Revision: 2.0

 * State:
 draft

 *

 * PURPOSE: IDL definitions of the BulkCm IRPManager interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

***/

// MobileCommonConfigurationManagement

#ifndef MCCM_BULK_CM_NOTIFICATIONS_IDL

#define MCCM_BULK_CM_NOTIFICATIONS_IDL

#include <mccm_BulkCmCommonTypes_idl.idl>

/* @Class: MCCM_BulkCm_Notications

 * this class defines the notification interface of the IRPManager.

 * The control of a configuration session from IRPManager is based on the

 * session state notifications.

 */

interface MCCM_BulkCm_Notications {

 // @Type: LogState

 // defines the different states during the upload of a log file
 enum LogState { GET_LOG_COMPLETED,

 GET_LOG_FAILED

 };

 // Should be " … in the end of upload …."

 /* @Method: notify_SessionStateChanged

 * It informs the IRPManager about the session state changes of

 * a configuration session.

 * @Precond: none

 * @Postcond: changes into transmission states are not send.

 *

 * @Param: session_id

 *
 identifies the configuration session

 * @Param: session_event

 * state of the configuration

 * @Param: error_information

 *
 additional error information used when a task has failed.

 */
 // usage of the error_information ? only when failed ?

 // Should be aligned with "Bulk data tranfer IRP"

 void notify_SessionStateChanged (

 in MCCM_SessionId session_id,

 in MCCM_SessionState session_event,

 in MCCM_ErrorInformation error_information);

 /* @Method: notify_LogState

 * It informs the IRPManager that the log file had been written to the

 * ftp area

 *

 * @Precond: none

 * @Postcond: state MCCM_Get_LOG_COMPLETED or MCCM_GET_LOG_FAILED

 *

 * @Param: session_id

 *
 the Log informnation belonging to the configuration session

 * @Param: log_event

 * state of the written log file

 * @Param: error_information

 *
 additional error information on log file.

 */

 // error_information : to be " additional error information on the request of an upload of a log file " i.e. errors in log file writing
// Should be aligned with "Bulk data tranfer IRP"

 void notify_LogState (in MCCM_SessionId session_id,

 in LogState log_event,

 in MCCM_ErrorInformation error_information);

};

#endif

19.04.2001
mccm_infoServices.doc
page 1of 16
CR Page 16

