3GPP TS 32.106-3 v3.2.0 (2000-12)
CR page 11

3GPP TSG-SA5 (Telecom Management)

Meeting #17, Sophia Antipolis, FRANCE, 22 ‑ 26 Jan 2001
SA5#16(00)0xyz

Tdoc S5C010003

CR-Form-v3

CHANGE REQUEST

(

32.106-3
CR
CR-Num
(

rev
-
(

Current version:
3.2.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network
X
Core Network
X

Title:
(

Mismatched Subscription Id Types

Source:
(

3GPP Working Group SA5

Work item code:
(

Date: (

5 January 2001

Category:
(

D

Release: (

REL-4

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

Subscription Id is an attribute used in 3GPP TS 32.106-3. However, the same attribute is set to different types. In attach_push, attach_push_b and attach_pull, it is declared as type NotificationIRPConstDefs::SubscriptionId. In detach, get_subscription_status and change_subscription_filter, it is declared as type string. This proposes that all uses of Subscription Id be of the same type.

Summary of change:
(

Change detach, get_subscription_status and change_subscription_filter use of Subscription Id to be of type NotificationIRPConstDefs::SubscriptionId.

Consequences if
(

not approved:
Application developers will need to switch between the different types.

Clauses affected:
(

5, Annex A

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

Requires the IDL compiler error in S5C010002 to also be applied.

5
Mapping

5.1
Operation mapping

Notification IRP: IS (3GPP TS 32.106-2 [5]) defines semantics of operations visible across this IRP.

Table 1 maps the operations defined in Notification IRP: IS (3GPP TS 32.106-2 [5]) to their equivalents (methods) in this Solution Set (SS). It also qualifies if a method is Mandatory (M) or Optional (O)

Table 1: Mapping from IS Operation to SS Equivalents

IS Operations in 3GPP TS 32.106-2 [5]
SS Methods
Qualifier

subscribe
attach_push, attach_push_b, attach_pull
M, O, O

unsubscribe
detach
M

get Notification IRPVersion
get_notification_IRP_version
M

get Subscription Status
get_subscription_status
O

getSubscriptionIds
get_subscription_ids
O

change Subscription Filter
If subscription is established using attach_push method, the SS equivalent shall be change_subscription_filter. The IDL specification of this method is included in Annex A. This method is Optional (O).

If subscription is established using attach_push_b method, the SS equivalent shall be modify_constraints. The method is defined in OMG Notification Service Filter Interface (OMG TC Document telecom [2]). The IDL specification of this method is not included in Annex A. If IRPAgent supports the optional attach_push_b method, it shall support this method as mandatory.

If subscription is established using attach_pull method, the SS equivalent shall be modify_constraints. The method is defined by OMG Notification Service Filter Interface (OMG TC Document telecom [2]). The IDL specification of this method is not included in Annex A. If IRPAgent supports the optional attach_pull method, it shall support this method as mandatory.
See box on the left.

suspend Subscription
If subscription is established using attach_push, there is no SS equivalent. In other words, IRPManager cannot suspend subscription.

If subscription is established using attach_push_b, the SS equivalent shall be suspend_connection. This method is defined by OMG Notification Service (OMG TC Document telecom [2]). The IDL specification of this method is not included in Annex A. If IRPAgent supports the optional attach_push_b method, it shall support this method as mandatory.

If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

resume Subscription
If subscription is established using attach_push, there is no SS equivalent. In other words, IRPManager cannot resume subscription.

If subscription is established using attach_push_b, the SS equivalent shall be resume_connection. This method is defined by OMG Notification Service (OMG TC Document telecom [2]). The IDL specification of this method is not included in Annex A. If IRPAgent supports the optional attach_push_b method, it shall support this method as mandatory.

If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

get Notification Categories
get_notification_categories
O

5.2 Operation parameter mapping

3GPP TS 32.106-2 [5] defines semantics of parameters carried in operations across the Notification IRP. Table 2 through table 12 indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS subscribe parameters to SS attach_push equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Categories
NotificationIRPConstDefs::NotificationCategorySet notification_category_set
O

filter
string filter (See NOTE)
O

subscriptionId
Return value of type NotificationIRPConstDefs::SubscriptionId
M

status
Attach, ParameterNotSupported, InvalidParameter, AlreadySubscribed, AtLeastOneNotificationCategoryNotSupported
M

NOTE:
The grammar of the filter string is extended_TCL defined by OMG Notification Service (OMG TC Document telecom [2]). This grammar shall be the only one used for Alarm IRP: CORBA SS.

Table 3: Mapping from IS subscribe parameters to SS attach_push_b equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Categories
NotificationIRPConstDefs::NotificationCategorySet notification_category_set
O

filter
string filter
O

subscriptionId
Return value of type NotificationIRPConstDefs::SubscriptionId
M

Not specified in IS
CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference (See NOTE)
M

status
Attach, OperationNotSupported, ParameterNotSupported, InvalidParameter, AlreadySubscribed, AtLeastOneNotificationCategoryNotSupported
M

NOTE:
IRPAgent provides this reference to which IRPManager can invoke methods to manage the subscription. Valid methods are not defined in this IRP. OMG CORBA Notification Service defines these methods. Read interface SequencePushSupplier:proxySupplier, CosNotifyComm::SequencePushSupplier{}. IRPManager is expected to invoke connect_sequence_push_consumer() of this interface to connect its own cosNotifyComm::sequencePushConsummer with this reference. After successful connection, IRPAgent pushes sequence of Structured Events towards IRPManager.

Table 4: Mapping from IS subscribe parameters to SS attach_pull equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Categories
NotificationIRPConstDefs::NotificationCategorySet notification_category_set
O

filter
string filter
O

subscriptionId
Return value of type NotificationIRPConstDefs::SubscriptionId
M

Not specified in IS.
CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference
M

status
Attach, OperationNotSupported, ParameterNotSupported, InvalidParameter, AlreadySubscribed, AtLeastOneNotificationCategoryNotSupported
M

Table 5: Mapping from IS unsubscribe parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

subscriptionId
NotificationIRPConstDefs::SubscriptionId subscription_id
O

status
Detach,InvalidParameter
M

Table 6: Mapping from IS getNotificationIRPVersion parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

versionNumber List
Return value of type CommonIRPConstDefs::VersionNumberSet
M

status
GetNotificationIRPVersion
M

Table 7: Mapping from IS getSubscriptionStatus parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
NotificationIRPConstDefs::SubscriptionId subscription_id
M

notification CategoryList
Return value of type NotificationIRPConstDefs::NotificationCategorySet
M

filterInEffect
string filter_in_effect
O

subscription State
NotificationIRPConstDef::SubscriptionState subscription_state
O

timeTick
long time_tick
O

status
GetSubscriptionStatus,OperationNotSupported,InvalidParameter
M

Table 8: Mapping from IS getSubscriptionIds parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

subscriptionIdList
Return value of type NotificationIRPConstDefs::SubscriptionIdSet
M

status
GetSubscriptionIds,OperationNotSupported,InvalidParameter
M

Table 9: Mapping from IS changeSubscriptionFilter parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
NotificationIRPConstDefs::SubscriptionId subscription_id
M

filter
string filter
M

status
ChangeSubscriptionFilter,OperationNotSupported,InvalidParameter
M

Table 10: Mapping from IS suspendSubscription parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is suspend_connection. This method is defined by OMG Notification Service (OMG TC Document telecom [2]) and requires no parameter. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

status
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is suspend_connection. This method is defined by OMG Notification Service (OMG TC Document telecom [2]) and it returns a void. Therefore, there is no SS equivalent for this IS parameter. This suspend_connection method can raise OMG Notification Service (OMG TC Document telecom [2]) defined exception called ConnectionAlreadyInactive.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

Table 11: Mapping from IS resumeSubscription parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is resume_connection. This method is defined by OMG Notification Service (OMG TC Document telecom [2]) and requires no parameter. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

status
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is resume_connection. This method is defined by OMG Notification Service (OMG TC Document telecom [2]) and returns a void. Therefore, there is no SS equivalent for this IS parameter. This resume_connection method can raise OMG Notification Service (OMG TC Document telecom [2]) defined exception called ConnectionAlreadyActive.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

Table 12: Mapping from IS getNotificationCategories parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

notification CategoryList
Return value of type NotificationIRPConstDefs::NotificationCategorySet
M

eventTypeList
NotificationIRPConstDefs::EventTypesSet event_type_list
O

extendedEvent TypeList
NotificationIRPConstDefs::ExtendedEventTypesSet extended_event_type_list
O

status
GetNotificationCategories,OperationNotSupported
M

5.3
Notification parameter mapping

Notification IRP: IS (3GPP TS 32.106-2 [5]) defines a generic notify and its parameters. This SS does not provide the mapping of these parameters to their CORBA SS equivalents.

Other IRPs using the Notification IRP such as Alarm IRP: IS (3GPP TS 32.111-2 [6]) extend the generic notify for their specific use. Their corresponding SS documents shall define the mapping from their specific notification parameters (defined in their IS document) to their SS equivalents. These SS documents shall qualify their SS equivalents as well.

5.4
Attribute mapping

Notification IRP: IS (3GPP TS 32.106-2 [5]) defines the semantics of common attributes carried in notifications. This SS does not provide the mapping of these attributes to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS (3GPP TS 32.111-2 [6]) identify and qualify these common attributes for use in their environment. Their corresponding SS documents define the mapping of these attributes to their SS equivalents.

Annex A (normative):
Notification IRP CORBA IDL

/* ## Module: CommonIRPConstDefs

This module contains definitions commonly used among all IRPs such as Alarm IRP.

==

*/

#ifndef CommonIRPConstDefs_idl

#define CommonIRPConstDefs_idl

#include <TimeBase.idl>

#pragma prefix "3gppsa5.org"

module CommonIRPConstDefs {

 /*

 Definition imported from CosTime. The time refers to time in Greenwich

 Time Zone. It also consists of a time displacement factor in the form

 of minutes of displacement from the Greenwich Meridian.

 */

 typedef TimeBase::UtcT IRPTime;

 enum Signal {OK, Failure, PartialFailure};

 typedef sequence <string> VersionNumberSet;

};

#endif

/* ## Module: NotificationIRPConstDefs

This module contains definitions specific to Notification IRP.

==

*/

#ifndef NotificationIRPConstDefs_idl

#define NotificationIRPConstDefs_idl

#pragma prefix "3gppsa5.org"

module NotificationIRPConstDefs {

 /*

 This is a string sequence identifying notification categories.

 A notification category is identified by the IRP name and its version.

 */

 typedef sequence <string> NotificationCategorySet;

 /*

 This is a sequence of strings identifying event types of a particular

 notification category.

 */

 typedef sequence <string> EventTypesPerNotificationCategory;

 /*

 This sequence identifies all event types of all notification categories

 identified by NotificationCategorySet. The number of elements in this

 sequence shall be identical to that of NotificationCategorySet.

 */

 typedef sequence <EventTypesPerNotificationCategory> EventTypesSet;

 /*

 This is a sequence of strings identifying extended event types of

 a particular notification category.

 */

 typedef sequence <string> ExtendedEventTypePerNotificationCategory;

 /*

 This sequence identifies all extended event types of all notification

 categories identified by NotificationCategorySet. The number of elements

 in this sequence shall be identical to that of NotificationCategorySet.

 */

 typedef sequence <ExtendedEventTypePerNotificationCategory>

 ExtendedEventTypesSet;

 typedef sequence <long> NotifIDSetType;

 /*

 This holds identifiers of notifications that are correlated.

 */

 struct CorrelatedNotification {

 string source; // Contains DN of MO that emitted the set of notifications

 // DN string format in compliance with Name Convention for

 // Managed Object.

 // This may be a zero-length string. In this case, the MO

 // is identified by the value of the MOI parameter-attribute

 // of the Structured Event, i.e., the notification.

 NotifIDSetType notifIDSet;

 };

 /*

 Correlated Notification sets are sets of Correlated Notification

 structures.

 */

 typedef sequence <CorrelatedNotification> CorrelatedNotificationSetType;

 /*

 This is a sequence of strings identifying Subscription Ids.

 */

 typedef string SubscriptionId;

 typedef sequence <SubscriptionId> SubscriptionIdSet;

 /*

 This block encapsulates valid strings carried in domain_name of

 structured event header. It carries the name of IRP and its

 corresponding CORBA SS version number. They are the returned

 values for get_XXX_IRP_version() as well.

 */

 const string ALARM_IRP_VERSION_1_1 = "1f1"; //alarm IRP 1:1

 const string CONFIGURATION_IRP_VERSION_1_1 = "1c1"; //CM IRP 1:1

 /*

 This string is used as return value for get_notification_irp_version()

 */

 const string NOTIFICATION_IRP_VERSION_1_1 = "1n1"; //Notification IRP 1:1

 /*

 This block encapsulates string used in the name of the Name Value

 pair of the structured event.

 */

 const string NV_NOTIFICATION_ID = "a";

 const string NV_CORRELATED_NOTIFICATIONS = "b";

 const string NV_EVENT_TIME = "c";

 const string NV_SYSTEM_DN = "d";

 const string NV_MANAGED_OBJECT_CLASS = "e";

 const string NV_MANAGED_OBJECT_INSTANCE = "f";

 const string NV_PROBABLE_CAUSE = "g";

 const string NV_PERCEIVED_SEVERITY = "h";

 const string NV_SPECIFIC_PROBLEM = "i";

 const string NV_ADDITIONAL_TEXT = "j";

 const string NV_ALARM_ID = "k";

 const string NV_ACK_USER_ID = "l";

 const string NV_ACK_TIME = "m";

 const string NV_ACK_SYSTEM_ID = "n";

 const string NV_ACK_STATE = "o";

 const string NV_BACKED_UP_STATUS = "p";

 const string NV_BACK_UP_OBJECT = "q";

 const string NV_THRESHOLD_INFO = "r";

 const string NV_TREND_INDICATION = "s";

 const string NV_STATE_CHANGE_DEFINITION = "t";

 const string NV_MONITORED_ATTRIBUTES = "u";

 const string NV_PROPOSED_REPAIR_ACTIONS = "v";

 /*

 This indicates if the subscription is active (not suspended) or inactive.

 */

 enum SubscriptionState {Inactive, Active, DontKnow};

};

#endif

/* ## Module: NotificationIRPSystem

 This module implements capabilities of IRPAgent specified in Notification

 IRP: Information Service version 1 and its equivalents in Notification

 IRP: CORBA Solution Set version 1:1.

 ==

*/

#ifndef NotificationIRPSystem_idl

#define NotificationIRPSystem_idl

#include "CosNotifyComm.idl"

#include "CosNotifyChannelAdmin.idl"

#include "NotificationIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

#pragma prefix "3gppsa5.org"

module NotificationIRPSystem {

/*

 System fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception Attach { string reason; };

 exception DetachException { string reason; };

 exception GetSubscriptionStatus { string reason; };

 exception GetSubscriptionIds { string reason; };

 exception ChangeSubscriptionFilter { string reason; };

 exception GetNotificationCategories { string reason; };

 exception GetNotificationIRPVersion { string reason; };

 exception ParameterNotSupported { string parameter; };

 // name of the unsupported parameter as defined in IDL

 exception InvalidParameter { string parameter; };

 // name of the parameter as defined in IDL

 exception OperationNotSupported {};

 exception AlreadySubscribed {};

 exception AtLeastOneNotificationCategoryNotSupported {};

interface NotificationIRPOperations {

 /* ## Operation: attach_push

 */

 NotificationIRPConstDefs::SubscriptionId attach_push (

 in Object manager_reference,

 in long time_tick,

 in NotificationIRPConstDefs::NotificationCategorySet

 notification_category_set,

 in string filter

)

 raises (Attach, ParameterNotSupported, InvalidParameter, AlreadySubscribed,

 AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: attach_push_b

 */

NotificationIRPConstDefs::SubscriptionId attach_push_b (

 in Object manager_reference,

 in long time_tick,

 in NotificationIRPConstDefs::NotificationCategorySet

 notification_category_set,

 in string filter,

 out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

)

 raises (Attach,OperationNotSupported,ParameterNotSupported,InvalidParameter,AlreadySubscribed,AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: attach_pull

 */

NotificationIRPConstDefs::SubscriptionId attach_pull (

 in Object manager_reference,

 in long time_tick,

 in NotificationIRPConstDefs::NotificationCategorySet

 notification_category_set,

 in string filter,

 out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference

)

 raises (Attach, OperationNotSupported, ParameterNotSupported,

 InvalidParameter, AlreadySubscribed,

 AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: detach

 */

void detach (

 in Object manager_reference,

 in NotificationIRPConstDefs::SubscriptionId subscription_id

)

 raises (DetachException,InvalidParameter);

 /* ## Operation: get_notification_IRP_version

 */

 CommonIRPConstDefs::VersionNumberSet get_notification_IRP_version ()

 raises (GetNotificationIRPVersion);

 ;

 /* ## Operation: get_subscription_status

 */

NotificationIRPConstDefs::NotificationCategorySet get_subscription_status (

 in NotificationIRPConstDefs::SubscriptionId subscription_id,

 out string filter_in_effect,

 out NotificationIRPConstDefs::SubscriptionState subscription_state,

 out long time_tick

)

 raises (GetSubscriptionStatus,OperationNotSupported,InvalidParameter);

 /* ## Operation: get_subscription_ids

 */

 NotificationIRPConstDefs::SubscriptionIdSet get_subscription_ids (

 in Object manager_reference

)

 raises (GetSubscriptionIds,OperationNotSupported,InvalidParameter);

 /* ## Operation: change_subscription_filter

 */

void change_subscription_filter (

in NotificationIRPConstDefs::SubscriptionId subscription_id,

in string filter

)

 raises (ChangeSubscriptionFilter,OperationNotSupported,InvalidParameter);

 /* ## Operation: get_notification_categories

 */

 NotificationIRPConstDefs::NotificationCategorySet

 get_notification_categories (

 out NotificationIRPConstDefs::EventTypesSet event_type_list,

 out NotificationIRPConstDefs::ExtendedEventTypesSet

 extended_event_type_list

)

 raises (GetNotificationCategories,OperationNotSupported);

};

};

#endif

�PAGE \# "'Page: '#'�'" �� If this RG Temporary document (Tdoc) should not be submitted to the SA5 plenary, please delete this text (i.e. the SA5 reference).

The Rapporteur should clearly indicate to the SA5 secretary which RG Tdocs should be submitted to the SA5 plenary.

NOTE:	- The Rapporteur will deliver e.g. S5P000015.doc

- The SA5 secretary will allocate the SA5 number and will rename the file to S5-000xyz_S5P000015.doc &

 will compress the file to S5-000xyz.ZIP for storage on the server.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

