	3GPP TSG-SA5 (Telecom Management)

Meeting #17, Sophia Antipolis, France, 22 ‑ 26 January 2001
	SA5#15(00)0xyz

Tdoc S5A010054

	Title:
	IETF RFC 2753 and RFC 2748

	
	

	Source:
	Motorola

	
	

	Agenda item:
	

	
	

	Document for:
	Discussion

	
	

	
	

	Category:
	Discussion document for OAM&P requirements in the IM CN Subsystem (Policy Management)

	
	

	Document Summary:
	RFC 2753 is the IETF document titled “A Framework for Policy-based Admission Control”
RFC 2748 is the IETF document titled “The COPS (Common Open Policy Service) Protocol”

	
	

	Specification(s) involved:
	TS 32.101, 32.102

	
	

Network Working Group R. Yavatkar

Request for Comments: 2753 Intel

Category: Informational D. Pendarakis

 IBM

 R. Guerin

 U. Of Pennsylvania

 January 2000

 A Framework for Policy-based Admission Control

Status of this Memo

 This memo provides information for the Internet community. It does

 not specify an Internet standard of any kind. Distribution of this

 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

1. Introduction

 The IETF working groups such as Integrated Services (called "int-

 serv") and RSVP [1] have developed extensions to the IP architecture

 and the best-effort service model so that applications or end users

 can request specific quality (or levels) of service from an

 internetwork in addition to the current IP best-effort service.

 Recent efforts in the Differentiated Services Working Group are also

 directed at the definition of mechanisms that support aggregate QoS

 services. The int-serv model for these new services requires explicit

 signaling of the QoS (Quality of Service) requirements from the end

 points and provision of admission and traffic control at Integrated

 Services routers. The proposed standards for RSVP [RFC 2205] and

 Integrated Services [RFC 2211, RFC 2212] are examples of a new

 reservation setup protocol and new service definitions respectively.

 Under the int-serv model, certain data flows receive preferential

 treatment over other flows; the admission control component only

 takes into account the requester's resource reservation request and

 available capacity to determine whether or not to accept a QoS

 request. However, the int-serv mechanisms do not include an

 important aspect of admission control: network managers and service

 providers must be able to monitor, control, and enforce use of

 network resources and services based on policies derived from

 criteria such as the identity of users and applications,

 traffic/bandwidth requirements, security considerations, and time-

Yavatkar, et al. Informational [Page 1]

RFC 2753 Framework for Policy-based Admission Control January 2000

 of-day/week. Similarly, diff-serv mechanisms also need to take into

 account policies that involve various criteria such as customer

 identity, ingress points, and so on.

 This document is concerned with specifying a framework for providing

 policy-based control over admission control decisions. In particular,

 it focuses on policy-based control over admission control using RSVP

 as an example of the QoS signaling mechanism. Even though the focus

 of the work is on RSVP-based admission control, the document outlines

 a framework that can provide policy-based admission control in other

 QoS contexts. We argue that policy-based control must be applicable

 to different kinds and qualities of services offered in the same

 network and our goal is to consider such extensions whenever

 possible.

 We begin with a list of definitions in Section 2. Section 3 lists the

 requirements and goals of the mechanisms used to control and enforce

 access to better QoS. We then outline the architectural elements of

 the framework in Section 4 and describe the functionality assumed for

 each component. Section 5 discusses example policies, possible

 scenarios, and policy support needed for those scenarios. Section 6

 specifies the requirements for a client-server protocol for

 communication between a policy server (PDP) and its client (PEP) and

 evaluates the suitability of some existing protocols for this

 purpose.

2. Terminology

 The following is a list of terms used in this document.

 - Administrative Domain: A collection of networks under the same

 administrative control and grouped together for administrative

 purposes.

 - Network Element or Node: Routers, switches, hubs are examples of

 network nodes. They are the entities where resource allocation

 decisions have to be made and the decisions have to be enforced. A

 RSVP router which allocates part of a link capacity (or buffers)

 to a particular flow and ensures that only the admitted flows have

 access to their reserved resources is an example of a network

 element of interest in our context.

 In this document, we use the terms router, network element, and

 network node interchangeably, but the should all be interpreted as

 references to a network element.

 - QoS Signaling Protocol: A signaling protocol that carries an

 admission control request for a resource, e.g., RSVP.

Yavatkar, et al. Informational [Page 2]

RFC 2753 Framework for Policy-based Admission Control January 2000

 - Policy: The combination of rules and services where rules define

 the criteria for resource access and usage.

 - Policy control: The application of rules to determine whether or

 not access to a particular resource should be granted.

 - Policy Object: Contains policy-related information such as policy

 elements and is carried in a request or response related to a

 resource allocation decision.

 - Policy Element: Subdivision of policy objects; contains single

 units of information necessary for the evaluation of policy rules.

 A single policy element may carry an user or application

 identification whereas another policy element may carry user

 credentials or credit card information. The policy elements

 themselves are expected to be independent of which QoS signaling

 protocol is used.

 - Policy Decision Point (PDP): The point where policy decisions are

 made.

 - Policy Enforcement Point (PEP): The point where the policy

 decisions are actually enforced.

 - Policy Ignorant Node (PIN): A network element that does not

 explicitly support policy control using the mechanisms defined in

 this document.

 - Resource: Something of value in a network infrastructure to which

 rules or policy criteria are first applied before access is

 granted. Examples of resources include the buffers in a router and

 bandwidth on an interface.

 - Service Provider: Controls the network infrastructure and may be

 responsible for the charging and accounting of services.

 - Soft State Model - Soft state is a form of the stateful model that

 times out installed state at a PEP or PDP. It is an automatic way

 to erase state in the presence of communication or network element

 failures. For example, RSVP uses the soft state model for

 installing reservation state at network elements along the path of

 a data flow.

 - Installed State: A new and unique request made from a PEP to a PDP

 that must be explicitly deleted.

Yavatkar, et al. Informational [Page 3]

RFC 2753 Framework for Policy-based Admission Control January 2000

 - Trusted Node: A node that is within the boundaries of an

 administrative domain (AD) and is trusted in the sense that the

 admission control requests from such a node do not necessarily

 need a PDP decision.

3. Policy-based Admission Control: Goals and Requirements

 In this section, we describe the goals and requirements of mechanisms

 and protocols designed to provide policy-based control over admission

 control decisions.

 - Policies vs Mechanisms: An important point to note is that the

 framework does not include any discussion of any specific policy

 behavior or does not require use of specific policies. Instead,

 the framework only outlines the architectural elements and

 mechanisms needed to allow a wide variety of possible policies to

 be carried out.

 - RSVP-specific: The mechanisms must be designed to meet the

 policy-based control requirements specific to the problem of

 bandwidth reservation using RSVP as the signaling protocol.

 However, our goal is to allow for the application of this

 framework for admission control involving other types of resources

 and QoS services (e.g., Diff-Serv) as long as we do not diverge

 from our central goal.

 - Support for preemption: The mechanisms designed must include

 support for preemption. By preemption, we mean an ability to

 remove a previously installed state in favor of accepting a new

 admission control request. For example, in the case of RSVP,

 preemption involves the ability to remove one or more currently

 installed reservations to make room for a new resource reservation

 request.

 - Support for many styles of policies: The mechanisms designed must

 include support for many policies and policy configurations

 including bi-lateral and multi-lateral service agreements and

 policies based on the notion of relative priority. In general,

 the determination and configuration of viable policies are the

 responsibility of the service provider.

 - Provision for Monitoring and Accounting Information: The

 mechanisms must include support for monitoring policy state,

 resource usage, and provide access information. In particular,

 mechanisms must be included to provide usage and access

 information that may be used for accounting and billing purposes.

Yavatkar, et al. Informational [Page 4]

RFC 2753 Framework for Policy-based Admission Control January 2000

 - Fault tolerance and recovery: The mechanisms designed on the basis

 of this framework must include provisions for fault tolerance and

 recovery from failure cases such as failure of PDPs, disruption in

 communication including network partitions (and subsequent

 merging) that separate a PDP from its associated PEPs.

 - Support for Policy-Ignorant Nodes (PINs): Support for the

 mechanisms described in this document should not be mandatory for

 every node in a network. Policy based admission control could be

 enforced at a subset of nodes, for example the boundary nodes

 within an administrative domain. These policy capable nodes would

 function as trusted nodes from the point of view of the policy-

 ignorant nodes in that administrative domain.

 - Scalability: One of the important requirements for the mechanisms

 designed for policy control is scalability. The mechanisms must

 scale at least to the same extent that RSVP scales in terms of

 accommodating multiple flows and network nodes in the path of a

 flow. In particular, scalability must be considered when

 specifying default behavior for merging policy data objects and

 merging should not result in duplicate policy elements or objects.

 There are several sensitive areas in terms of scalability for

 policy control over RSVP. First, not every policy aware node in an

 infrastructure should be expected to contact a remote PDP. This

 would cause potentially long delays in verifying requests that

 must travel up hop by hop. Secondly, RSVP is capable of setting up

 resource reservations for multicast flows. This implies that the

 policy control model must be capable of servicing the special

 requirements of large multicast flows. Thus, the policy control

 architecture must scale at least as well as RSVP based on factors

 such as the size of RSVP messages, the time required for the

 network to service an RSVP request, local processing time required

 per node, and local memory consumed per node.

 - Security and denial of service considerations: The policy control

 architecture must be secure as far as the following aspects are

 concerned. First, the mechanisms proposed under the framework must

 minimize theft and denial of service threats. Second, it must be

 ensured that the entities (such as PEPs and PDPs) involved in

 policy control can verify each other's identity and establish

 necessary trust before communicating.

4. Architectural Elements

 The two main architectural elements for policy control are the PEP

 (Policy Enforcement Point) and the PDP (Policy Decision Point).

 Figure 1 shows a simple configuration involving these two elements;

 PEP is a component at a network node and PDP is a remote entity that

Yavatkar, et al. Informational [Page 5]

RFC 2753 Framework for Policy-based Admission Control January 2000

 may reside at a policy server. The PEP represents the component that

 always runs on the policy aware node. It is the point at which policy

 decisions are actually enforced. Policy decisions are made primarily

 at the PDP. The PDP itself may make use of additional mechanisms and

 protocols to achieve additional functionality such as user

 authentication, accounting, policy information storage, etc. For

 example, the PDP is likely to use an LDAP-based directory service for

 storage and retrieval of policy information[6]. This document does

 not include discussion of these additional mechanisms and protocols

 and how they are used.

 The basic interaction between the components begins with the PEP. The

 PEP will receive a notification or a message that requires a policy

 decision. Given such an event, the PEP then formulates a request for

 a policy decision and sends it to the PDP. The request for policy

 control from a PEP to the PDP may contain one or more policy elements

 (encapsulated into one or more policy objects) in addition to the

 admission control information (such as a flowspec or amount of

 bandwidth requested) in the original message or event that triggered

 the policy decision request. The PDP returns the policy decision and

 the PEP then enforces the policy decision by appropriately accepting

 or denying the request. The PDP may also return additional

 information to the PEP which includes one or more policy elements.

 This information need not be associated with an admission control

 decision. Rather, it can be used to formulate an error message or

 outgoing/forwarded message.

 ________________ Policy server

| | ______

| Network Node | | |------------->

| _____ | | | May use LDAP,SNMP,.. for accessing

| | | | | | policy database, authentication,etc.

| | PEP |<-----|------->| PDP |------------->

| |_____| | |_____|

| |

|________________|

 Figure 1: A simple configuration with the primary policy control

 architecture components. PDP may use additional mechanisms and

 protocols for the purpose of accounting, authentication, policy

 storage, etc.

 The PDP might optionally contact other external servers, e.g., for

 accessing configuration, user authentication, accounting and billing

 databases. Protocols defined for network management (SNMP) or

 directory access (LDAP) might be used for this communication. While

 the specific type of access and the protocols used may vary among

Yavatkar, et al. Informational [Page 6]

RFC 2753 Framework for Policy-based Admission Control January 2000

 different implementations, some of these interactions will have

 network-wide implications and could impact the interoperability of

 different devices.

 Of particular importance is the "language" used to specify the

 policies implemented by the PDP. The number of policies applicable at

 a network node might potentially be quite large. At the same time,

 these policies will exhibit high complexity, in terms of number of

 fields used to arrive at a decision, and the wide range of decisions.

 Furthermore, it is likely that several policies could be applicable

 to the same request profile. For example, a policy may prescribe the

 treatment of requests from a general user group (e.g., employees of a

 company) as well as the treatment of requests from specific members

 of that group (e.g., managers of the company). In this example, the

 user profile "managers" falls within the specification of two

 policies, one general and one more specific.

 In order to handle the complexity of policy decisions and to ensure a

 coherent and consistent application of policies network-wide, the

 policy specification language should ensure unambiguous mapping of a

 request profile to a policy action. It should also permit the

 specification of the sequence in which different policy rules should

 be applied and/or the priority associated with each one. Some of

 these issues are addressed in [6].

 In some cases, the simple configuration shown in Figure 1 may not be

 sufficient as it might be necessary to apply local policies (e.g.,

 policies specified in access control lists) in addition to the

 policies applied at the remote PDP. In addition, it is possible for

 the PDP to be co-located with the PEP at the same network node.

 Figure 2 shows the possible configurations.

 The configurations shown in Figures 1 and 2 illustrate the

 flexibility in division of labor. On one hand, a centralized policy

 server, which could be responsible for policy decisions on behalf of

 multiple network nodes in an administrative domain, might be

 implementing policies of a wide scope, common across the AD. On the

 other hand, policies which depend on information and conditions local

 to a particular router and which are more dynamic, might be better

 implemented locally, at the router.

Yavatkar, et al. Informational [Page 7]

RFC 2753 Framework for Policy-based Admission Control January 2000

 ________________ ____________________

 | | | |

 | Network Node | Policy Server | Network Node |

 | _____ | _____ | _____ _____ |

 | | | | | | | | | | | |

 | | PEP |<-----|---->| PDP | | | PEP |<-->| PDP | |

 | |_____| | |_____| | |_____| |_____| |

 | ^ | | |

 | | _____ | |____________________|

 | \-->| | |

 | | LPDP| |

 | |_____| |

 | |

 |________________|

 Figure 2: Two other possible configurations of policy control

 architecture components. The configuration on the left shows a local

 decision point at a network node and the configuration on the right

 shows PEP and PDP co-located at the same node.

 If it is available, the PEP will first use the LPDP to reach a local

 decision. This partial decision and the original policy request are

 next sent to the PDP which renders a final decision (possibly,

 overriding the LPDP). It must be noted that the PDP acts as the final

 authority for the decision returned to the PEP and the PEP must

 enforce the decision rendered by the PDP. Finally, if a shared state

 has been established for the request and response between the PEP and

 PDP, it is the responsibility of the PEP to notify the PDP that the

 original request is no longer in use.

 Unless otherwise specified, we will assume the configuration shown on

 the left in Figure 2 in the rest of this document.

 Under this policy control model, the PEP module at a network node

 must use the following steps to reach a policy decision:

 1. When a local event or message invokes PEP for a policy decision,

 the PEP creates a request that includes information from the

 message (or local state) that describes the admission control

 request. In addition, the request includes appropriate policy

 elements as described below.

 2. The PEP may consult a local configuration database to identify a

 set of policy elements (called set A) that are to be evaluated

 locally. The local configuration specifies the types of policy

 elements that are evaluated locally. The PEP passes the request

Yavatkar, et al. Informational [Page 8]

RFC 2753 Framework for Policy-based Admission Control January 2000

 with the set A to the Local Decision point (LPDP) and collects the

 result of the LPDP (called "partial result" and referred to as

 D(A)).

 3. The PEP then passes the request with ALL the policy elements and

 D(A) to the PDP. The PDP applies policies based on all the policy

 elements and the request and reaches a decision (let us call it

 D(Q)). It then combines its result with the partial result D(A)

 using a combination operation to reach a final decision.

 4. The PDP returns the final policy decision (obtained from the

 combination operation) to the PEP.

 Note that in the above model, the PEP MUST contact the PDP even if no

 (or NULL) policy objects are received in the admission control

 request. This requirement helps ensure that a request cannot bypass

 policy control by omitting policy elements in a reservation request.

 However, "short circuit" processing is permitted, i.e., if the result

 of D(A), above, is "no", then there is no need to proceed with

 further policy processing at the PDP. Still, the PDP must be informed

 of the failure of local policy processing. The same applies to the

 case when policy processing is successful but admission control (at

 the resource management level due to unavailable capacity) fails;

 again the PDP has to be informed of the failure.

 It must also be noted that the PDP may, at any time, send an

 asynchronous notification to the PEP to change an earlier decision or

 to generate a policy error/warning message.

4.1. Example of a RSVP Router

 In the case of a RSVP router, Figure 3 shows the interaction between

 a PEP and other int-serv components within the router. For the

 purpose of this discussion, we represent all the components of RSVP-

 related processing by a single RSVP module, but a more detailed

 discussion of the exact interaction and interfaces between RSVP and

 the PEP is provided in a separate document [3].

Yavatkar, et al. Informational [Page 9]

RFC 2753 Framework for Policy-based Admission Control January 2000

 | |

 | Router |

 | ________ _____ | _____

 | | | | | | | |

 | | RSVP |<------->| PEP |<--|---------->| PDP |

 | |________| |_____| | |_____|

 | ^ |

 | | Traffic control |

 | | _____________ |

 | \---->| _________ | |

 | | |capacity | | |

 | | | ADM CTL | | |

 | | |_________| | |

 --|----------->| ____ ____ | |

 | Data | | PC | PS | | |

 | | |____|____| | |

 | |_____________| |

 | |

 |______________________________|

 Figure 3: Relationship between PEP and other int-serv components

 within an RSVP router. PC -- Packet Classifier, PS -- Packet

 Scheduler

 When a RSVP message arrives at the router (or an RSVP related event

 requires a policy decision), the RSVP module is expected to hand off

 the request (corresponding to the event or message) to its PEP

 module. The PEP will use the PDP (and LPDP) to obtain the policy

 decision and communicate it back to the RSVP module.

4.2. Additional functionality at the PDP

 Typically, PDP returns the final policy decision based on an

 admission control request and the associated policy elements.

 However, it should be possible for the PDP to sometimes ask the PEP

 (or the admission control module at the network element where PEP

 resides) to generate policy-related error messages. For example, in

 the case of RSVP, the PDP may accept a request and allow installation

 and forwarding of a reservation to a previous hop, but, at the same

 time, may wish to generate a warning/error message to a downstream

 node (NHOP) to warn about conditions such as "your request may have

 to be torn down in 10 mins, etc." Basically, an ability to create

 policy-related errors and/or warnings and to propagate them using the

 native QoS signaling protocol (such as RSVP) is needed. Such a policy

 error returned by the PDP must be able to also specify whether the

Yavatkar, et al. Informational [Page 10]

RFC 2753 Framework for Policy-based Admission Control January 2000

 reservation request should still be accepted, installed, and

 forwarded to allow continued normal RSVP processing. In particular,

 when a PDP sends back an error, it specifies that:

 1. the message that generated the admission control request should

 be processed further as usual, but an error message (or warning)

 be sent in the other direction and include the policy objects

 supplied in that error message

 2. or, specifies that an error be returned, but the RSVP message

 should not be forwarded as usual.

4.3. Interactions between PEP, LPDP, and PDP at a RSVP router

 All the details of RSVP message processing and associated

 interactions between different elements at an RSVP router (PEP, LPDP)

 and PDP are included in separate documents [3,8]. In the following, a

 few, salient points related to the framework are listed:

 * LPDP is optional and may be used for making decisions based on

 policy elements handled locally. The LPDP, in turn, may have to go

 to external entities (such as a directory server or an

 authentication server, etc.) for making its decisions.

 * PDP is stateful and may make decisions even if no policy objects

 are received (e.g., make decisions based on information such as

 flowspecs and session object in the RSVP messages). The PDP may

 consult other PDPs, but discussion of inter-PDP communication and

 coordination is outside the scope of this document.

 * PDP sends asynchronous notifications to PEP whenever necessary to

 change earlier decisions, generate errors etc.

 * PDP exports the information useful for usage monitoring and

 accounting purposes. An example of a useful mechanism for this

 purpose is a MIB or a relational database. However, this document

 does not specify any particular mechanism for this purpose and

 discussion of such mechanisms is out of the scope of this

 document.

4.4. Placement of Policy Elements in a Network

 By allowing division of labor between an LPDP and a PDP, the policy

 control architecture allows staged deployment by enabling routers of

 varying degrees of sophistication, as far as policy control is

 concerned, to communicate with policy servers. Figure 4 depicts an

 example set of nodes belonging to three different administrative

 domains (AD) (Each AD could correspond to a different service

Yavatkar, et al. Informational [Page 11]

RFC 2753 Framework for Policy-based Admission Control January 2000

 provider in this case). Nodes A, B and C belong to administrative

 domain AD-1, advised by PDP PS-1, while D and E belong to AD-2 and

 AD-3, respectively. E communicates with PDP PS-2. In general, it is

 expected that there will be at least one PDP per administrative

 domain.

 Policy capable network nodes could range from very unsophisticated,

 such as E, which have no LPDP, and thus have to rely on an external

 PDP for every policy processing operation, to self-sufficient, such

 as D, which essentially encompasses both an LPDP and a PDP locally,

 at the router.

 AD-1 AD-2 AD-3

 ________________/_______________ __/___ __/___

 { } { } { }

 A B C D E

 +-------+ +-----+ +-------+ +-------+ +-------+

 | RSVP | | RSVP| | RSVP | | RSVP | | RSVP |

+----+ |-------| |-----| |-------| |-------| |-------|

| S1 |--| P | L |--| |----| P | L |----| P | P |----| P | +----+

+----+ | E | D | +-----+ | E | D | | E | D | | E |-| R1 |

 | P | P | | P | P | | P | P | | P | +----+

 +-------+ +-------+ +-------+ +-------+

 ^ ^ ^

 | | |

 | | |

 | | +-------+

 | | | PDP |

 | +------+ | |-------|

 +-------->| PDP |<------+ | |

 |------| +-------+

 | | PS-2

 +------+

 PS-1

 Figure 4: Placement of Policy Elements in an internet

5. Example Policies, Scenarios, and Policy Support

 In the following, we present examples of desired policies and

 scenarios requiring policy control that the policy control framework

 should be able to support. In some cases, possible approach(es) for

 achieving the desired goals are also outlined with a list of open

 issues to be resolved.

5.1. Admission control policies based on factors such as Time-of-Day,

 User Identity, or credentials.

Yavatkar, et al. Informational [Page 12]

RFC 2753 Framework for Policy-based Admission Control January 2000

 Policy control must be able to express and enforce rules with

 temporal dependencies. For example, a group of users might be allowed

 to make reservations at certain levels only during off-peak hours.

 In addition, the policy control must also support policies that take

 into account identity or credentials of users requesting a particular

 service or resource. For example, an RSVP reservation request may be

 denied or accepted based on the credentials or identity supplied in

 the request.

5.2. Bilateral agreements between service providers

 Until recently, usage agreements between service providers for

 traffic crossing their boundaries have been quite simple. For

 example, two ISPs might agree to accept all traffic from each other,

 often without performing any accounting or billing for the "foreign"

 traffic carried. However, with the availability of QoS mechanisms

 based on Integrated and Differentiated Services, traffic

 differentiation and quality of service guarantees are being phased

 into the Internet. As ISPs start to sell their customers different

 grades of service and can differentiate among different sources of

 traffic, they will also seek mechanisms for charging each other for

 traffic (and reservations) transiting their networks. One additional

 incentive in establishing such mechanisms is the potential asymmetry

 in terms of the customer base that different providers will exhibit:

 ISPs focused on servicing corporate traffic are likely to experience

 much higher demand for reserved services than those that service the

 consumer market. Lack of sophisticated accounting schemes for inter-

 ISP traffic could lead to inefficient allocation of costs among

 different service providers.

 Bilateral agreements could fall into two broad categories; local or

 global. Due to the complexity of the problem, it is expected that

 initially only the former will be deployed. In these, providers which

 manage a network cloud or administrative domain contract with their

 closest point of contact (neighbor) to establish ground rules and

 arrangements for access control and accounting. These contracts are

 mostly local and do not rely on global agreements; consequently, a

 policy node maintains information about its neighboring nodes only.

 Referring to Figure 4, this model implies that provider AD-1 has

 established arrangements with AD-2, but not with AD-3, for usage of

 each other's network. Provider AD-2, in turn, has in place agreements

 with AD-3 and so on. Thus, when forwarding a reservation request to

 AD-2, provider AD-2 will charge AD-1 for use of all resources beyond

 AD-1's network. This information is obtained by recursively applying

 the bilateral agreements at every boundary between (neighboring)

 providers, until the recipient of the reservation request is reached.

 To implement this scheme under the policy control architecture,

 boundary nodes have to add an appropriate policy object to the RSVP

Yavatkar, et al. Informational [Page 13]

RFC 2753 Framework for Policy-based Admission Control January 2000

 message before forwarding it to a neighboring provider's network.

 This policy object will contain information such as the identity of

 the provider that generated them and the equivalent of an account

 number where charges can be accumulated. Since agreements only hold

 among neighboring nodes, policy objects have to be rewritten as RSVP

 messages cross the boundaries of administrative domains or provider's

 networks.

5.3. Priority based admission control policies

 In many settings, it is useful to distinguish between reservations on

 the basis of some level of "importance". For example, this can be

 useful to avoid that the first reservation being granted the use of

 some resources, be able to hog those resources for some indefinite

 period of time. Similarly, this may be useful to allow emergency

 calls to go through even during periods of congestion. Such

 functionality can be supported by associating priorities with

 reservation requests, and conveying this priority information

 together with other policy information.

 In its basic form, the priority associated with a reservation

 directly determines a reservation's rights to the resources it

 requests. For example, assuming that priorities are expressed

 through integers in the range 0 to 32 with 32 being the highest

 priority, a reservation of priority, say, 10, will always be

 accepted, if the amount of resources held by lower priority

 reservations is sufficient to satisfy its requirements. In other

 words, in case there are not enough free resources (bandwidth,

 buffers, etc.) at a node to accommodate the priority 10 request, the

 node will attempt to free up the necessary resources by preempting

 existing lower priority reservations.

 There are a number of requirements associated with the support of

 priority and their proper operation. First, traffic control in the

 router needs to be aware of priorities, i.e., classify existing

 reservations according to their priority, so that it is capable of

 determining how many and which ones to preempt, when required to

 accommodate a higher priority reservation request. Second, it is

 important that preemption be made consistently at different nodes, in

 order to avoid transient instabilities. Third and possibly most

 important, merging of priorities needs to be carefully architected

 and its impact clearly understood as part of the associated policy

 definition.

 Of the three above requirements, merging of priority information is

 the more complex and deserves additional discussions. The complexity

 of merging priority information arises from the fact that this

 merging is to be performed in addition to the merging of reservation

Yavatkar, et al. Informational [Page 14]

RFC 2753 Framework for Policy-based Admission Control January 2000

 information. When reservation (FLOWSPEC) information is identical,

 i.e., homogeneous reservations, merging only needs to consider

 priority information, and the simple rule of keeping the highest

 priority provides an adequate answer. However, in the case of

 heterogeneous reservations, the *two-dimensional nature* of the

 (FLOWSPEC, priority) pair makes their ordering, and therefore

 merging, difficult. A description of the handling of different cases

 of RSVP priority objects is presented in [7].

5.4. Pre-paid calling card or Tokens

 A model of increasing popularity in the telephone network is that of

 the pre-paid calling card. This concept could also be applied to the

 Internet; users purchase "tokens" which can be redeemed at a later

 time for access to network services. When a user makes a reservation

 request through, say, an RSVP RESV message, the user supplies a

 unique identification number of the "token", embedded in a policy

 object. Processing of this object at policy capable routers results

 in decrementing the value, or number of remaining units of service,

 of this token.

 Referring to Figure 4, suppose receiver R1 in the administrative

 domain AD3 wants to request a reservation for a service originating

 in AD1. R1 generates a policy data object of type PD(prc, CID), where

 "prc" denotes pre-paid card and CID is the card identification

 number. Along with other policy objects carried in the RESV message,

 this object is received by node E, which forwards it to its PEP,

 PEP_E, which, in turn, contacts PDP PS-3. PS-3 either maintains

 locally, or has remote access to, a database of pre-paid card

 numbers. If the amount of remaining credit in CID is sufficient, the

 PDP accepts the reservation and the policy object is returned to

 PEP_E. Two issues have to be resolved here:

 * What is the scope of these charges?

 * When are charges (in the form of decrementing the remaining

 credit) first applied?

 The answer to the first question is related to the bilateral

 agreement model in place. If, on the one hand, provider AD-3 has

 established agreements with both AD-2 and AD-1, it could charge for

 the cost of the complete reservation up to sender S1. In this case

 PS-2 removes the PD(prc,CID) object from the outgoing RESV message.

 On the other hand, if AD-3 has no bilateral agreements in place, it

 will simply charge CID for the cost of the reservation within AD-3

 and then forward PD(prc,CID) in the outgoing RESV message. Subsequent

 PDPs in other administrative domains will charge CID for their

Yavatkar, et al. Informational [Page 15]

RFC 2753 Framework for Policy-based Admission Control January 2000

 respective reservations. Since multiple entities are both reading

 (remaining credit) and writing (decrementing credit) to the same

 database, some coordination and concurrency control might be needed.

 The issues related to location, management, coordination of credit

 card (or similar) databases is outside the scope of this document.

 Another problem in this scenario is determining when the credit is

 exhausted. The PDPs should contact the database periodically to

 submit a charge against the CID; if the remaining credit reaches

 zero, there must be a mechanism to detect that and to cause

 revocation or termination of privileges granted based on the credit.

 Regarding the issue of when to initiate charging, ideally that should

 happen only after the reservation request has succeeded. In the case

 of local charges, that could be communicated by the router to the

 PDP.

5.5. Sender Specified Restrictions on Receiver Reservations

 The ability of senders to specify restrictions on reservations, based

 on receiver identity, number of receivers or reservation cost might

 be useful in future network applications. An example could be any

 application in which the sender pays for service delivered to

 receivers. In such a case, the sender might be willing to assume the

 cost of a reservation, as long as it satisfies certain criteria, for

 example, it originates from a receiver who belongs to an access

 control list (ACL) and satisfies a limit on cost. (Notice that this

 could allow formation of "closed" multicast groups).

 In the policy based admission control framework such a scheme could

 be achieved by having the sender generate appropriate policy objects,

 carried in a PATH message, which install state in routers on the path

 to receivers. In accepting reservations, the routers would have to

 compare the RESV requests to the installed state.

 A number of different solutions can be built to address this

 scenario; precise description of a solution is beyond the scope of

 this document.

6. Interaction Between the Policy Enforcement Point (PEP) and the Policy

 Decision Point (PDP)

 In the case of an external PDP, the need for a communication protocol

 between the PEP and PDP arises. In order to allow for

 interoperability between different vendors networking elements and

 (external) policy servers, this protocol should be standardized.

Yavatkar, et al. Informational [Page 16]

RFC 2753 Framework for Policy-based Admission Control January 2000

6.1. PEP to PDP Protocol Requirements

 This section describes a set of general requirements for the

 communication protocol between the PEP and an external PDP.

 * Reliability: The sensitivity of policy control information

 necessitates reliable operation. Undetected loss of policy queries

 or responses may lead to inconsistent network control operation

 and are clearly unacceptable for actions such as billing and

 accounting. One option for providing reliability is the re-use of

 the TCP as the transport protocol.

 * Small delays: The timing requirements of policy decisions related

 to QoS signaling protocols are expected to be quite strict. The

 PEP to PDP protocol should add small amount of delay to the

 response delay experienced by queries placed by the PEP to the

 PDP.

 * Ability to carry opaque objects: The protocol should allow for

 delivery of self-identifying, opaque objects, of variable length,

 such as RSVP messages, RSVP policy objects and other objects that

 might be defined as new policies are introduced. The protocol

 should not have to be changed every time a new object has to be

 exchanged.

 * Support for PEP-initiated, two-way Transactions: The protocol

 must allow for two-way transactions (request-response exchanges)

 between a PEP and a PDP. In particular, PEPs must be able to

 initiate requests for policy decision, re-negotiation of

 previously made policy decision, and exchange of policy

 information. To some extent, this requirement is closely tied to

 the goal of meeting the requirements of RSVP-specific, policy-

 based admission control. RSVP signaling events such as arrival of

 RESV refresh messages, state timeout, and merging of reservations

 require that a PEP (such as an RSVP router) request a policy

 decision from PDP at any time. Similarly, PEP must be able to

 report monitoring information and policy state changes to PDP at

 any time.

 * Support for asynchronous notification: This is required in order

 to allow both the policy server and client to notify each other in

 the case of an asynchronous change in state, i.e., a change that

 is not triggered by a signaling message. For example, the server

 would need to notify the client if a particular reservation has to

 be terminated due to expiration of a user's credentials or account

 balance. Likewise, the client has to inform the server of a

 reservation rejection which is due to admission control failure.

Yavatkar, et al. Informational [Page 17]

RFC 2753 Framework for Policy-based Admission Control January 2000

 * Handling of multicast groups: The protocol should provision for

 handling of policy decisions related to multicast groups.

 * QoS Specification: The protocol should allow for precise

 specification of level of service requirements in the PEP requests

 forwarded to the PDP.

7. Security Considerations

 The communication tunnel between policy clients and policy servers

 should be secured by the use of an IPSEC [4] channel. It is advisable

 that this tunnel makes use of both the AH (Authentication Header) and

 ESP (Encapsulating Security Payload) protocols, in order to provide

 confidentiality, data origin authentication, integrity and replay

 prevention.

 In the case of the RSVP signaling mechanism, RSVP MD5 [2] message

 authentication can be used to secure communications between network

 elements.

8. References

 [1] Braden, R., Zhang, L., Berson, S., Herzog, S. and S. Jamin,

 "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional

 Specification", RFC 2205, September 1997.

 [2] Baker, F., Lindell, B. and M. Talwar, "RSVP Cryptographic

 Authentication", RFC 2747, January 2000.

 [3] Herzog, S., "RSVP Extensions for Policy Control", RFC 2750,

 January 2000.

 [4] Atkinson, R., "Security Architecture for the Internet Protocol",

 RFC 1825, August 1995.

 [5] Rigney, C., Rubens, A., Simpson, W. and S. Willens, "Remote

 Authentication Dial In User Service (RADIUS)", RFC 2138, April

 1997.

 [6] Rajan, R., et al., "Schema for Differentiated Services and

 Integrated Services in Networks", Work in Progress.

 [7] Herzog, S., "RSVP Preemption Priority Policy", Work in Progress.

 [8] Herzog, S., "COPS Usage for RSVP", RFC 2749, January 2000.

Yavatkar, et al. Informational [Page 18]

RFC 2753 Framework for Policy-based Admission Control January 2000

9. Acknowledgements

 This is a result of an ongoing discussion among many members of the

 RAP group including Jim Boyle, Ron Cohen, Laura Cunningham, Dave

 Durham, Shai Herzog, Tim O'Malley, Raju Rajan, and Arun Sastry.

10. Authors' Addresses

 Raj Yavatkar

 Intel Corporation

 2111 N.E. 25th Avenue,

 Hillsboro, OR 97124

 USA

 Phone: +1 503-264-9077

 EMail: raj.yavatkar@intel.com

 Dimitrios Pendarakis

 IBM T.J. Watson Research Center

 P.O. Box 704

 Yorktown Heights

 NY 10598

 Phone: +1 914-784-7536

 EMail: dimitris@watson.ibm.com

 Roch Guerin

 University of Pennsylvania

 Dept. of Electrical Engineering

 200 South 33rd Street

 Philadelphia, PA 19104

 Phone: +1 215 898-9351

 EMail: guerin@ee.upenn.edu

Yavatkar, et al. Informational [Page 19]

RFC 2753 Framework for Policy-based Admission Control January 2000

11. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it

 or assist in its implementation may be prepared, copied, published

 and distributed, in whole or in part, without restriction of any

 kind, provided that the above copyright notice and this paragraph are

 included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing

 the copyright notice or references to the Internet Society or other

 Internet organizations, except as needed for the purpose of

 developing Internet standards in which case the procedures for

 copyrights defined in the Internet Standards process must be

 followed, or as required to translate it into languages other than

 English.

 The limited permissions granted above are perpetual and will not be

 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Yavatkar, et al. Informational [Page 20]

Network Working Group D. Durham, Ed.

Request for Comments: 2748 Intel

Category: Standards Track J. Boyle

 Level 3

 R. Cohen

 Cisco

 S. Herzog

 IPHighway

 R. Rajan

 AT&T

 A. Sastry

 Cisco

 January 2000

 The COPS (Common Open Policy Service) Protocol

Status of this Memo

 This document specifies an Internet standards track protocol for the

 Internet community, and requests discussion and suggestions for

 improvements. Please refer to the current edition of the "Internet

 Official Protocol Standards" (STD 1) for the standardization state

 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC-2119].

Abstract

 This document describes a simple client/server model for supporting

 policy control over QoS signaling protocols. The model does not make

 any assumptions about the methods of the policy server, but is based

 on the server returning decisions to policy requests. The model is

 designed to be extensible so that other kinds of policy clients may

 be supported in the future. However, this document makes no claims

 that it is the only or the preferred approach for enforcing future

 types of policies.

Durham, et al. Standards Track [Page 1]

RFC 2748 COPS January 2000

Table Of Contents

 1. Introduction..3

 1.1 Basic Model..4

 2. The Protocol..6

 2.1 Common Header..6

 2.2 COPS Specific Object Formats...................................8

 2.2.1 Handle Object (Handle).......................................9

 2.2.2 Context Object (Context).....................................9

 2.2.3 In-Interface Object (IN-Int)................................10

 2.2.4 Out-Interface Object (OUT-Int)..............................11

 2.2.5 Reason Object (Reason)......................................12

 2.2.6 Decision Object (Decision)..................................12

 2.2.7 LPDP Decision Object (LPDPDecision).........................14

 2.2.8 Error Object (Error)..14

 2.2.9 Client Specific Information Object (ClientSI)...............15

 2.2.10 Keep-Alive Timer Object (KATimer)..........................15

 2.2.11 PEP Identification Object (PEPID)..........................16

 2.2.12 Report-Type Object (Report-Type)...........................16

 2.2.13 PDP Redirect Address (PDPRedirAddr)........................16

 2.2.14 Last PDP Address (LastPDPAddr).............................17

 2.2.15 Accounting Timer Object (AcctTimer)........................17

 2.2.16 Message Integrity Object (Integrity).......................18

 2.3 Communication...19

 2.4 Client Handle Usage...21

 2.5 Synchronization Behavior......................................21

 3. Message Content..22

 3.1 Request (REQ) PEP -> PDP.....................................22

 3.2 Decision (DEC) PDP -> PEP....................................24

 3.3 Report State (RPT) PEP -> PDP................................25

 3.4 Delete Request State (DRQ) PEP -> PDP........................25

 3.5 Synchronize State Request (SSQ) PDP -> PEP...................26

 3.6 Client-Open (OPN) PEP -> PDP.................................26

 3.7 Client-Accept (CAT) PDP -> PEP...............................27

 3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP.....................28

 3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP.......................28

 3.10 Synchronize State Complete (SSC) PEP -> PDP..................29

 4. Common Operation...29

 4.1 Security and Sequence Number Negotiation......................29

 4.2 Key Maintenance...31

 4.3 PEP Initialization..31

 4.4 Outsourcing Operations..32

 4.5 Configuration Operations......................................32

 4.6 Keep-Alive Operations...33

 4.7 PEP/PDP Close...33

 5. Security Considerations..33

 6. IANA Considerations..34

Durham, et al. Standards Track [Page 2]

RFC 2748 COPS January 2000

 7. References...35

 8. Author Information and Acknowledgments.........................36

 9. Full Copyright Statement.......................................38

1. Introduction

 This document describes a simple query and response protocol that can

 be used to exchange policy information between a policy server

 (Policy Decision Point or PDP) and its clients (Policy Enforcement

 Points or PEPs). One example of a policy client is an RSVP router

 that must exercise policy-based admission control over RSVP usage

 [RSVP]. We assume that at least one policy server exists in each

 controlled administrative domain. The basic model of interaction

 between a policy server and its clients is compatible with the

 framework document for policy based admission control [WRK].

 A chief objective of this policy control protocol is to begin with a

 simple but extensible design. The main characteristics of the COPS

 protocol include:

 1. The protocol employs a client/server model where the PEP sends

 requests, updates, and deletes to the remote PDP and the PDP

 returns decisions back to the PEP.

 2. The protocol uses TCP as its transport protocol for reliable

 exchange of messages between policy clients and a server.

 Therefore, no additional mechanisms are necessary for reliable

 communication between a server and its clients.

 3. The protocol is extensible in that it is designed to leverage

 off self-identifying objects and can support diverse client

 specific information without requiring modifications to the

 COPS protocol itself. The protocol was created for the general

 administration, configuration, and enforcement of policies.

 4. COPS provides message level security for authentication, replay

 protection, and message integrity. COPS can also reuse existing

 protocols for security such as IPSEC [IPSEC] or TLS to

 authenticate and secure the channel between the PEP and the

 PDP.

 5. The protocol is stateful in two main aspects: (1)

 Request/Decision state is shared between client and server and

 (2) State from various events (Request/Decision pairs) may be

 inter-associated. By (1) we mean that requests from the client

 PEP are installed or remembered by the remote PDP until they

 are explicitly deleted by the PEP. At the same time, Decisions

 from the remote PDP can be generated asynchronously at any time

Durham, et al. Standards Track [Page 3]

RFC 2748 COPS January 2000

 for a currently installed request state. By (2) we mean that

 the server may respond to new queries differently because of

 previously installed Request/Decision state(s) that are

 related.

 6. Additionally, the protocol is stateful in that it allows the

 server to push configuration information to the client, and

 then allows the server to remove such state from the client

 when it is no longer applicable.

1.1 Basic Model

 +----------------+

 | |

 | Network Node | Policy Server

 | |

 | +-----+ | COPS +-----+

 | | PEP |<-----|-------------->| PDP |

 | +-----+ | +-----+

 | ^ |

 | | |

 | \-->+-----+ |

 | | LPDP| |

 | +-----+ |

 | |

 +----------------+

 Figure 1: A COPS illustration.

 Figure 1 Illustrates the layout of various policy components in a

 typical COPS example (taken from [WRK]). Here, COPS is used to

 communicate policy information between a Policy Enforcement Point

 (PEP) and a remote Policy Decision Point (PDP) within the context of

 a particular type of client. The optional Local Policy Decision Point

 (LPDP) can be used by the device to make local policy decisions in

 the absence of a PDP.

 It is assumed that each participating policy client is functionally

 consistent with a PEP [WRK]. The PEP may communicate with a policy

 server (herein referred to as a remote PDP [WRK]) to obtain policy

 decisions or directives.

 The PEP is responsible for initiating a persistent TCP connection to

 a PDP. The PEP uses this TCP connection to send requests to and

 receive decisions from the remote PDP. Communication between the PEP

 and remote PDP is mainly in the form of a stateful request/decision

 exchange, though the remote PDP may occasionally send unsolicited

Durham, et al. Standards Track [Page 4]

RFC 2748 COPS January 2000

 decisions to the PEP to force changes in previously approved request

 states. The PEP also has the capacity to report to the remote PDP

 that it has successfully completed performing the PDP's decision

 locally, useful for accounting and monitoring purposes. The PEP is

 responsible for notifying the PDP when a request state has changed on

 the PEP. Finally, the PEP is responsible for the deletion of any

 state that is no longer applicable due to events at the client or

 decisions issued by the server.

 When the PEP sends a configuration request, it expects the PDP to

 continuously send named units of configuration data to the PEP via

 decision messages as applicable for the configuration request. When a

 unit of named configuration data is successfully installed on the

 PEP, the PEP should send a report message to the PDP confirming the

 installation. The server may then update or remove the named

 configuration information via a new decision message. When the PDP

 sends a decision to remove named configuration data from the PEP, the

 PEP will delete the specified configuration and send a report message

 to the PDP as confirmation.

 The policy protocol is designed to communicate self-identifying

 objects which contain the data necessary for identifying request

 states, establishing the context for a request, identifying the type

 of request, referencing previously installed requests, relaying

 policy decisions, reporting errors, providing message integrity, and

 transferring client specific/namespace information.

 To distinguish between different kinds of clients, the type of client

 is identified in each message. Different types of clients may have

 different client specific data and may require different kinds of

 policy decisions. It is expected that each new client-type will have

 a corresponding usage draft specifying the specifics of its

 interaction with this policy protocol.

 The context of each request corresponds to the type of event that

 triggered it. The COPS Context object identifies the type of request

 and message (if applicable) that triggered a policy event via its

 message type and request type fields. COPS identifies three types of

 outsourcing events: (1) the arrival of an incoming message (2)

 allocation of local resources, and (3) the forwarding of an outgoing

 message. Each of these events may require different decisions to be

 made. The content of a COPS request/decision message depends on the

 context. A fourth type of request is useful for types of clients that

 wish to receive configuration information from the PDP. This allows a

 PEP to issue a configuration request for a specific named device or

 module that requires configuration information to be installed.

Durham, et al. Standards Track [Page 5]

RFC 2748 COPS January 2000

 The PEP may also have the capability to make a local policy decision

 via its Local Policy Decision Point (LPDP) [WRK], however, the PDP

 remains the authoritative decision point at all times. This means

 that the relevant local decision information must be relayed to the

 PDP. That is, the PDP must be granted access to all relevant

 information to make a final policy decision. To facilitate this

 functionality, the PEP must send its local decision information to

 the remote PDP via an LPDP decision object. The PEP must then abide

 by the PDP's decision as it is absolute.

 Finally, fault tolerance is a required capability for this protocol,

 particularly due to the fact it is associated with the security and

 service management of distributed network devices. Fault tolerance

 can be achieved by having both the PEP and remote PDP constantly

 verify their connection to each other via keep-alive messages. When a

 failure is detected, the PEP must try to reconnect to the remote PDP

 or attempt to connect to a backup/alternative PDP. While

 disconnected, the PEP should revert to making local decisions. Once a

 connection is reestablished, the PEP is expected to notify the PDP of

 any deleted state or new events that passed local admission control

 after the connection was lost. Additionally, the remote PDP may

 request that all the PEP's internal state be resynchronized (all

 previously installed requests are to be reissued). After failure and

 before the new connection is fully functional, disruption of service

 can be minimized if the PEP caches previously communicated decisions

 and continues to use them for some limited amount of time. Sections

 2.3 and 2.5 detail COPS mechanisms for achieving reliability.

2. The Protocol

 This section describes the message formats and objects exchanged

 between the PEP and remote PDP.

2.1 Common Header

 Each COPS message consists of the COPS header followed by a number of

 typed objects.

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 |Version| Flags| Op Code | Client-type |

 +--------------+--------------+--------------+--------------+

 | Message Length |

 +--------------+--------------+--------------+--------------+

 Global note: //// implies field is reserved, set to 0.

Durham, et al. Standards Track [Page 6]

RFC 2748 COPS January 2000

 The fields in the header are:

 Version: 4 bits

 COPS version number. Current version is 1.

 Flags: 4 bits

 Defined flag values (all other flags MUST be set to 0):

 0x1 Solicited Message Flag Bit

 This flag is set when the message is solicited by

 another COPS message. This flag is NOT to be set

 (value=0) unless otherwise specified in section 3.

 Op Code: 8 bits

 The COPS operations:

 1 = Request (REQ)

 2 = Decision (DEC)

 3 = Report State (RPT)

 4 = Delete Request State (DRQ)

 5 = Synchronize State Req (SSQ)

 6 = Client-Open (OPN)

 7 = Client-Accept (CAT)

 8 = Client-Close (CC)

 9 = Keep-Alive (KA)

 10= Synchronize Complete (SSC)

 Client-type: 16 bits

 The Client-type identifies the policy client. Interpretation of

 all encapsulated objects is relative to the client-type. Client-

 types that set the most significant bit in the client-type field

 are enterprise specific (these are client-types 0x8000 -

 0xFFFF). (See the specific client usage documents for particular

 client-type IDs). For KA Messages, the client-type in the header

 MUST always be set to 0 as the KA is used for connection

 verification (not per client session verification).

 Message Length: 32 bits

 Size of message in octets, which includes the standard COPS

 header and all encapsulated objects. Messages MUST be aligned on

 4 octet intervals.

Durham, et al. Standards Track [Page 7]

RFC 2748 COPS January 2000

2.2 COPS Specific Object Formats

 All the objects follow the same object format; each object consists

 of one or more 32-bit words with a four-octet header, using the

 following format:

 0 1 2 3

 +-------------+-------------+-------------+-------------+

 | Length (octets) | C-Num | C-Type |

 +-------------+-------------+-------------+-------------+

 | |

 // (Object contents) //

 | |

 +-------------+-------------+-------------+-------------+

 The length is a two-octet value that describes the number of octets

 (including the header) that compose the object. If the length in

 octets does not fall on a 32-bit word boundary, padding MUST be added

 to the end of the object so that it is aligned to the next 32-bit

 boundary before the object can be sent on the wire. On the receiving

 side, a subsequent object boundary can be found by simply rounding up

 the previous stated object length to the next 32-bit boundary.

 Typically, C-Num identifies the class of information contained in the

 object, and the C-Type identifies the subtype or version of the

 information contained in the object.

 C-num: 8 bits

 1 = Handle

 2 = Context

 3 = In Interface

 4 = Out Interface

 5 = Reason code

 6 = Decision

 7 = LPDP Decision

 8 = Error

 9 = Client Specific Info

 10 = Keep-Alive Timer

 11 = PEP Identification

 12 = Report Type

 13 = PDP Redirect Address

 14 = Last PDP Address

 15 = Accounting Timer

 16 = Message Integrity

 C-type: 8 bits

 Values defined per C-num.

Durham, et al. Standards Track [Page 8]

RFC 2748 COPS January 2000

2.2.1 Handle Object (Handle)

 The Handle Object encapsulates a unique value that identifies an

 installed state. This identification is used by most COPS operations.

 A state corresponding to a handle MUST be explicitly deleted when it

 is no longer applicable. See Section 2.4 for details.

 C-Num = 1

 C-Type = 1, Client Handle.

 Variable-length field, no implied format other than it is unique from

 other client handles from the same PEP (a.k.a. COPS TCP connection)

 for a particular client-type. It is always initially chosen by the

 PEP and then deleted by the PEP when no longer applicable. The client

 handle is used to refer to a request state initiated by a particular

 PEP and installed at the PDP for a client-type. A PEP will specify a

 client handle in its Request messages, Report messages and Delete

 messages sent to the PDP. In all cases, the client handle is used to

 uniquely identify a particular PEP's request for a client-type.

 The client handle value is set by the PEP and is opaque to the PDP.

 The PDP simply performs a byte-wise comparison on the value in this

 object with respect to the handle object values of other currently

 installed requests.

2.2.2 Context Object (Context)

 Specifies the type of event(s) that triggered the query. Required for

 request messages. Admission control, resource allocation, and

 forwarding requests are all amenable to client-types that outsource

 their decision making facility to the PDP. For applicable client-

 types a PEP can also make a request to receive named configuration

 information from the PDP. This named configuration data may be in a

 form useful for setting system attributes on a PEP, or it may be in

 the form of policy rules that are to be directly verified by the PEP.

 Multiple flags can be set for the same request. This is only allowed,

 however, if the set of client specific information in the combined

 request is identical to the client specific information that would be

 specified if individual requests were made for each specified flag.

 C-num = 2, C-Type = 1

Durham, et al. Standards Track [Page 9]

RFC 2748 COPS January 2000

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | R-Type | M-Type |

 +--------------+--------------+--------------+--------------+

 R-Type (Request Type Flag)

 0x01 = Incoming-Message/Admission Control request

 0x02 = Resource-Allocation request

 0x04 = Outgoing-Message request

 0x08 = Configuration request

 M-Type (Message Type)

 Client Specific 16 bit values of protocol message types

2.2.3 In-Interface Object (IN-Int)

 The In-Interface Object is used to identify the incoming interface on

 which a particular request applies and the address where the received

 message originated. For flows or messages generated from the PEP's

 local host, the loop back address and ifindex are used.

 This Interface object is also used to identify the incoming

 (receiving) interface via its ifindex. The ifindex may be used to

 differentiate between sub-interfaces and unnumbered interfaces (see

 RSVP's LIH for an example). When SNMP is supported by the PEP, this

 ifindex integer MUST correspond to the same integer value for the

 interface in the SNMP MIB-II interface index table.

 Note: The ifindex specified in the In-Interface is typically relative

 to the flow of the underlying protocol messages. The ifindex is the

 interface on which the protocol message was received.

 C-Num = 3

 C-Type = 1, IPv4 Address + Interface

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | IPv4 Address format |

 +--------------+--------------+--------------+--------------+

 | ifindex |

 +--------------+--------------+--------------+--------------+

 For this type of the interface object, the IPv4 address specifies the

 IP address that the incoming message came from.

Durham, et al. Standards Track [Page 10]

RFC 2748 COPS January 2000

 C-Type = 2, IPv6 Address + Interface

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | |

 + +

 | |

 + IPv6 Address format +

 | |

 + +

 | |

 +--------------+--------------+--------------+--------------+

 | ifindex |

 +--------------+--------------+--------------+--------------+

 For this type of the interface object, the IPv6 address specifies the

 IP address that the incoming message came from. The ifindex is used

 to refer to the MIB-II defined local incoming interface on the PEP as

 described above.

2.2.4 Out-Interface Object (OUT-Int)

 The Out-Interface is used to identify the outgoing interface to which

 a specific request applies and the address for where the forwarded

 message is to be sent. For flows or messages destined to the PEP's

 local host, the loop back address and ifindex are used. The Out-

 Interface has the same formats as the In-Interface Object.

 This Interface object is also used to identify the outgoing

 (forwarding) interface via its ifindex. The ifindex may be used to

 differentiate between sub-interfaces and unnumbered interfaces (see

 RSVP's LIH for an example). When SNMP is supported by the PEP, this

 ifindex integer MUST correspond to the same integer value for the

 interface in the SNMP MIB-II interface index table.

 Note: The ifindex specified in the Out-Interface is typically

 relative to the flow of the underlying protocol messages. The ifindex

 is the one on which a protocol message is about to be forwarded.

 C-Num = 4

 C-Type = 1, IPv4 Address + Interface

 Same C-Type format as the In-Interface object. The IPv4 address

 specifies the IP address to which the outgoing message is going. The

 ifindex is used to refer to the MIB-II defined local outgoing

 interface on the PEP.

Durham, et al. Standards Track [Page 11]

RFC 2748 COPS January 2000

 C-Type = 2, IPv6 Address + Interface

 Same C-Type format as the In-Interface object. For this type of the

 interface object, the IPv6 address specifies the IP address to which

 the outgoing message is going. The ifindex is used to refer to the

 MIB-II defined local outgoing interface on the PEP.

2.2.5 Reason Object (Reason)

 This object specifies the reason why the request state was deleted.

 It appears in the delete request (DRQ) message. The Reason Sub-code

 field is reserved for more detailed client-specific reason codes

 defined in the corresponding documents.

 C-Num = 5, C-Type = 1

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | Reason-Code | Reason Sub-code |

 +--------------+--------------+--------------+--------------+

 Reason Code:

 1 = Unspecified

 2 = Management

 3 = Preempted (Another request state takes precedence)

 4 = Tear (Used to communicate a signaled state removal)

 5 = Timeout (Local state has timed-out)

 6 = Route Change (Change invalidates request state)

 7 = Insufficient Resources (No local resource available)

 8 = PDP's Directive (PDP decision caused the delete)

 9 = Unsupported decision (PDP decision not supported)

 10= Synchronize Handle Unknown

 11= Transient Handle (stateless event)

 12= Malformed Decision (could not recover)

 13= Unknown COPS Object from PDP:

 Sub-code (octet 2) contains unknown object's C-Num

 and (octet 3) contains unknown object's C-Type.

2.2.6 Decision Object (Decision)

 Decision made by the PDP. Appears in replies. The specific non-

 mandatory decision objects required in a decision to a particular

 request depend on the type of client.

Durham, et al. Standards Track [Page 12]

RFC 2748 COPS January 2000

 C-Num = 6

 C-Type = 1, Decision Flags (Mandatory)

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | Command-Code | Flags |

 +--------------+--------------+--------------+--------------+

 Commands:

 0 = NULL Decision (No configuration data available)

 1 = Install (Admit request/Install configuration)

 2 = Remove (Remove request/Remove configuration)

 Flags:

 0x01 = Trigger Error (Trigger error message if set)

 Note: Trigger Error is applicable to client-types that

 are capable of sending error notifications for signaled

 messages.

 Flag values not applicable to a given context's R-Type or

 client-type MUST be ignored by the PEP.

 C-Type = 2, Stateless Data

 This type of decision object carries additional stateless

 information that can be applied by the PEP locally. It is a

 variable length object and its internal format SHOULD be

 specified in the relevant COPS extension document for the given

 client-type. This object is optional in Decision messages and is

 interpreted relative to a given context.

 It is expected that even outsourcing PEPs will be able to make

 some simple stateless policy decisions locally in their LPDP. As

 this set is well known and implemented ubiquitously, PDPs are

 aware of it as well (either universally, through configuration,

 or using the Client-Open message). The PDP may also include this

 information in its decision, and the PEP MUST apply it to the

 resource allocation event that generated the request.

 C-Type = 3, Replacement Data

 This type of decision object carries replacement data that is to

 replace existing data in a signaled message. It is a variable

 length object and its internal format SHOULD be specified in the

 relevant COPS extension document for the given client-type. It is

 optional in Decision messages and is interpreted relative to a

 given context.

Durham, et al. Standards Track [Page 13]

RFC 2748 COPS January 2000

 C-Type = 4, Client Specific Decision Data

 Additional decision types can be introduced using the Client

 Specific Decision Data Object. It is a variable length object and

 its internal format SHOULD be specified in the relevant COPS

 extension document for the given client-type. It is optional in

 Decision messages and is interpreted relative to a given context.

 C-Type = 5, Named Decision Data

 Named configuration information is encapsulated in this version

 of the decision object in response to configuration requests. It

 is a variable length object and its internal format SHOULD be

 specified in the relevant COPS extension document for the given

 client-type. It is optional in Decision messages and is

 interpreted relative to both a given context and decision flags.

2.2.7 LPDP Decision Object (LPDPDecision)

 Decision made by the PEP's local policy decision point (LPDP). May

 appear in requests. These objects correspond to and are formatted the

 same as the client specific decision objects defined above.

 C-Num = 7

 C-Type = (same C-Type as for Decision objects)

2.2.8 Error Object (Error)

 This object is used to identify a particular COPS protocol error.

 The error sub-code field contains additional detailed client specific

 error codes. The appropriate Error Sub-codes for a particular

 client-type SHOULD be specified in the relevant COPS extensions

 document.

 C-Num = 8, C-Type = 1

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | Error-Code | Error Sub-code |

 +--------------+--------------+--------------+--------------+

 Error-Code:

 1 = Bad handle

 2 = Invalid handle reference

 3 = Bad message format (Malformed Message)

 4 = Unable to process (server gives up on query)

Durham, et al. Standards Track [Page 14]

RFC 2748 COPS January 2000

 5 = Mandatory client-specific info missing

 6 = Unsupported client-type

 7 = Mandatory COPS object missing

 8 = Client Failure

 9 = Communication Failure

 10= Unspecified

 11= Shutting down

 12= Redirect to Preferred Server

 13= Unknown COPS Object:

 Sub-code (octet 2) contains unknown object's C-Num

 and (octet 3) contains unknown object's C-Type.

 14= Authentication Failure

 15= Authentication Required

2.2.9 Client Specific Information Object (ClientSI)

 The various types of this object are required for requests, and used

 in reports and opens when required. It contains client-type specific

 information.

 C-Num = 9,

 C-Type = 1, Signaled ClientSI.

 Variable-length field. All objects/attributes specific to a client's

 signaling protocol or internal state are encapsulated within one or

 more signaled Client Specific Information Objects. The format of the

 data encapsulated in the ClientSI object is determined by the

 client-type.

 C-Type = 2, Named ClientSI.

 Variable-length field. Contains named configuration information

 useful for relaying specific information about the PEP, a request, or

 configured state to the PDP server.

2.2.10 Keep-Alive Timer Object (KATimer)

 Times are encoded as 2 octet integer values and are in units of

 seconds. The timer value is treated as a delta.

 C-Num = 10,

 C-Type = 1, Keep-alive timer value

Durham, et al. Standards Track [Page 15]

RFC 2748 COPS January 2000

 Timer object used to specify the maximum time interval over which a

 COPS message MUST be sent or received. The range of finite timeouts

 is 1 to 65535 seconds represented as an unsigned two-octet integer.

 The value of zero implies infinity.

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | ////////////// | KA Timer Value |

 +--------------+--------------+--------------+--------------+

2.2.11 PEP Identification Object (PEPID)

 The PEP Identification Object is used to identify the PEP client to

 the remote PDP. It is required for Client-Open messages.

 C-Num = 11, C-Type = 1

 Variable-length field. It is a NULL terminated ASCII string that is

 also zero padded to a 32-bit word boundary (so the object length is a

 multiple of 4 octets). The PEPID MUST contain an ASCII string that

 uniquely identifies the PEP within the policy domain in a manner that

 is persistent across PEP reboots. For example, it may be the PEP's

 statically assigned IP address or DNS name. This identifier may

 safely be used by a PDP as a handle for identifying the PEP in its

 policy rules.

2.2.12 Report-Type Object (Report-Type)

 The Type of Report on the request state associated with a handle:

 C-Num = 12, C-Type = 1

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | Report-Type | ///////////// |

 +--------------+--------------+--------------+--------------+

 Report-Type:

 1 = Success : Decision was successful at the PEP

 2 = Failure : Decision could not be completed by PEP

 3 = Accounting: Accounting update for an installed state

2.2.13 PDP Redirect Address (PDPRedirAddr)

 A PDP when closing a PEP session for a particular client-type may

 optionally use this object to redirect the PEP to the specified PDP

 server address and TCP port number:

Durham, et al. Standards Track [Page 16]

RFC 2748 COPS January 2000

 C-Num = 13,

 C-Type = 1, IPv4 Address + TCP Port

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | IPv4 Address format |

 +--------------+--------------+--------------+--------------+

 | ///////////////////////// | TCP Port Number |

 +-----------------------------+-----------------------------+

 C-Type = 2, IPv6 Address + TCP Port

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | |

 + +

 | |

 + IPv6 Address format +

 | |

 + +

 | |

 +--------------+--------------+--------------+--------------+

 | ///////////////////////// | TCP Port Number |

 +-----------------------------+-----------------------------+

2.2.14 Last PDP Address (LastPDPAddr)

 When a PEP sends a Client-Open message for a particular client-type

 the PEP SHOULD specify the last PDP it has successfully opened

 (meaning it received a Client-Accept) since the PEP last rebooted.

 If no PDP was used since the last reboot, the PEP will simply not

 include this object in the Client-Open message.

 C-Num = 14,

 C-Type = 1, IPv4 Address (Same format as PDPRedirAddr)

 C-Type = 2, IPv6 Address (Same format as PDPRedirAddr)

2.2.15 Accounting Timer Object (AcctTimer)

 Times are encoded as 2 octet integer values and are in units of

 seconds. The timer value is treated as a delta.

 C-Num = 15,

 C-Type = 1, Accounting timer value

Durham, et al. Standards Track [Page 17]

RFC 2748 COPS January 2000

 Optional timer value used to determine the minimum interval between

 periodic accounting type reports. It is used by the PDP to describe

 to the PEP an acceptable interval between unsolicited accounting

 updates via Report messages where applicable. It provides a method

 for the PDP to control the amount of accounting traffic seen by the

 network. The range of finite time values is 1 to 65535 seconds

 represented as an unsigned two-octet integer. A value of zero means

 there SHOULD be no unsolicited accounting updates.

 0 1 2 3

 +--------------+--------------+--------------+--------------+

 | ////////////// | ACCT Timer Value |

 +--------------+--------------+--------------+--------------+

2.2.16 Message Integrity Object (Integrity)

 The integrity object includes a sequence number and a message digest

 useful for authenticating and validating the integrity of a COPS

 message. When used, integrity is provided at the end of a COPS

 message as the last COPS object. The digest is then computed over all

 of a particular COPS message up to but not including the digest value

 itself. The sender of a COPS message will compute and fill in the

 digest portion of the Integrity object. The receiver of a COPS

 message will then compute a digest over the received message and

 verify it matches the digest in the received Integrity object.

 C-Num = 16,

 C-Type = 1, HMAC digest

 The HMAC integrity object employs HMAC (Keyed-Hashing for Message

 Authentication) [HMAC] to calculate the message digest based on a key

 shared between the PEP and its PDP.

 This Integrity object specifies a 32-bit Key ID used to identify a

 specific key shared between a particular PEP and its PDP and the

 cryptographic algorithm to be used. The Key ID allows for multiple

 simultaneous keys to exist on the PEP with corresponding keys on the

 PDP for the given PEPID. The key identified by the Key ID was used to

 compute the message digest in the Integrity object. All

 implementations, at a minimum, MUST support HMAC-MD5-96, which is

 HMAC employing the MD5 Message-Digest Algorithm [MD5] truncated to

 96-bits to calculate the message digest.

 This object also includes a sequence number that is a 32-bit unsigned

 integer used to avoid replay attacks. The sequence number is

 initiated during an initial Client-Open Client-Accept message

 exchange and is then incremented by one each time a new message is

Durham, et al. Standards Track [Page 18]

RFC 2748 COPS January 2000

 sent over the TCP connection in the same direction. If the sequence

 number reaches the value of 0xFFFFFFFF, the next increment will

 simply rollover to a value of zero.

 The variable length digest is calculated over a COPS message starting

 with the COPS Header up to the Integrity Object (which MUST be the

 last object in a COPS message) INCLUDING the Integrity object's

 header, Key ID, and Sequence Number. The Keyed Message Digest field

 is not included as part of the digest calculation. In the case of

 HMAC-MD5-96, HMAC-MD5 will produce a 128-bit digest that is then to

 be truncated to 96-bits before being stored in or verified against

 the Keyed Message Digest field as specified in [HMAC]. The Keyed

 Message Digest MUST be 96-bits when HMAC-MD5-96 is used.

 0 1 2 3

 +-------------+-------------+-------------+-------------+

 | Key ID |

 +-------------+-------------+-------------+-------------+

 | Sequence Number |

 +-------------+-------------+-------------+-------------+

 | |

 + +

 | ...Keyed Message Digest... |

 + +

 | |

 +-------------+-------------+-------------+-------------+

2.3 Communication

 The COPS protocol uses a single persistent TCP connection between the

 PEP and a remote PDP. One PDP implementation per server MUST listen

 on a well-known TCP port number (COPS=3288 [IANA]). The PEP is

 responsible for initiating the TCP connection to a PDP. The location

 of the remote PDP can either be configured, or obtained via a service

 location mechanism [SRVLOC]. Service discovery is outside the scope

 of this protocol, however.

 If a single PEP can support multiple client-types, it may send

 multiple Client-Open messages, each specifying a particular client-

 type to a PDP over one or more TCP connections. Likewise, a PDP

 residing at a given address and port number may support one or more

 client-types. Given the client-types it supports, a PDP has the

 ability to either accept or reject each client-type independently.

 If a client-type is rejected, the PDP can redirect the PEP to an

 alternative PDP address and TCP port for a given client-type via

 COPS. Different TCP port numbers can be used to redirect the PEP to

 another PDP implementation running on the same server. Additional

 provisions for supporting multiple client-types (perhaps from

Durham, et al. Standards Track [Page 19]

RFC 2748 COPS January 2000

 independent PDP vendors) on a single remote PDP server are not

 provided by the COPS protocol, but, rather, are left to the software

 architecture of the given server platform.

 It is possible a single PEP may have open connections to multiple

 PDPs. This is the case when there are physically different PDPs

 supporting different client-types as shown in figure 2.

 +----------------+

 | |

 | Network Node | Policy Servers

 | |

 | +-----+ | COPS Client Type 1 +-----+

 | | |<-----|-------------------->| PDP1|

 | + PEP + | COPS Client Type 2 +-----+

 | | |<-----|---------\ +-----+

 | +-----+ | \----------| PDP2|

 | ^ | +-----+

 | | |

 | \-->+-----+ |

 | | LPDP| |

 | +-----+ |

 | |

 +----------------+

 Figure 2: Multiple PDPs illustration.

 When a TCP connection is torn down or is lost, the PDP is expected to

 eventually clean up any outstanding request state related to

 request/decision exchanges with the PEP. When the PEP detects a lost

 connection due to a timeout condition it SHOULD explicitly send a

 Client-Close message for each opened client-type containing an

 <Error> object indicating the "Communication Failure" Error-Code.

 Additionally, the PEP SHOULD continuously attempt to contact the

 primary PDP or, if unsuccessful, any known backup PDPs. Specifically

 the PEP SHOULD keep trying all relevant PDPs with which it has been

 configured until it can establish a connection. If a PEP is in

 communication with a backup PDP and the primary PDP becomes

 available, the backup PDP is responsible for redirecting the PEP back

 to the primary PDP (via a <Client-Close> message containing a

 <PDPRedirAddr> object identifying the primary PDP to use for each

 affected client-type). Section 2.5 details synchronization behavior

 between PEPs and PDPs.

Durham, et al. Standards Track [Page 20]

RFC 2748 COPS January 2000

2.4 Client Handle Usage

 The client handle is used to identify a unique request state for a

 single PEP per client-type. Client handles are chosen by the PEP and

 are opaque to the PDP. The PDP simply uses the request handle to

 uniquely identify the request state for a particular Client-Type over

 a particular TCP connection and generically tie its decisions to a

 corresponding request. Client handles are initiated in request

 messages and are then used by subsequent request, decision, and

 report messages to reference the same request state. When the PEP is

 ready to remove a local request state, it will issue a delete message

 to the PDP for the corresponding client handle. A handle MUST be

 explicitly deleted by the PEP before it can be used by the PEP to

 identify a new request state. Handles referring to different request

 states MUST be unique within the context of a particular TCP

 connection and client-type.

2.5 Synchronization Behavior

 When disconnected from a PDP, the PEP SHOULD revert to making local

 decisions. Once a connection is reestablished, the PEP is expected to

 notify the PDP of any events that have passed local admission

 control. Additionally, the remote PDP may request that all the PEP's

 internal state be resynchronized (all previously installed requests

 are to be reissued) by sending a Synchronize State message.

 After a failure and before a new connection is fully functional,

 disruption of service can be minimized if the PEP caches previously

 communicated decisions and continues to use them for some appropriate

 length of time. Specific rules for such behavior are to be defined in

 the appropriate COPS client-type extension specifications.

 A PEP that caches state from a previous exchange with a disconnected

 PDP MUST communicate this fact to any PDP with which it is able to

 later reconnect. This is accomplished by including the address and

 TCP port of the last PDP for which the PEP is still caching state in

 the Client-Open message. The <LastPDPAddr> object will only be

 included for the last PDP with which the PEP was completely in sync.

 If the service interruption was temporary and the PDP still contains

 the complete state for the PEP, the PDP may choose not to synchronize

 all states. It is still the responsibility of the PEP to update the

 PDP of all state changes that occurred during the disruption of

 service including any states communicated to the previous PDP that

 had been deleted after the connection was lost. These MUST be

 explicitly deleted after a connection is reestablished. If the PDP

 issues a synchronize request the PEP MUST pass all current states to

 the PDP followed by a Synchronize State Complete message (thus

Durham, et al. Standards Track [Page 21]

RFC 2748 COPS January 2000

 completing the synchronization process). If the PEP crashes and loses

 all cached state for a client-type, it will simply not include a

 <LastPDPAddr> in its Client-Open message.

3. Message Content

 This section describes the basic messages exchanged between a PEP and

 a remote PDP as well as their contents. As a convention, object

 ordering is expected as shown in the BNF for each COPS message unless

 otherwise noted. The Integrity object, if included, MUST always be

 the last object in a message. If security is required and a message

 was received without a valid Integrity object, the receiver MUST send

 a Client-Close message for Client-Type=0 specifying the appropriate

 error code.

3.1 Request (REQ) PEP -> PDP

 The PEP establishes a request state client handle for which the

 remote PDP may maintain state. The remote PDP then uses this handle

 to refer to the exchanged information and decisions communicated over

 the TCP connection to a particular PEP for a given client-type.

 Once a stateful handle is established for a new request, any

 subsequent modifications of the request can be made using the REQ

 message specifying the previously installed handle. The PEP is

 responsible for notifying the PDP whenever its local state changes so

 the PDP's state will be able to accurately mirror the PEP's state.

Durham, et al. Standards Track [Page 22]

RFC 2748 COPS January 2000

 The format of the Request message is as follows:

 <Request Message> ::= <Common Header>

 <Client Handle>

 <Context>

 [<IN-Int>]

 [<OUT-Int>]

 [<ClientSI(s)>]

 [<LPDPDecision(s)>]

 [<Integrity>]

 <ClientSI(s)> ::= <ClientSI> | <ClientSI(s)> <ClientSI>

 <LPDPDecision(s)> ::= <LPDPDecision> |

 <LPDPDecision(s)> <LPDPDecision>

 <LPDPDecision> ::= [<Context>]

 <LPDPDecision: Flags>

 [<LPDPDecision: Stateless Data>]

 [<LPDPDecision: Replacement Data>]

 [<LPDPDecision: ClientSI Data>]

 [<LPDPDecision: Named Data>]

 The context object is used to determine the context within which all

 the other objects are to be interpreted. It also is used to determine

 the kind of decision to be returned from the policy server. This

 decision might be related to admission control, resource allocation,

 object forwarding and substitution, or configuration.

 The interface objects are used to determine the corresponding

 interface on which a signaling protocol message was received or is

 about to be sent. They are typically used if the client is

 participating along the path of a signaling protocol or if the client

 is requesting configuration data for a particular interface.

 ClientSI, the client specific information object, holds the client-

 type specific data for which a policy decision needs to be made. In

 the case of configuration, the Named ClientSI may include named

 information about the module, interface, or functionality to be

 configured. The ordering of multiple ClientSIs is not important.

 Finally, LPDPDecision object holds information regarding the local

 decision made by the LPDP.

 Malformed Request messages MUST result in the PDP specifying a

 Decision message with the appropriate error code.

Durham, et al. Standards Track [Page 23]

RFC 2748 COPS January 2000

3.2 Decision (DEC) PDP -> PEP

 The PDP responds to the REQ with a DEC message that includes the

 associated client handle and one or more decision objects grouped

 relative to a Context object and Decision Flags object type pair. If

 there was a protocol error an error object is returned instead.

 It is required that the first decision message for a new/updated

 request will have the solicited message flag set (value = 1) in the

 COPS header. This avoids the issue of keeping track of which updated

 request (that is, a request reissued for the same handle) a

 particular decision corresponds. It is important that, for a given

 handle, there be at most one outstanding solicited decision per

 request. This essentially means that the PEP SHOULD NOT issue more

 than one REQ (for a given handle) before it receives a corresponding

 DEC with the solicited message flag set. The PDP MUST always issue

 decisions for requests on a particular handle in the order they

 arrive and all requests MUST have a corresponding decision.

 To avoid deadlock, the PEP can always timeout after issuing a request

 that does not receive a decision. It MUST then delete the timed-out

 handle, and may try again using a new handle.

 The format of the Decision message is as follows:

 <Decision Message> ::= <Common Header>

 <Client Handle>

 <Decision(s)> | <Error>

 [<Integrity>]

 <Decision(s)> ::= <Decision> | <Decision(s)> <Decision>

 <Decision> ::= <Context>

 <Decision: Flags>

 [<Decision: Stateless Data>]

 [<Decision: Replacement Data>]

 [<Decision: ClientSI Data>]

 [<Decision: Named Data>]

 The Decision message may include either an Error object or one or

 more context plus associated decision objects. COPS protocol problems

 are reported in the Error object (e.g. an error with the format of

 the original request including malformed request messages, unknown

 COPS objects in the Request, etc.). The applicable Decision object(s)

 depend on the context and the type of client. The only ordering

 requirement for decision objects is that the required Decision Flags

 object type MUST precede the other Decision object types per context

 binding.

Durham, et al. Standards Track [Page 24]

RFC 2748 COPS January 2000

3.3 Report State (RPT) PEP -> PDP

 The RPT message is used by the PEP to communicate to the PDP its

 success or failure in carrying out the PDP's decision, or to report

 an accounting related change in state. The Report-Type specifies the

 kind of report and the optional ClientSI can carry additional

 information per Client-Type.

 For every DEC message containing a configuration context that is

 received by a PEP, the PEP MUST generate a corresponding Report State

 message with the Solicited Message flag set describing its success or

 failure in applying the configuration decision. In addition,

 outsourcing decisions from the PDP MAY result in a corresponding

 solicited Report State from the PEP depending on the context and the

 type of client. RPT messages solicited by decisions for a given

 Client Handle MUST set the Solicited Message flag and MUST be sent in

 the same order as their corresponding Decision messages were

 received. There MUST never be more than one Report State message

 generated with the Solicited Message flag set per Decision.

 The Report State may also be used to provide periodic updates of

 client specific information for accounting and state monitoring

 purposes depending on the type of the client. In such cases the

 accounting report type should be specified utilizing the appropriate

 client specific information object.

 <Report State> ::== <Common Header>

 <Client Handle>

 <Report-Type>

 [<ClientSI>]

 [<Integrity>]

3.4 Delete Request State (DRQ) PEP -> PDP

 When sent from the PEP this message indicates to the remote PDP that

 the state identified by the client handle is no longer

 available/relevant. This information will then be used by the remote

 PDP to initiate the appropriate housekeeping actions. The reason code

 object is interpreted with respect to the client-type and signifies

 the reason for the removal.

 The format of the Delete Request State message is as follows:

 <Delete Request> ::= <Common Header>

 <Client Handle>

 <Reason>

 [<Integrity>]

Durham, et al. Standards Track [Page 25]

RFC 2748 COPS January 2000

 Given the stateful nature of COPS, it is important that when a

 request state is finally removed from the PEP, a DRQ message for this

 request state is sent to the PDP so the corresponding state may

 likewise be removed on the PDP. Request states not explicitly deleted

 by the PEP will be maintained by the PDP until either the client

 session is closed or the connection is terminated.

 Malformed Decision messages MUST trigger a DRQ specifying the

 appropriate erroneous reason code (Bad Message Format) and any

 associated state on the PEP SHOULD either be removed or re-requested.

 If a Decision contained an unknown COPS Decision Object, the PEP MUST

 delete its request specifying the Unknown COPS Object reason code

 because the PEP will be unable to comply with the information

 contained in the unknown object. In any case, after issuing a DRQ,

 the PEP may retry the corresponding Request again.

3.5 Synchronize State Request (SSQ) PDP -> PEP

 The format of the Synchronize State Query message is as follows:

 <Synchronize State> ::= <Common Header>

 [<Client Handle>]

 [<Integrity>]

 This message indicates that the remote PDP wishes the client (which

 appears in the common header) to re-send its state. If the optional

 Client Handle is present, only the state associated with this handle

 is synchronized. If the PEP does not recognize the requested handle,

 it MUST immediately send a DRQ message to the PDP for the handle that

 was specified in the SSQ message. If no handle is specified in the

 SSQ message, all the active client state MUST be synchronized with

 the PDP.

 The client performs state synchronization by re-issuing request

 queries of the specified client-type for the existing state in the

 PEP. When synchronization is complete, the PEP MUST issue a

 synchronize state complete message to the PDP.

3.6 Client-Open (OPN) PEP -> PDP

 The Client-Open message can be used by the PEP to specify to the PDP

 the client-types the PEP can support, the last PDP to which the PEP

 connected for the given client-type, and/or client specific feature

 negotiation. A Client-Open message can be sent to the PDP at any time

 and multiple Client-Open messages for the same client-type are

 allowed (in case of global state changes).

Durham, et al. Standards Track [Page 26]

RFC 2748 COPS January 2000

 <Client-Open> ::= <Common Header>

 <PEPID>

 [<ClientSI>]

 [<LastPDPAddr>]

 [<Integrity>]

 The PEPID is a symbolic, variable length name that uniquely

 identifies the specific client to the PDP (see Section 2.2.11).

 A named ClientSI object can be included for relaying additional

 global information about the PEP to the PDP when required (as

 specified in the appropriate extensions document for the client-

 type).

 The PEP may also provide a Last PDP Address object in its Client-Open

 message specifying the last PDP (for the given client-type) for which

 it is still caching decisions since its last reboot. A PDP can use

 this information to determine the appropriate synchronization

 behavior (See section 2.5).

 If the PDP receives a malformed Client-Open message it MUST generate

 a Client-Close message specifying the appropriate error code.

3.7 Client-Accept (CAT) PDP -> PEP

 The Client-Accept message is used to positively respond to the

 Client-Open message. This message will return to the PEP a timer

 object indicating the maximum time interval between keep-alive

 messages. Optionally, a timer specifying the minimum allowed interval

 between accounting report messages may be included when applicable.

 <Client-Accept> ::= <Common Header>

 <KA Timer>

 [<ACCT Timer>]

 [<Integrity>]

 If the PDP refuses the client, it will instead issue a Client-Close

 message.

 The KA Timer corresponds to maximum acceptable intermediate time

 between the generation of messages by the PDP and PEP. The timer

 value is determined by the PDP and is specified in seconds. A timer

 value of 0 implies no secondary connection verification is necessary.

 The optional ACCT Timer allows the PDP to indicate to the PEP that

 periodic accounting reports SHOULD NOT exceed the specified timer

 interval per client handle. This allows the PDP to control the rate

 at which accounting reports are sent by the PEP (when applicable).

Durham, et al. Standards Track [Page 27]

RFC 2748 COPS January 2000

 In general, accounting type Report messages are sent to the PDP when

 determined appropriate by the PEP. The accounting timer merely is

 used by the PDP to keep the rate of such updates in check (i.e.

 Preventing the PEP from blasting the PDP with accounting reports).

 Not including this object implies there are no PDP restrictions on

 the rate at which accounting updates are generated.

 If the PEP receives a malformed Client-Accept message it MUST

 generate a Client-Close message specifying the appropriate error

 code.

3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP

 The Client-Close message can be issued by either the PDP or PEP to

 notify the other that a particular type of client is no longer being

 supported.

 <Client-Close> ::= <Common Header>

 <Error>

 [<PDPRedirAddr>]

 [<Integrity>]

 The Error object is included to describe the reason for the close

 (e.g. the requested client-type is not supported by the remote PDP or

 client failure).

 A PDP MAY optionally include a PDP Redirect Address object in order

 to inform the PEP of the alternate PDP it SHOULD use for the client-

 type specified in the common header.

3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP

 The keep-alive message MUST be transmitted by the PEP within the

 period defined by the minimum of all KA Timer values specified in all

 received CAT messages for the connection. A KA message MUST be

 generated randomly between 1/4 and 3/4 of this minimum KA timer

 interval. When the PDP receives a keep-alive message from a PEP, it

 MUST echo a keep-alive back to the PEP. This message provides

 validation for each side that the connection is still functioning

 even when there is no other messaging.

 Note: The client-type in the header MUST always be set to 0 as the KA

 is used for connection verification (not per client session

 verification).

 <Keep-Alive> ::= <Common Header>

 [<Integrity>]

Durham, et al. Standards Track [Page 28]

RFC 2748 COPS January 2000

 Both client and server MAY assume the TCP connection is insufficient

 for the client-type with the minimum time value (specified in the CAT

 message) if no communication activity is detected for a period

 exceeding the timer period. For the PEP, such detection implies the

 remote PDP or connection is down and the PEP SHOULD now attempt to

 use an alternative/backup PDP.

3.10 Synchronize State Complete (SSC) PEP -> PDP

 The Synchronize State Complete is sent by the PEP to the PDP after

 the PDP sends a synchronize state request to the PEP and the PEP has

 finished synchronization. It is useful so that the PDP will know when

 all the old client state has been successfully re-requested and,

 thus, the PEP and PDP are completely synchronized. The Client Handle

 object only needs to be included if the corresponding Synchronize

 State Message originally referenced a specific handle.

 <Synchronize State Complete> ::= <Common Header>

 [<Client Handle>]

 [<Integrity>]

4. Common Operation

 This section describes the typical exchanges between remote PDP

 servers and PEP clients.

4.1 Security and Sequence Number Negotiation

 COPS message security is negotiated once per connection and covers

 all communication over a particular connection. If COPS level

 security is required, it MUST be negotiated during the initial

 Client-Open/Client-Accept message exchange specifying a Client-Type

 of zero (which is reserved for connection level security negotiation

 and connection verification).

 If a PEP is not configured to use COPS security with a PDP it will

 simply send the PDP Client-Open messages for the supported Client-

 Types as specified in section 4.3 and will not include the Integrity

 object in any COPS messages.

 Otherwise, security can be initiated by the PEP if it sends the PDP a

 Client-Open message with Client-Type=0 before opening any other

 Client-Type. If the PDP receives a Client-Open with a Client-Type=0

 after another Client-Type has already been opened successfully it

 MUST return a Client-Close message (for Client-Type=0) to that PEP.

 This first Client-Open message MUST specify a Client-Type of zero and

 MUST provide the PEPID and a COPS Integrity object. This Integrity

 object will contain the initial sequence number the PEP requires the

Durham, et al. Standards Track [Page 29]

RFC 2748 COPS January 2000

 PDP to increment during subsequent communication after the initial

 Client-Open/Client-Accept exchange and the Key ID identifying the

 algorithm and key used to compute the digest.

 Similarly, if the PDP accepts the PEP's security key and algorithm by

 validating the message digest using the identified key, the PDP MUST

 send a Client-Accept message with a Client-Type of zero to the PEP

 carrying an Integrity object. This Integrity object will contain the

 initial sequence number the PDP requires the PEP to increment during

 all subsequent communication with the PDP and the Key ID identifying

 the key and algorithm used to compute the digest.

 If the PEP, from the perspective of a PDP that requires security,

 fails or never performs the security negotiation by not sending an

 initial Client-Open message with a Client-Type=0 including a valid

 Integrity object, the PDP MUST send to the PEP a Client-Close message

 with a Client-Type=0 specifying the appropriate error code.

 Similarly, if the PDP, from the perspective of a PEP that requires

 security, fails the security negotiation by not sending back a

 Client-Accept message with a Client-Type=0 including a valid

 Integrity object, the PEP MUST send to the PDP a Client-Close message

 with a Client-Type=0 specifying the appropriate error code. Such a

 Client-Close message need not carry an integrity object (as the

 security negotiation did not yet complete).

 The security initialization can fail for one of several reasons: 1.

 The side receiving the message requires COPS level security but an

 Integrity object was not provided (Authentication Required error

 code). 2. A COPS Integrity object was provided, but with an

 unknown/unacceptable C-Type (Unknown COPS Object error code

 specifying the unsupported C-Num and C-Type). 3. The message digest

 or Key ID in the provided Integrity object was incorrect and

 therefore the message could not be authenticated using the identified

 key (Authentication Failure error code).

 Once the initial security negotiation is complete, the PEP will know

 what sequence numbers the PDP expects and the PDP will know what

 sequence numbers the PEP expects. ALL COPS messages must then include

 the negotiated Integrity object specifying the correct sequence

 number with the appropriate message digest (including the Client-

 Open/Client-Accept messages for specific Client-Types). ALL

 subsequent messages from the PDP to the PEP MUST result in an

 increment of the sequence number provided by the PEP in the Integrity

 object of the initial Client-Open message. Likewise, ALL subsequent

 messages from the PEP to the PDP MUST result in an increment of the

 sequence number provided by the PDP in the Integrity object of the

 initial Client-Accept message. Sequence numbers are incremented by

 one starting with the corresponding initial sequence number. For

Durham, et al. Standards Track [Page 30]

RFC 2748 COPS January 2000

 example, if the sequence number specified to the PEP by the PDP in

 the initial Client-Accept was 10, the next message the PEP sends to

 the PDP will provide an Integrity object with a sequence number of

 11... Then the next message the PEP sends to the PDP will have a

 sequence number of 12 and so on. If any subsequent received message

 contains the wrong sequence number, an unknown Key ID, an invalid

 message digest, or is missing an Integrity object after integrity was

 negotiated, then a Client-Close message MUST be generated for the

 Client-Type zero containing a valid Integrity object and specifying

 the appropriate error code. The connection should then be dropped.

4.2 Key Maintenance

 Key maintenance is outside the scope of this document, but COPS

 implementations MUST at least provide the ability to manually

 configure keys and their parameters locally. The key used to produce

 the Integrity object's message digest is identified by the Key ID

 field. Thus, a Key ID parameter is used to identify one of

 potentially multiple simultaneous keys shared by the PEP and PDP. A

 Key ID is relative to a particular PEPID on the PDP or to a

 particular PDP on the PEP. Each key must also be configured with

 lifetime parameters for the time period within which it is valid as

 well as an associated cryptographic algorithm parameter specifying

 the algorithm to be used with the key. At a minimum, all COPS

 implementations MUST support the HMAC-MD5-96 [HMAC][MD5]

 cryptographic algorithm for computing a message digest for inclusion

 in the Keyed Message Digest of the Integrity object which is appended

 to the message.

 It is good practice to regularly change keys. Keys MUST be

 configurable such that their lifetimes overlap allowing smooth

 transitions between keys. At the midpoint of the lifetime overlap

 between two keys, senders should transition from using the current

 key to the next/longer-lived key. Meanwhile, receivers simply accept

 any identified key received within its configured lifetime and reject

 those that are not.

4.3 PEP Initialization

 Sometime after a connection is established between the PEP and a

 remote PDP and after security is negotiated (if required), the PEP

 will send one or more Client-Open messages to the remote PDP, one for

 each client-type supported by the PEP. The Client-Open message MUST

 contain the address of the last PDP with which the PEP is still

 caching a complete set of decisions. If no decisions are being cached

 from the previous PDP the LastPDPAddr object MUST NOT be included in

 the Client-Open message (see Section 2.5). Each Client-Open message

 MUST at least contain the common header noting one client-type

Durham, et al. Standards Track [Page 31]

RFC 2748 COPS January 2000

 supported by the PEP. The remote PDP will then respond with separate

 Client-Accept messages for each of the client-types requested by the

 PEP that the PDP can also support.

 If a specific client-type is not supported by the PDP, the PDP will

 instead respond with a Client-Close specifying the client-type is not

 supported and will possibly suggest an alternate PDP address and

 port. Otherwise, the PDP will send a Client-Accept specifying the

 timer interval between keep-alive messages and the PEP may begin

 issuing requests to the PDP.

4.4 Outsourcing Operations

 In the outsourcing scenario, when the PEP receives an event that

 requires a new policy decision it sends a request message to the

 remote PDP. What specifically qualifies as an event for a particular

 client-type SHOULD be specified in the specific document for that

 client-type. The remote PDP then makes a decision and sends a

 decision message back to the PEP. Since the request is stateful, the

 request will be remembered, or installed, on the remote PDP. The

 unique handle (unique per TCP connection and client-type), specified

 in both the request and its corresponding decision identifies this

 request state. The PEP is responsible for deleting this request state

 once the request is no longer applicable.

 The PEP can update a previously installed request state by reissuing

 a request for the previously installed handle. The remote PDP is then

 expected to make new decisions and send a decision message back to

 the PEP. Likewise, the server MAY change a previously issued decision

 on any currently installed request state at any time by issuing an

 unsolicited decision message. At all times the PEP module is expected

 to abide by the PDP's decisions and notify the PDP of any state

 changes.

4.5 Configuration Operations

 In the configuration scenario, as in the outsourcing scenario, the

 PEP will make a configuration request to the PDP for a particular

 interface, module, or functionality that may be specified in the

 named client specific information object. The PDP will then send

 potentially several decisions containing named units of configuration

 data to the PEP. The PEP is expected to install and use the

 configuration locally. A particular named configuration can be

 updated by simply sending additional decision messages for the same

 named configuration. When the PDP no longer wishes the PEP to use a

 piece of configuration information, it will send a decision message

 specifying the named configuration and a decision flags object with

Durham, et al. Standards Track [Page 32]

RFC 2748 COPS January 2000

 the remove configuration command. The PEP SHOULD then proceed to

 remove the corresponding configuration and send a report message to

 the PDP that specifies it has been deleted.

 In all cases, the PEP MAY notify the remote PDP of the local status

 of an installed state using the report message where appropriate.

 The report message is to be used to signify when billing can begin,

 what actions were taken, or to produce periodic updates for

 monitoring and accounting purposes depending on the client. This

 message can carry client specific information when needed.

4.6 Keep-Alive Operations

 The Keep-Alive message is used to validate the connection between the

 client and server is still functioning even when there is no other

 messaging from the PEP to PDP. The PEP MUST generate a COPS KA

 message randomly within one-fourth to three-fourths the minimum KA

 Timer interval specified by the PDP in the Client-Accept message. On

 receiving a Keep-Alive message from the PEP, the PDP MUST then

 respond to this Keep-Alive message by echoing a Keep-Alive message

 back to the PEP. If either side does not receive a Keep-Alive or any

 other COPS message within the minimum KA Timer interval from the

 other, the connection SHOULD be considered lost.

4.7 PEP/PDP Close

 Finally, Client-Close messages are used to negate the effects of the

 corresponding Client-Open messages, notifying the other side that the

 specified client-type is no longer supported/active. When the PEP

 detects a lost connection due to a keep-alive timeout condition it

 SHOULD explicitly send a Client-Close message for each opened

 client-type specifying a communications failure error code. Then the

 PEP MAY proceed to terminate the connection to the PDP and attempt to

 reconnect again or try a backup/alternative PDP. When the PDP is

 shutting down, it SHOULD also explicitly send a Client-Close to all

 connected PEPs for each client-type, perhaps specifying an

 alternative PDP to use instead.

5. Security Considerations

 The COPS protocol provides an Integrity object that can achieve

 authentication, message integrity, and replay prevention. All COPS

 implementations MUST support the COPS Integrity object and its

 mechanisms as described in this document. To ensure the client (PEP)

 is communicating with the correct policy server (PDP) requires

 authentication of the PEP and PDP using a shared secret, and

 consistent proof that the connection remains valid. The shared secret

 minimally requires manual configuration of keys (identified by a Key

Durham, et al. Standards Track [Page 33]

RFC 2748 COPS January 2000

 ID) shared between the PEP and its PDP. The key is used in

 conjunction with the contents of a COPS message to calculate a

 message digest that is part of the Integrity object. The Integrity

 object is then used to validate all COPS messages sent over the TCP

 connection between a PEP and PDP.

 Key maintenance is outside the scope of this document beyond the

 specific requirements discussed in section 4.2. In general, it is

 good practice to regularly change keys to maintain security.

 Furthermore, it is good practice to use localized keys specific to a

 particular PEP such that a stolen PEP will not compromise the

 security of an entire administrative domain.

 The COPS Integrity object also provides sequence numbers to avoid

 replay attacks. The PDP chooses the initial sequence number for the

 PEP and the PEP chooses the initial sequence number for the PDP.

 These initial numbers are then incremented with each successive

 message sent over the connection in the corresponding direction. The

 initial sequence numbers SHOULD be chosen such that they are

 monotonically increasing and never repeat for a particular key.

 Security between the client (PEP) and server (PDP) MAY be provided by

 IP Security [IPSEC]. In this case, the IPSEC Authentication Header

 (AH) SHOULD be used for the validation of the connection;

 additionally IPSEC Encapsulation Security Payload (ESP) MAY be used

 to provide both validation and secrecy.

 Transport Layer Security [TLS] MAY be used for both connection-level

 validation and privacy.

6. IANA Considerations

 The Client-type identifies the policy client application to which a

 message refers. Client-type values within the range 0x0001-0x3FFF are

 reserved Specification Required status as defined in [IANA-

 CONSIDERATIONS]. These values MUST be registered with IANA and their

 behavior and applicability MUST be described in a COPS extension

 document.

 Client-type values in the range 0x4000 - 0x7FFF are reserved for

 Private Use as defined in [IANA-CONSIDERATIONS]. These Client-types

 are not tracked by IANA and are not to be used in standards or

 general-release products, as their uniqueness cannot be assured.

 Client-type values in the range 0x8000 - 0xFFFF are First Come First

 Served as defined in [IANA-CONSIDERATIONS]. These Client-types are

 tracked by IANA but do not require published documents describing

 their use. IANA merely assures their uniqueness.

Durham, et al. Standards Track [Page 34]

RFC 2748 COPS January 2000

 Objects in the COPS Protocol are identified by their C-Num and C-Type

 values. IETF Consensus as identified in [IANA-CONSIDERATIONS] is

 required to introduce new values for these numbers and, therefore,

 new objects into the base COPS protocol.

 Additional Context Object R-Types, Reason-Codes, Report-Types,

 Decision Object Command-Codes/Flags, and Error-Codes MAY be defined

 for use with future Client-types, but such additions require IETF

 Consensus as defined in [IANA-CONSIDERATIONS].

 Context Object M-Types, Reason Sub-Codes, and Error Sub-codes MAY be

 defined relative to a particular Client-type following the same IANA

 considerations as their respective Client-type.

7. References

 [RSVP] Braden, R., Zhang, L., Berson, S., Herzog, S.

 and S. Jamin, "Resource ReSerVation Protocol

 (RSVP) Version 1 - Functional Specification",

 RFC 2205, September 1997.

 [WRK] Yavatkar, R., Pendarakis, D. and R. Guerin, "A

 Framework for Policy-Based Admission Control",

 RFC 2753, January 2000.

 [SRVLOC] Guttman, E., Perkins, C., Veizades, J. and M.

 Day, "Service Location Protocol , Version 2",

 RFC 2608, June 1999.

 [INSCH] Shenker, S. and J. Wroclawski, "General

 Characterization Parameters for Integrated

 Service Network Elements", RFC 2215, September

 1997.

 [IPSEC] Atkinson, R., "Security Architecture for the

 Internet Protocol", RFC 2401, August 1995.

 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti,

 "HMAC: Keyed-Hashing for Message

 Authentication", RFC 2104, February 1997.

 [MD5] Rivest, R., "The MD5 Message-Digest Algorithm",

 RFC 1321, April 1992.

 [RSVPPR] Braden, R. and L. Zhang, "Resource ReSerVation

 Protocol (RSVP) - Version 1 Message Processing

 Rules", RFC 2209, September 1997.

Durham, et al. Standards Track [Page 35]

RFC 2748 COPS January 2000

 [TLS] Dierks T. and C. Allen, "The TLS Protocol

 Version 1.0", RFC 2246, January 1999.

 [IANA] http://www.isi.edu/in-

 notes/iana/assignments/port-numbers

 [IANA-CONSIDERATIONS] Alvestrand, H. and T. Narten, "Guidelines for

 Writing an IANA Considerations Section in

 RFCs", BCP 26, RFC 2434, October 1998.

8. Author Information and Acknowledgments

 Special thanks to Andrew Smith and Timothy O'Malley our WG Chairs,

 Raj Yavatkar, Russell Fenger, Fred Baker, Laura Cunningham, Roch

 Guerin, Ping Pan, and Dimitrios Pendarakis for their valuable

 contributions.

 Jim Boyle

 Level 3 Communications

 1025 Eldorado Boulevard

 Broomfield, CO 80021

 Phone: 720.888.1192

 EMail: jboyle@Level3.net

 Ron Cohen

 CISCO Systems

 4 Maskit St.

 Herzeliya Pituach 46766 Israel

 Phone: +972.9.9700064

 EMail: ronc@cisco.com

 David Durham

 Intel

 2111 NE 25th Avenue

 Hillsboro, OR 97124

 Phone: 503.264.6232

 EMail: David.Durham@intel.com

Durham, et al. Standards Track [Page 36]

RFC 2748 COPS January 2000

 Raju Rajan

 AT&T Shannon Laboratory

 180 Park Avenue

 P.O. Box 971

 Florham Park, NJ 07932-0971

 EMail: rajan@research.att.com

 Shai Herzog

 IPHighway, Inc.

 55 New York Avenue

 Framingham, MA 01701

 Phone: 508.620.1141

 EMail: herzog@iphighway.com

 Arun Sastry

 Cisco Systems

 4 The Square

 Stockley Park

 Uxbridge, Middlesex UB11 1BN

 UK

 Phone: +44-208-756-8693

 EMail: asastry@cisco.com

Durham, et al. Standards Track [Page 37]

RFC 2748 COPS January 2000

9. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it

 or assist in its implementation may be prepared, copied, published

 and distributed, in whole or in part, without restriction of any

 kind, provided that the above copyright notice and this paragraph are

 included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing

 the copyright notice or references to the Internet Society or other

 Internet organizations, except as needed for the purpose of

 developing Internet standards in which case the procedures for

 copyrights defined in the Internet Standards process must be

 followed, or as required to translate it into languages other than

 English.

 The limited permissions granted above are perpetual and will not be

 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Durham, et al. Standards Track [Page 38]

