Page 1

3GPP TS 32.106-6 V0.2.0 (2000-11)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Part 6: Basic Configuration Management IRP:

CORBA Solution Set Version 1:1

(Release 1999)
[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

Configuration Management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
5
4
IRP solution set version
6
5
Architectural Features
6
5.1
Notifications
6
5.2
Filter Language
7
5.3
Syntax for Distinguished Names and Versions
8
6
Mapping
8
6.1
General mappings
8
6.2
Operation and Notification mapping
8
6.3
Operation parameter mapping
9
6.4
Notification attribute mapping
11
6.5
Network Resource Model Mapping
15
6.5.1
Generic NRM Managed Object Class Mapping
15
6.5.1.1
MOC G3SubNetwork (M)
15
6.5.1.2
MOC G3ManagedElement (M)
16
6.5.1.3
MOC MeContext (O)
17
6.5.1.4
MOC ManagementNode (M)
17
6.5.1.5
MOC ManagedFunction (M)
17
6.5.2.1
MOC IRPAgent (M)
17
6.5.2.1
MOC NotificationIRP (M)
18
6.5.2.1
MOC AlarmIRP (O)
18
6.5.2.1
MOC BasicCmIRP (M)
18
6.5.2
UMTS NRM Managed Object Class Mapping
18
6.5.2.1
MOC RncFunction (M)
18
6.5.2.2
MOC UtranCell (M)
19
6.5.2.3
MOC NodeBFunction (M)
19
6.5.2.4
MOC IubLink (M)
19
7
Use of OMG Structured Event
20
Annex A (informative): Change history
22
Annex B (normative): CORBA IDL, Access Protocol
23
Annex C (normative): CORBA IDL, Notification Definitions
34
Annex D (normative): CORBA IDL, NRM Definitions
38

 Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the NEs and NRs, and they may be initiated by the operator or functions in the OSs or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service. The CM actions are initiated either as a single action on a network element of the 3G network or as part of a complex procedure involving actions on many network elements.

The Itf-N interface for Configuration Management is built up by a number of Integration Reference Points (IRPs) and a related Name Convention, which realise the functional capabilities over this interface. The basic structure of the IRPs is defined in [1] and [2]. For CM, a number of IRPs (and the Name Convention) are defined herein, used by this as well as other technical specifications for telecom management produced by 3GPP. All these documents are included in Parts 2 and onwards of the 3GPP TS 32.106.

This document consitutes 32.106 Part 6 - Basic Configuration Management IRP: CORBA Solution Set.

1
Scope

The purpose of this Basic Configuration Management (CM) IRP: Information Service CORBA Solution Set is to define the mapping of the IRP information model (32.106 Part 5) to the protocol specific details necessary for implementation of this IRP in a CORBA/IDL environment. This document does not describe any Network Resource Model (NRM) – this is described in [4]. Please note that ref. [4] defines an IRP Information Model, which comprises both an IS and NRM definition.
2
References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements"

[2]
3GPP TS 32.102: "3G Telecom Management architecture"

[3]
3GPP TS 32.106-1: “3G Configuration Management”

[4]
3GPP TS 32.106-5: “Basic Configuration Management IRP: Information Model”

[5]
3GPP TS 32.106-8: “Name Convention for Managed Objects”
[6]
OMG Notification Service, Version 1.0

[7]
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996.

[8]
The Common Object Request Broker: Architecture and Specification (for specification of valid version, see [1])

[9]
3GPP TS 32.106-3 “Notification IRP: CORBA Solution Set, version 1:1”
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply. For terms and definitions not found here, please refer to [1],[2], [3] and [4].
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA
Common Object Request Broker Architecture

DN
Distinguished Name

IS
Information Service

IDL
Interface Definition Language (OMG)

IRP
Integration Reference Point

NRM
Network Resource Model

OMG
Object Management Group

SS
Solution Set

4 IRP solution set version

The version of this CORBA solution set is 1:1, where the first “1” means that it corresponds to the Information Model version 1, and the second “1” means that it is the first CORBA solution set corresponding to Information Model version 1.

5 Architectural Features

The overall architectural feature of Basic Configuration Management IRP is specified in [4]. This clause specifies features that are specific to the CORBA SS.

5.1
Notifications
Notifications are sent according to the Notification IRP: CORBA SS [9].
The contents of the Basic CM IRP notifications is defined in this specification.

5.2
Filter Language

The filter language used in the SS is a subset of the Extended Trader Constraint Language [6]. The used subset is specified in the CORBA IDL, see Annex B.

·
·
·
·
·

5.3
Syntax for Distinguished Names and Versions

The format of a Distinguished Name is defined in [5].

The Version of this IRP is represented as a string. The value of this version is defined by a constant in Annex B (normative): CORBA IDL, Access Protocol.

·
·
·

6 Mapping

6.1
General mappings

The IS parameter name managedObjectInstance is mapped into DN.
Attributes modelling associations as defined in the NRM (here also called “reference attributes”) are in this SS mapped to attributes. The names of the reference attributes in the NRM are mapped to the corresponding attribute names in the MOC. When the cardinality for an association is 0..1 or 1..1 the datatype for the reference attribute is defined as an MOReference. The value of an MO reference contains the distinguished name of the associated MO. When the cardinality for an association allows more than one referred MO, the reference attribute will be of type MOReferenceSet, which contains a sequence of MO references.

If a reference attribute is changed, an AttributeValueChange notification is emitted.
6.2
Operation and Notification mapping

The IS part of Basic CM IRP: IM [4] defines semantics of operation and notification visible across the Basic Configuration Management IRP . The table below indicates mapping of these operations and notifications to their equivalents defined in this SS.

Table 1: Mapping from IS Notification/Operation to SS equivalents

IS Operation/ notification [4]
SS Method
Qualifier

getMoAttributes
BasicCmIrpOperations::find_managed_objects

Iterator::get_next_elements

Iterator::destroy
M

getContainment
BasicCmIrpOperations::find_managed_objects

Iterator::get_next_elements

Iterator::destroy
O

O

getBasicCmIRPVersion
get_basicCm_IRP_version
M

notifyObjectCreation
(to convey of a new Managed Object created)
 See Notification IRP: CORBA SS [9]
O

notifyObjectDeletion
(to convey of a new Managed Object deleted)
See Notification IRP: CORBA SS [9]
O

notifyAttributeValueChange
(to convey of a change of one or several attributes of a Managed Object)
See Notification IRP: CORBA SS [9]
O

6.3
Operation parameter mapping

The IS part of Basic CM IRP: IM [4] defines semantics of parameters carried in operations across the Basic Configuration Management IRP . The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMo when called with ResultContents set to ALL or NAMES_AND_ATTRIBUTES. Iterating the Iterator is used to fetch the result.

Table 2: Mapping from IS getMoAttributes parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
M

scope
in searchControl (SearchControl.scope)
M

filter
in searchControl (SearchControl.filter)
M

attributeListIn
in requestedAttributes
M

managedObjectClass
managedObjectInstance
attributeList

parameter fetchedElements in the get_next_elements in the Iterator interface.

M

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception IllegalCountException, exception FilterComplexityLimit
M

Table 3: Mapping from IS getContainment parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
M

scope
in searchControl (SearchControl.scope)
O

containment
parameter fetchedElements in the get_next_elements in the Iterator interface.
M

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception IllegalCountException, exception FilterComplexityLimit
M

Table 4: Mapping from IS getBasicCmIRPVersion parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

versionNumberList
return CommonIRPConstDefs::VersionNumberSet
M

status

- (No failure conditions identified)
M

6.4
Notification attribute mapping

The IS part of Basic CM IRP: IM [4] identifies and defines the semantics of attributes for notifyObjectCreation, notifyObjectDeletion and notifyAttributeValueChange for use for its IRP. The following table shows the mapping of the IS notifications to SS equivalents.

Table 5: Mapping from IS notifications to SS equivalents

IS notifications in [4]
SS notifications
Qualifier

NotifyObjectCreation
NotificationDefs::OBJECT_CREATION
O

NotifyObjectDeletion
NotificationDefs::OBJECT_DELETION
O

NotifyAttributeValue Change
NotificationDefs::ATTRIBUTE_VALUE_CHANGE
O

The IS part of Basic CM IRP: IM [4] also qualifies the attributes. The following tables show the mapping show the mapping of these IS attributes to SS equivalents.
Table 6: Mapping from IS Notification Header attributes to SS equivalent

IS Attribute of Notification Header in [4]
SS Attribute
Qualifier

managedObjectClass
NotificationDefs::NotificationCommon::MANAGED_OBJECTCLASS
M

managedObjectInstance
NotificationDefs::NotificationCommon::MANAGED_OBJECT_INSTANCE
M

notificationId
NotificationDefs::NotificationCommon::NOTIFICATION_ID
O

eventTime
NotificationDefs::NotificationCommon::EVENT_TIME
M

systemDN
NotificationDefs::NotificationCommon::SYSTEM_DN
O

eventType
header.fixed_header.event_type.type_name
O

extendedEventType
header.fixed_header.event_name

- (not used, always contains an Any with value null)
M

Table 7: Mapping from IS notifyObjectCreation attributes to SS equivalent OBJECT_CREATION

IS Attribute of notifyObjectCreation in [4]
SS Attribute
Qualifier

notificationHeader
See Table 6
M

correlatedNotifications
NotificationDefs::MOCreation::CORRELATED_NOTIFICATIONS
O

additionalText
NotificationDefs::MODeletion::ADDITIONAL_INFORMATION
O

sourceIndicator
NotificationDefs::MODeletion::SOURCE_INDICATOR
O

attributeList
remainder_of_body
O

Table 8: Mapping from IS notifyObjectDeletion attributes to SS equivalent OBJECT_DELETION

IS Attribute of notifyObjectDeletion in [4]
SS Attribute
Qualifier

notificationHeader
See Table 6
M

correlatedNotifications
NotificationDefs::MODeletion::CORRELATED_NOTIFICATIONS
O

additionalText
NotificationDefs::MODeletion::ADDITIONAL_INFORMATION
O

sourceIndicator
NotificationDefs::MODeletion::SOURCE_INDICATOR
O

attributeList
remainder_of_body (a field of the StructuredEvent)
O

Table 9: Mapping from IS notifyAttributeValueChange attributes to SS equivalent ATTRIBUTE_VALUE_CHANGE

IS Attribute of notifyAttributeValueChange in [4]
SS Attribute
Qualifier

notificationHeader
See Table 6
M

correlatedNotifications
NotificationDefs::AttributeValueChange::CORRELATED_NOTIFICATIONS
O

additionalText
NotificationDefs::AttributeValueChange::ADDITIONAL_INFORMATION
M

sourceIndicator
 NotificationDefs::AttributeValueChange::SOURCE_INDICATOR
O

attributeValueChangeDefinition
remainder_of_body
M

6.5
Network Resource Model Mapping

6.5.1
Generic NRM Managed Object Class Mapping
This solution set supports reference attributes for relations other than containment relations between objects. Reference attributes are therefore introduced in each MOC where needed.
6.5.1.1
MOC G3SubNetwork (M)

Table 10: Mapping from NRM MOC G3SubNetwork attributes to SS equivalent MOC G3SubNetwork attributes

NRM Attributes of MOC
G3SubNetwork in [4]
SS Attributes
SS Type
Qualifier

g3SubNetworkId
g3SubNetworkId
string
Read-Only, M

userLabel
userLabel
string
Read-Only, M

6.5.1.2
MOC G3ManagedElement (M)

Table 11: Mapping from NRM MOC G3ManagedElement attributes and association roles to SS equivalent MOC G3ManagedElement attributes

NRM Attributes/Association roles
SS Attributes
SS Type
Qualifier

g3ManagedElementId
g3ManagedElementId
string
Read-Only, M

userLabel
userLabel
string
Read-Only, M

locationName
locationName
string
Read-Only, M

vendorName
vendorName
string
Read-Only, M

userDefinedState
userDefinedState
string
Read-Only, M

managedElementType
managedElementType
string
Read-Only,M

managedBy
managedBy
MOReferenceSet
Read-Only, M

6.5.1.3
MOC MeContext (O)

Table 12: Mapping from NRM MOC MeContext attributes to SS equivalent MOC MeContext attributes

NRM Attributes of MOC MeContext in [4]
SS Attributes
SS Type
Qualifier

meContextId
meContextId
string
Read-Only, M

6.5.1.4
MOC ManagementNode (M)

Table 13: Mapping from NRM MOC ManagementNode attributes and association roles to SS equivalent MOC ManagementNode attributes

NRM Attributes/association roles of MOC ManagementNode in [4]
SS Attributes
SS Type
Qualifier

managementNodeId
managementNodeId
string
Read-Only, M

UserLabel
userLabel
string
Read-Only, M

LocationName
locationName
string
Read-Only, M

vendorName
vendorName
string
Read-Only, M

userDefinedState
userDefinedState
string
Read-Only, M

manages
manages
MOReferenceSet
Read-Only, M

6.5.1.5
MOC ManagedFunction (M)

This Managed Object class is provided for sub-classing only. Mapping is in this document only provided for sub-classes.
6.5.2.1
MOC IRPAgent (M)

Table 14: Mapping from NRM MOC IRPAgent attributes to SS equivalent MOCIRPAgent attributes

NRM Attributes of MOC RNCFunction in [4]
SS Attributes
SS Type
Qualifier

irpAgentId
irpAgentId
string
Read-Only, M

systemDN
systemDN
string
Read-Only, M

6.5.2.1
MOC NotificationIRP (M)

Table 15: Mapping from NRM MOC NotificationIRP attributes to SS equivalent MOC NotificationIRP attributes

NRM Attributes of MOC NotificationIRP in [4]
SS Attributes
SS Type
Qualifier

notificationIRPId
notificationIRPid
string
Read-Only, M

irpVersion
irpVersion
StringSet
Read-Only, M

6.5.2.1
MOC AlarmIRP (O)

Table 16: Mapping from NRM MOC AlarmIRP attributes to SS equivalent MOC AlarmIRP attributes

NRM Attributes of MOC AlarmIRP in [4]
SS Attributes
SS Type
Qualifier

alarmIRPId
alarmIRPid
string
Read-Only, M

irpVersion
irpVersion
StringSet
Read-Only, M

6.5.2.1
MOC BasicCmIRP (M)

Table 17: Mapping from NRM MOC BasicCmIRP attributes to SS equivalent MOC BasicCmIRP attributes

NRM Attributes of MOC BasicCmIRP in [4]
SS Attributes
SS Type
Qualifier

alarmIRPId
alarmIRPid
string
Read-Only, M

irpVersion
irpVersion
StringSet
Read-Only, M

6.5.2
UMTS NRM Managed Object Class Mapping

6.5.2.1
MOC RncFunction (M)

Table 18: Mapping from NRM MOC RncFunction attributes to SS equivalent MOC RncFunction attributes

NRM Attributes of MOC RncFunction in [4]
SS Attributes
SS Type
Qualifier

rncFunctionId
rncFunctionId
string
Read-Only, M

userLabel
userLabel
string
Read-Only, M

6.5.2.2
MOC UtranCell (M)

Table 19: Mapping from NRM MOC UtranCell attributes and associations to SS equivalent MOC UtranCell attributes

NRM Attributes/associations of MOC UtranCell in [4]
SS Attributes
SS Type
Qualifier

utranCellId
utranCellId
string
Read-Only, M

NodeBFunction
NodeBFunction
MOReference
Read-Only, M

userLabel
userLabel
string
Read-Only, M

6.5.2.3
MOC NodeBFunction (M)

Table 20: Mapping from NRM MOC NodeBFunction attributes and associations to SS equivalent MOC NodeBFunction attributes

NRM Attributes/Associations of MOC NodeBFunction in [4]
SS Attributes
SS Type
Qualifier

nodeBFunctionId
nodeBFunctionId
string
Read-Only, M

iubLink
iubLink
MOReference
Read-Only, M

cellRefs
cellRefs
MOReferenceSet
Read-Only, M

userLabel
userLabel
string
Read-Only, M

6.5.2.4
MOC IubLink (M)

Table 21: Mapping from NRM MOC IubLink attributes and associations to SS equivalent MOC IubLink attributes

NRM Attributes/Associations of MOC IubLink in [4]
SS Attributes
SS Type
Qualifier

iubLinkId
iubLinkId
string
Read-Only, M

nodeBFunction
nodeBFunction
MOReference
Read-Only, M

userLabel
userLabel
string
Read-Only, M

7 Use of OMG Structured Event

In CORBA SS, OMG defined StructuredEvent [6] is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the attributes of parameters defined in [4].

The composition of OMG Structured Event, as defined in [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remainder_of_body
The table below lists all OMG Structured Event attributes in its leftmost column. The second column identifies the SS attributes, if any, that shall be carried there.

Table 22: Use of OMG Structured Event

OMG CORBA Structured Event attribute
Comment

domain_name
It contains the version of the supported SS version, This version is defined by constant VERSION, see Annex B (normative): CORBA IDL, Access Protocol

type_name
It shall indicate one of the following ITU-T defined semantics:

OBJECT_CREATION
OBJECT_DELETION
ATTRIBUTE_VALUE_CHANGE

It is a string. It is assumed that the types are defined in Annex C (normative): CORBA IDL, Notification Definitions

event_name

Not used.

variable Header
Not used

filterable_ body_fields
Are used to transport most of the notification information. Each property transported contains a name and a value, where all names are defined in Annex C (normative): CORBA IDL, Notification Definitions
6.4
Notification attribute mapping

remainder_of_body
Is used to transport attribute information, see chapter 6.4
Notification attribute mapping and Annex C (normative): CORBA IDL, Notification Definitions

Annex A (informative): Change history

This annex lists all change requests approved for this document since the specification was first approved by 3GPP TSG-SA.

Change history

TSG SA#
Version
CR
Tdoc SA
New Version
Subject/Comment

S_07
2.0.0
-
SP-000012
3.0.0
Approved at TSG SA #7 and placed under Change Control

0.1.0
First version (2000-05) (S5C000050)

S_S5#11
3.0.1
-
 ?
3.0.1a0.2.0
Updated after SA5 #15bis (S5C000187)

S_04
3.0.0
003
SP-99308
3.1.0

Annex B (normative): CORBA IDL, Access Protocol

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

#pragma prefix "3gppsa5.org"

#include <CommonIRPConstDefs.idl>

module BasicCmIRPSystem

{

 /**

 * This constant defines the version of this IRP.

 */

 const string VERSION = "1c1";

 /**

 * The format of Distinguished Name (DN) is specified in "Name Conventions

 * for Managed Objects revision B".

 */

 typedef string DN;

 /**

 * This module adds datatype definitions for types

 * used in the NRM which are not basic datatypes defined

 * already in CORBA.

 */

 module AttributeTypes

 {

 /**

 * An MO reference referres to an MO instance.

 * "otherMO" contains the distinguished name of the referred MO.

 * A conceptual "null" reference (meaning no MO is referenced)

 * is represented as an empty string ("").

 *

 */

 struct MOReference

 {

 DN otherMO;

 };

 /**

 * MOReferenceSet represents a set of MO references.

 * This type is used to hold 0..n MO references.

 * A referred MO is not allowed to be repeated (therefore

 * it is denoted as a "Set")

 */

 typedef sequence<MOReference> MOReferenceSet;

 /**

 * A set of strings.

 */

 typedef sequence<string> StringSet;

 };

 exception IllegalFilterFormatException {

 string reason;

 };

 exception IllegalDNFormatException {

 string reason;

 };

 exception IllegalScopeTypeException {

 string reason;

 };

 exception IllegalScopeLevelException {

 string reason;

 };

 exception UndefinedMOException {

 string reason;

 };

 exception UndefinedScopeException {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };

 /**

 * Defintion of the Filter language.

 * ---------------------------------

 * The syntax of the filter is a subset of

 * the OMG Notification service filter constraint language.

 * Here follows a brief description. For a complete description,

 * see the Extended Trader Constraint Language [6]and the OMG Notification service [6].

 *

 * General

 * -------

 * Constraints are boolean conditions on named attributes and numeric or

 * string literals.

 * The constraints are constructed with "and", "or" and "not".

 * ==, !=, >, <, >=, <= are the relational operators.

 * Use () to force the correct order of evaluation.

 * Names and strings are case sensitive.

 *

 * The "current object" is denoted by "$" and containing fields in

 * in an object or structure is denoted by .<field name>

 * Fields in composite attributes (structs) are further

 * adressed by "."

 * All field names are defined as attributed in the NRM.

 * (attributes defined in the NRM are denoted by $.<attribute name>)

 *

 * Other information defined as "built-in variables" (as in the

 * NotificationService) are denoted by $<variable name>.

 * The only identifed runtime variable is the MO classname and the

 * variable name is defined to "type_name".

 *

 * Example: "$type_name=='UtranCell' and $.frequency > 957"

 *
selects MOs of class UtranCell which

 * contains attribute "frequency" which are greater than 957

 * Also, a comparison always evaluates to false if the types of the

 * operands do not match. In the example above, if "frequency" is a

 * string, the expression will be false.

 *

 * Undefined attributes will not abort a search, the assertion

 * for a not defined attribute is always defined to "false"

 *

 * Example: "$type_name=='UtranCell' and $.someStruct.fieldX > 10"

 * MOs which do not support attribute "someStruct" or if the

 * "someStruct" attribute exitsts, but the field "fieldX" does

 * not exist, will never be selected.

 *

 * Filtering on MOReference attributes

 * -----------------------------------

 * The value of a reference attribute is treated like a string,

 * which contains the DName of the referred MO.

 *

 * Example : "$type_name=='NodeBFunction' and \

 * $.iubLink=='G3SubNetwork=1,MeContext=1,G3ManagedElement=1,RncFunction=1,IubLink=5"

 *

 * A conceptual null reference is defined as an empty string

 *

 * Example : "$type_name=='NodeBFunction' and $.iubLink==''"

 *

 * Set valued and Sequence valued attributes

 * ---

 * Since set and sequences are fundamental datatypes there

 * is a need to have support for filtering on the contents

 * of these types.

 * The "in" operator is used for asserting if a value

 * is in a set or sequence in the same way as in the Notification

 * service.

 *

 * Example : "$type_name=='AlarmIRP' and '1:1' in $.irpVersion"

 *

 */

 typedef string FilterType;

 /**

 * ResultContents is used to tell how much information to get back

 * from the find_managed_objects operation.

 *

 * NAMES: Used to get only Distinguished Name

 * for MOs.

 * The name contains both the MO class

 * and the names of all superior objects in the naming

 * tree.

 *

 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus

 * MO attributes (all or selected).

 */

 enum ResultContents

 {

 NAMES,

 NAMES_AND_ATTRIBUTES

 };

 /**

 * ScopeType defines the kind of scope to use in a search

 * together with SearchControl.level, in a SearchControl value.

 *

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * BASE_ONLY: level ignored, just return the base object.

 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * BASE_SUBTREE: return the base object and all of its subordinates

 * down to and including the nth level.

 * BASE_ALL: level ignored, return the base object and all of it's

 * subordinates.

 */

 enum ScopeType

 {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /**

 * SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field),

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field is optional (null or the empty string).

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;

 ResultContents contents;

 };

 /**

 * Represents an attribute: "name" is the attribute name

 * and "value" is the attribute value in form of a CORBA Any.

 * The allowed attribute value types are defined in the

 * AttributeTypes module.

 */

 struct MOAttribute

 {

 string name;

 any value;

 };

 typedef sequence<MOAttribute> MOAttributeSet;

 struct Result

 {

 DN mo;

 MOAttributeSet attributes;

 };

 typedef sequence<Result> ResultSet;

 /**

 * Iterator interface

 *

 *

 */

 interface Iterator

 {

 exception IllegalCountException {

 string reason;

 };

 /**

 * Gets data from an Iterator.

 * When all elements are iterated (indicated by this method

 * returning false) the iterator (this object) is removed by the

 * managed system)

 *

 * @parm howMany how many elements to return in the "fetchedElements" out

 * parameter.

 * @parm fetchedElements the elements.

 * @returns A boolean indicating if any elements are returned.

 * "fetchedElements" is set to null when the Iterator is empty.

 *

 * @raises IllegalCountException "howMany" has a value < 0.

 */

 boolean get_next_elements(in unsigned long howMany,

 out ResultSet fetchedElements)

 raises (IllegalCountException);

 /**

 * Destroys an Iterator. This method shall be used if

 * the iterator is to be removed before all elements

 * are iterated.

 *

 */

 void destroy();

 };

 typedef sequence<string> AttributeNameSet;

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations

 {

 /**

 * Get the version of the interface and all supported resource

 * model versions.

 *

 * @returns all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitutes a set that the filter works on.

 * The result Iterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 *

 * @parm baseObject The start MO in the containment tree.

 * @parm searchControl the SearchControl to use.

 * @parm requestedAttributes defines which attributes to get.

 * If this parameter is empty, all attributes shall

 * be returned.

 * Note that this argument is only

 * relevant if ResutltContents in the search control is

 * specifed to NAMES_AND_ATTRIBUTES.

 *

 *

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises FilterComplexityLimit if the filter syntax is correct,

 * but the filter is too complex to be processed by the IRP agent.

 * @see SearchControl

 * @see Iterator

 */

 Iterator find_managed_objects(in DN baseObject,

 in SearchControl searchControl,

 in AttributeNameSet requestedAttributes)

 raises (UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 };

};

#endif

Annex C (normative): CORBA IDL, Notification Definitions

#ifndef NotificationDefs_idl

#define NotificationDefs_idl

#pragma prefix "3gppsa5.org"

#include <TimeBase.idl> // CORBA Time Service

#include <NotificationIRPConstDefs.idl>

module BasicCmIRPSystem

{

 module NotificationDefs

 {

 /**

 * The format of time in a Notification Structured Event EventTime

 * attribute.

 */

 typedef TimeBase::UtcT IRPTime;

 /**

 * Definition of ITU-T defined semantics.

 * These constants are used in the type_name

 * (header.fixed_header.event_type.type_name)

 * field to denote the notification type

 * Note all values are unique among themselves. Other IRP documents

 * cannot use the same values.

 */

 const string OBJECT_CREATION = "3G_OBJECT_CREATION";

 const string OBJECT_DELETION = "3G_OBJECT_DELETION";

 const string ATTRIBUTE_VALUE_CHANGE = "3G_AVC";

 /**

 * Information about one attribute

 * - name defines the name of the attribute

 * - value defines the value of the attribute

 *

 */

 struct MOAttribute

 {

 string name;

 any value;

 };

 /**

 * A set of attribute names and values

 */

 typedef sequence<MOAttribute> MOAttributeSet;

 /**

 * This interface defines fields that are common for all

 * notification types.

 * All constants in the scope of this interface will be

 * visible in the interfaces that inherits this.

 * For instance constant

 * NotificationCommon::MANAGED_OBJECT_CLASS

 * can be addressed by MODeletion::MANAGED_OBJECT_CLASS

 */

 interface NotificationCommon

 {

 /**

 * This constant defines a field in the filterable

 * information in a StructuredEvent.

 * This string is mapped to the name part of a

 * Property in the event and the value part will

 * carry the MO class name represented

 * as a string.

 */

 const string MANAGED_OBJECT_CLASS =
 NotificationIRPConstDefs::NV_MANAGED_OBJECT_CLASS;

 /**

 * This constant defines a field in the filterable

 * information in a StructuredEvent.

 * This string is mapped to the name part of a

 * Property in the event and the value part will

 * carry the MO distinguished name represented

 * as a string.

 */

 const string MANAGED_OBJECT_INSTANCE =

 NotificationIRPConstDefs::NV_MANAGED_OBJECT_INSTANCE;

 /**

 * This constant defines the name of the notification

 * ID property, which is transported in the

 * filterable_body_fields

 */

 const string NOTIFICATION_ID =

 NotificationIRPConstDefs::NV_NOTIFICATION_ID;

 /**

 * This constant defines the name of the

 * event time property, which is transported in the

 * filterable_body_fields.

 * The data type for the value of this property

 * is defined by datatype IRPTime.

 */

 const string EVENT_TIME =

 NotificationIRPConstDefs::NV_EVENT_TIME;

 /**

 * This constant defines the name of the

 * system name property, which is transported in the

 * filterable_body_fields

 */

 const string SYSTEM_DN =

 NotificationIRPConstDefs::NV_SYSTEM_DN;

 /**

 * This constant defines the name of the

 * source indicator property, which is transported in the

 * filterable_body_fields

 */

 const string SOURCE_INDICATOR = "SOURCE";

 /**

 * Valid values for the SOURCE_INDICATOR

 * property

 */

 const string RESOURCE_OPERATION = "RESOURCE OPERATION";

 const string MANAGEMENT_OPERATION = "MANAGEMENT OPERATION";

 const string UNKNOWN_OPERATION = "UNKNOWN";

 /**

 * This constant defines the name of the

 * additional information property,

 * which is transported in the filterable_body

 * fields.

 * The data type for the value of this property

 * is a string.

 */

 const string ADDITIONAL_INFORMATION =

 NotificationIRPConstDefs::NV_ADDITIONAL_TEXT;

 /**

 * This constant defines the name of the

 * correlated notifications property,

 * which is transported in the

 * filterable_body_fields

 * The value part of the property is defined

 * in the NotificationIRP;

 * NotificationIRPConstDefs::CorrelatedNotificationSetType

 */

 const string CORRELATED_NOTIFICATIONS =

 NotificationIRPConstDefs::NV_CORRELATED_NOTIFICATIONS;

 };

 /**

 * Constant definitions for the MO deleted notification

 */

 interface MODeletion : NotificationCommon

 {

 const string EVENT_TYPE = OBJECT_DELETION;

 /**

 * This information mapped into the remainder_of_body

 * in the StructuredEvent

 */

 typedef MOAttributeSet AttributeValues;

 };

 /**

 * Constant definitions for the MO created notification

 */

 interface MOCreation : NotificationCommon

 {

 const string EVENT_TYPE = OBJECT_CREATION;

 /**

 * This information mapped into the remainder_of_body

 * in the StructuredEvent

 */

 typedef MOAttributeSet InitialAttributeValues;

 };

 /**

 * Constant definitions for the Attribute Value Change

 * notification

 */

 interface AttributeValueChange : NotificationCommon

 {

 const string EVENT_TYPE = ATTRIBUTE_VALUE_CHANGE;

 /**

 * Information about modidified attributes for

 * one MO instance.

 * - name defines the name of the attribute

 * - newValue defines the new value of the attribute

 * - oldValue defines the previous value of the attribute

 *

 */

 struct ModifiedAttribute

 {

 string name;

 any newValue;

 any oldValue;

 };

 /**

 * This information mapped into the remainder_of_body

 * in the StructuredEvent.

 */

 typedef sequence<ModifiedAttribute> ModifiedAttributeSet;

 };

 };

};

#endif

Annex D (normative): CORBA IDL, NRM Definitions

#ifndef ModelDefs_idl

#define ModelDefs_idl

#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem

{

 /**

 * This module defines constants for each MO class name and

 * the attribute names for each defined MO class.

 */

 module NRMDefinitions

 {

 /**

 * Definitions for MO class G3SubNetwork

 */

 interface G3SubNetwork

 {

 const string CLASS = "G3SubNetwork";

 // Attribute Names

 //

 const string g3SubNetworkId = "g3SubNetworkId";

 const string userLabel = "userLabel";

 };

 /**

 * Definitions for MO class G3ManagedElement

 */

 interface G3ManagedElement

 {

 const string CLASS = "G3ManagedElement";

 // Attribute Names

 //

 const string g3ManagedElementId = "g3ManagedElementId";

 const string managedElementType = "managedElementType";

 const string userLabel = "userLabel";

 const string vendorName = "vendorName";

 const string userDefinedState ="userDefinedState";

 const string locationName ="locationName";

 const string managedBy = "managedBy";

 };

 /**

 * Definitions for MO class MeContext

 */

 interface MeContext

 {

 const string CLASS = "MeContext";

 // Attribute Names

 //

 const string meContextId = "meContextId";

 };

 /**

 * Definitions for MO class ManagementNode

 */

 interface ManagementNode

 {

 const string CLASS = "ManagementNode";

 // Attribute Names

 //

 const string managementNodeId = "managementNodeId";

 const string userLabel = "userLabel";

 const string vendorName = "vendorName";

 const string userDefinedState = "userDefinedState";

 const string locationName = "locationName";

 const string manages = "manages";

 };

 /**

 * Definitions for abstract MO class ManagedFunction

 *

 */

 interface ManagedFunction

 {

 const string CLASS = "ManagedFunction";

 // Attribute Names

 //

 const string userLabel = "userLabel";

 };

 /**

 * Definitions for MO class RNCFunction

 */

 interface IRPAgent

 {

 const string CLASS = "IRPAgent";

 // Attribute Names

 //

 const string irpAgentId = "irpAgentId";

 const string systemDN = "systemDN";

 };

 /**

 * Definitions for MO class NotificationIRP

 */

 interface NotificationIRP

 {

 const string CLASS = "NotificationIRP";

 // Attribute Names

 //

 const string notificationIRPId = "notificationIRPId";

 const string irpVersion = "irpVersion";

 };

 /**

 * Definitions for MO class AlarmIRP

 */

 interface AlarmIRP

 {

 const string CLASS = "AlarmIRP";

 // Attribute Names

 //

 const string alarmIRPId = "alarmIRPId";

 const string irpVersion = "irpVersion";

 };

 /**

 * Definitions for MO class BasicCmIRP

 */

 interface BasicCmIRP

 {

 const string CLASS = "BasicCmIRP";

 // Attribute Names

 //

 const string basicCmIRPId = "basicCmIRPId";

 const string irpVersion = "irpVersion";

 };

 /**

 * Definitions for MO class RNCFunction

 */

 interface RNCFunction

 {

 const string CLASS = "RNCFunction";

 // Attribute Names

 //

 const string rncFunctionId = "rncFunctionId";

 const string userLabel = "userLabel";

 };

 /**

 * Definitions for MO class UtranCell

 */

 interface UtranCell

 {

 const string CLASS = "UtranCell";

 // Attribute Names

 //

 const string utranCellId = "utranCellId";

 const string userLabel = "userLabel";

 const string nodeBFunction = "nodeBFunction";

 };

 /**

 * Definitions for MO class NodeBFunction

 */

 interface NodeBFunction

 {

 const string CLASS = "NodeBFunction";

 // Attribute Names

 //

 const string nodeBFunctionId = "nodeBFunctionId";

 const string userLabel = "userLabel";

 const string iubLink = "iubLink";

 const string cellRefs = "cellRefs";

 };

 /**

 * Definitions for MO class IubLink

 */

 interface IubLink

 {

 const string CLASS = "IubLink";

 // Attribute Names

 //

 const string iubLinkId = "iubLinkId";

 const string userLabel = "userLabel";

 const string nodeBFunction = "nodeBFunction";

 };

 };

};

#endif

PAGE 1

