

	
[bookmark: _Hlk108602278]3GPP TSG-SA5 Meeting #153	S5-241036
Sevilla, Spain, 29th Jan 2024 - 2nd Feb 2024 revision of S5-240406
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	32.158
	CR
	0133
	rev
	1
	Current version:
	17.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Rel17 TS 32.158 Correction of resource representation for JSON Patch

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	S5

	
	

	Work item code:
	REST_SS, TEI16
	
	Date:
	2024-01-14

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	Correction of resource representation for JSON merge Patch

	
	

	Summary of change:
	For JSON merge patch, the resource will be represented by a JSON merge patch document instead of a partial resource representation

	
	

	Consequences if not approved:
	It is imperative to differentiate between the resource representation for JSON Merge Patch and JSON Patch.

	
	

	Clauses affected:
	6.3.3, 6.3.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	Revision of S5-240406

Page 1

	First Change

[bookmark: _Toc145579578]
6.3.2	JSON Merge Patch
RFC 7396 [12] specifies a simple patch format for JSON documents called JSON Merge Patch. It allows to describe a set of modifications to be applied to the target resource representation. The JSON Merge Patch document is a partial representation of the resource to be patched. JSON Merge Patch works at the level of name/value pairs. The received patch document is merged into the target resource representation. The media type of the patch document is "application/merge-patch+json".
Three types of patches are described in RFC 7396 [12]:
1)	Replacing the value of an already existing name/value pair by a new value.
2)	Adding a new name/value pair.
3)	Removing an existing name/value pair.
The target resource is identified by the target URI. The target URI shall have no query and no fragment component. The target resource needs to exist, otherwise the error status code "404 Not Found" shall be returned.
The "id" of the resource shall be present in the patch document and shall be identical to the "id" of the patched resource in the request URI. This ensures uniformity of resource representations in message bodies, though, strictly speaking, the presence of the "id" in the patch document is redundant.
JSON Merge Patch does not allow manipulation of arrays other than replacing the complete array value (an array with all present items) with a new value (an array with all new items). It is not possible to change individual items in an array or to add/delete individual items.
[image: A close-up of a text

Description automatically generated]
[image: A close-up of a code

Description automatically generated]
Figure 6.3.2-1: Flow for partially updating a resource with JSON Merge Patch
The procedure flow is as follows:
1)	The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body shall carry the JSON Merge Patch document describing a set of modifications to be applied to the target resource.
2)	The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the complete representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
JSON Merge Patch shall be used for patching the target resource only. The patch format shall not be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child resources are included in the schema definition of the target resource. This limitation is introduced, because child resources (of one object class) are represented as items of an array that is a property of the target resource (alongside with the attributes of the target resource), and JSON Merge Patch does not allow to modify individual array items. With JSON Merge Patch, only the complete array value with the representations of all child resources (of one class) could be replaced. Note that child resources can have child resources as well. The patch document would hence need to include the representations of all descendant resources. This is very inefficient and against the principle of PATCH to provide the changes only.
The following examples demonstrate the usage of JSON Merge Patch. Assume an "XyzFunction" resource has no attribute "attrA" yet, then the following PATCH request creates it.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "abc"
 }
}

The following subsequently executed PATCH request replaces its value with "def".
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "def"
 }
}

This PATCH request deletes the attribute.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": null
 }
}

	End of First Change

	Second Change

6.3.3	JSON Patch
The JSON Patch format is specified in RFC 6902 [13]. The patch document is a JSON array. Each array item is a JSON object describing a modification to be applied to the target resource. The modifications shall be applied to the target resource sequentially in the order they appear in the array. The media type of JSON Patch is "application/json-patch+json".
Each modification is defined by three properties: The operation ("op"), the identification of the secondary resource within the target resource to be manipulated ("path") and a value ("value"). When removing a secondary resource, the "value" property is absent. When moving or copying an existing value, the "value" property is absent, too, and the "from" property is present instead. The "from" property identifies the secondary resource, whose value is moved or copied to the location specified by the "path" property. The value of the "from" and "path" property is a JSON Pointer in string representation as defined in section 5 of IETF RFC 6901 [14].
In contrast to JSON Merge Patch, JSON Patch allows to modify individual items of an array. Array items are identified based on their position (index) in an array. The first item has the index "0". The "-" character is used by the operations "add" and "move" to index the end of the array for appending a new array item. Its use in any other operation is forbidden.
The target URI identifies the resource to be modified. As for JSON Merge Patch, the target URI shall have no query and no fragment component. The target resource needs to exist, otherwise the error status code "404 Not Found " shall be returned.
[image: A close-up of a text

Description automatically generated]
[image: Generated by PlantUML]
Figure 6.3.3-1: Flow for partially updating a resource with JSON Patch
The procedure flow is as follows:
1)	The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body shall carry a JSON Patch document describing a set of modification instructions to be applied to the target resource.
2)	The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
As JSON Merge Patch, also JSON Patch shall be used for patching the target resource only. The patch format shall not be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child resources are included in the schema definition of the target resource. This is because JSON Patch can address items in an array only based on the position of the item in the array, and not based on an identifier independent from the position of the item in the array. A patch document could hence not address descendant resources of the target resource based on their "id". This is prone to conflicts in multi-client scenarios, where the position of resource items in an array can change due to the concurrent creation or deletion of resource items in the same array. Risk mitigation would require complex ETag calculations in the resource hierarchy.
The JSON Patch document is described by the folloing JSON schema fragment.
	{
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "op": {
 "enum": [
 "add",
 "replace",
 "remove",
 "copy",
 "move",
 "test"
]
 },
 "from": {
 "type": "string"
 },
 "path": {
 "type": "string"
 },
 "value": {}
 },
 "required": [
 "op",
 "path"
]
 }
}

The schema for the "value" property is the list (constructed with "anyOf") of the NRM schema fragments for all resource representations, and the NRM schema fragments for the values of all attributes and attribute fields. The NRM schema normally contains many NRM schema fragments of these kinds. For that reason it is normally not practicable to list all NRM schema fragments defining the allowed values of the "value" property. In addition, the resource, attribute or attribute field identified in the "path" property cannt be related by the schema itself to its value schema. For these reasons, the schema "{}" is normally used, which is the shorthand syntax for a schema without any type.
The following example adds a new attribute "attrA" to an "XyzFunction" (assuming "attrA" does not exist yet).
	[bookmark: MCCQCTEMPBM_00000022]PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrA",
 "value": "abc"
 }
]

The following example replaces the value of "attrA" with "def".
	[bookmark: MCCQCTEMPBM_00000023]PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes/attrA",
 "value": "def"

 }
]

It is not an error if the "path" property of an "add" operation specifies an object member that exists already. In this case the value of the specified object member is replaced. The following patch request has hence the same effect as the patch request in the example above. In both cases the value of "attrA" is replaced with "def".
	[bookmark: MCCQCTEMPBM_00000024]PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrA",
 "value": "def"
 }
]

The following patch document has not the same effect as both examples above. It does not replace the value of "attrA" with a new value. Instead, it replaces the value of the "attributes" object with a value that is an object and has a single member, the "attrA" property (attribute), thereby deleting all other attributes, that may exist when the patch request is received.
	[bookmark: MCCQCTEMPBM_00000025]PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes",
 "value": {
 "attrA": "def"
 }
 }
]

To remove the attribute "attrA" the MnS Consumer may send.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "remove",
 "path": "/attributes/attrA",
 }
]

When the attribute to be added is a JSON array, the "value" property contains an array. In the following example the array has two items of type string.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrB",
 "value": ["abc", "def"]
 }
]

To add a new item to an existing array, the "path" property needs to specify the array index where the item is to be added. For example, the following PATCH request adds the array item "xyz" after the first array item.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrB/1",
 "value": "xyz"
 }
]

Note that the "test" operation can be used to construct conditional patch requests. In the following example the "attrA" value is replaced only with "ghi" if the current value is "def", otherwise the test operation fails and the complete patch request is not applied.
	[bookmark: MCCQCTEMPBM_00000026]PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "test",
 "path": "/attributes/attrA",
 "value": "def"
 },
 {
 "op": "replace",
 "path": "/attributes/attrA",
 "value": "ghi"
 }
]

Conditional patch requests based on the "test" operation are limited to conditions related to secondary rersources (attributes) of the target resource. It is not possible to point to secondary resources outside of the target resource using the "path" property.
Multiple test operations can be combined to construct requests with multiple conditions. All conditions need to evaluate to true for the patch document to be applied. In other words, the test operations are linked with a logical "and" operator.

	End of Changes

image1.png

image2.png

image3.png

