Page 1

3GPP TSG-SA5 Meeting #153

 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-241004
Sevilla, Spain, 29th Jan 2024 - 2nd Feb 2024
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0123
	rev
	1
	Current version:
	16.11.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-16 CR 32.158 Clarify the behavior when partitioning a data model

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	2024-01-18

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	Clause A.8 describes a deployment scenario where the objects of an object tree are patitioned into two sets of objects. Each set is accessible via a dedicated MnS Producer endpoint.

Some objects of set A may serve as containment nodes for set B. The behaviour of these nodes is not fully described.

	
	

	Summary of change:
	The behaviour of containment nodes is clarified.

	
	

	Consequences if not approved:
	The behaviour of containment nodes is not specified.

	
	

	Clauses affected:
	A.2.3, A.8

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

A.2.3
Retrieval of multiple complete resources using scoping and filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The base object and all objects at scope level "1", irrespective of their object class, are included in the response. The acceptable response media type specified by the "Accept" header field is "application/json", which indicates to the MnS producer to use the hierarchical response construction method
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

The MnS Consumer can request also to return a response constructed according to the flat response construction method. In this case the "Accept" header contains the "application/vnd.3gpp.object-tree-flat+json" media type.

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/vnd.3gpp.object-tree-flat+json

The response looks like:
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.object-tree-flat+json
[

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "DC=example.org,SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 },

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 },

 {

 "id": "PMJ1",

 "objectClass": "PerfMetricJob",

 "objectInstance": "DC=example.org,SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 },

 {

 "id": "TM1",

 "objectClass": "ThresholdMonitor",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

The "objectInstance" of each returned object is present in the response, as required in clause 6.1.4.
When only objects at scope level "1" are requested to be returned, the request looks like:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1

Host: example.org

Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the two "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide the containment nodes for the "XyzFunction" objects.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only the two "XyzFunction" objects without containment nodes.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

The following example selects all objects of any class on scope level "1" that have a "location" attribute whose value is equal to "Grunewald":

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=1&\

 filter=/*/*/attributes[location="Grunewald"] HTTP/1.1
Host: example.org

Accept: application/json

The response includes one "ManagedElement" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

]

}

The input document to the XPath expression is a document whose root element (document element) is the object identified by the path component of the target URI and that includes the object representations of the scoped objects. In this example the root element is the "SubNetwork", but it is not scoped and hence included in the input document with its "id" only, i.e. without the "attributes" node. The input document includes furthermore all scoped objects on level "1" with their complete representations (without name-contained objects). These are the two "ManagedElement" objects, the "PerfMetricJob" object, and the "ThresholdMonitor" object.
	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted to a XML document Note that a valid XML document has one and only one root element. For that reason the "SubNetwork" element needs to be added as root element..
	<SubNetwork>

 <id>SN1</id>

 <ManagedElement>

 <id>ME1</id>

 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

	<ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=2&\

 filter=/*/*/*/attributes[attrB>=552 and attrB<562] HTTP/1.1
Host: example.org

Accept: application/json

The response includes one "XyzFunction" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

An identical response is returned when using the following requests:

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL&\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_SUBTREE&scopeLevel=2&\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL&\

 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

It is possible to combine scoping and filtering with attribute and attribute field selection. The following example returns the containment tree (i.e. the object tree without attributes and "attributes" container), starting with the "SubNetwork" identified by the target URI.
	GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org

Accept: application/json

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

}

The next example scopes the same subtree as in the previous example and requests to return only "vendorName" attributes instead of no attributes at all.

	GET /ProvMnS/v1700?\

 scopeType=BASE_ALL&\

 attributes=vendorName HTTP/1.1

Host: example.org

Accept: application/json

This results, according to clause 6.2.3, in removing from the response all scoped resources that do not have a "vendorName" attribute.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "vendorName": "Company XY"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "vendorName": "Company XY"

 }

 }

]

}

If the retrieval request identifies resources that do not exist, such as in

	GET /ProvMnS/v1700?scopeType=BASE_NTH_LEVEL&scopeLevel=3 HTTP/1.1

Host: example.org

Accept: application/json

The MnS producer returns a "204 No Content" response.
	HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

When the MnS Consumer does not know the root objects of the containment tree and wants to retrieve the complete trees starting with the roots, the target URI needs to identify the NRM root, i.e. the resource above the root objects. According to clause 4.4.2, this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example "/ProvMnS/v1700". In the following example, the "attributes" query parameter is empty and only the name-containment hierarchy (without attributes) is returned.
	GET /ProvMnS/v1700?scopeType=BASE_ALL&attributes= HTTP/1.1

Host: example.org

Accept: application/json

The response is illustrated below.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "SubNetwork": [
 {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

 }

]

}

Multiple root resources can be returned as well. For example, assume a NRM with three "SubNetwork" root resources, then the response may look like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{
 "SubNetwork": [

 {

 "id": "SN1",

 ...
 },

 {

 "id": "SN2",

 ...
 },

 {

 "id": "SN3",

 ...
 }

]

}

Note that when the target URI identifies the NRM root, then the name of the document (root) element, to which an XPath expression is applied, is "nrmRoot". The first step of the location path of an XPath expression is hence "/nrmRoot". For example, the following HTTP GET request returns the "SubNetwork" with the identifier "SN1".

	GET /ProvMnS/v1700?\

 scopeType=BASE_ALL&\

 filter=/nrmRoot/SubNetwork[id="SN1"]/attributes HTTP/1.1

Host: example.org

Accept: application/json

Note the presence of the location step "/attributes". This step is necessary to select only the "attributes" container and hence only the SubNetwork" with the identifier "SN1" without any name-contained objects.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "SubNetwork": [

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "DC=example.org,SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 }

]

}

Without the location step "/attributes" the complete subtree would be returned.

In all examples above query parameter values are not percent-encoded for better readability. For example, the value of the filter query parameter in the following request

	GET /ProvMnS/v1700?\

 scopeType=BASE_ALL&\

 filter=/nrmRoot/SubNetwork[id="SN1"]/attributes HTTP/1.1

Host: example.org

Accept: application/json

needs to be percent-encoded.

	GET /ProvMnS/v1700?\

 scopeType=BASE_ALL&\

 filter=%2FnrmRoot%2FSubNetwork%5Bid%3D%22SN1%22%5D%2Fattributes HTTP/1.1

Host: example.org

Accept: application/json

	Next modification

A.8
Partitioning a data model

All objects of the data model in annex A.1 may be accessed and manipulated via a single MnS Producer endpoint, for example

http://example.org/3gpp/ProvMnS/v1600

An implementation may also provide more than one endpoint for accessing the data model. This may be for allowing MnS Producers supporting different versions of the CRUD operations to access the data model:

http://example.org/3gpp/ProvMnS/v1600

http://example.org/3gpp/ProvMnS/v1700

Another reason might be to structure the total data model into subsets of managed objects for different purposes such as configuration management and performance management.

http://example.org/3gpp/cm/ProvMnS/v1600

http://example.org/3gpp/pm/ProvMnS/v1600

Using the MnS Producer endpoint for configuration management only the objects for configuration management can be accessed. The canonical URIs of these objects are

http://example.org/SubNetwork=SN1

http://example.org/SubNetwork=SN1/ManagedElement=ME1

http://example.org/SubNetwork=SN1/ManagedElement=ME2

http://example.org/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1
http://example.org/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF2

Using the MnS Producer endpoint for performance management only the objects for performance management can be accessed.

http://example.org/SubNetwork=SN1/PerfMetricJob=PMJ1

http://example.org/SubNetwork=SN1/ThresholdMonitor=TM1

When trying to access with the MnS Producer for performance management an object pertaining to the subset of managed objects for configuration management, for example,

	GET /3gpp/fm//SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org
Accept: application/json

an error may be raised, for example "404 Not Found". Also the "SubNetwork" resource, that is present as path component in the URI of the "PerfMetricJob" and "ThresholdMonitor" resource, may not be available from the MnS Producer for performance management, hence the request
	GET /3gpp/fm//SubNetwork=SN1 HTTP/1.1

Host: example.org
Accept: application/json

may result in an "404 Not Found" error response as well.
	End of modifications

