

	
3GPP TSG-SA5 Meeting #153	S5-240429
 Sevilla, Spain, 29th January- 2nd February 2024

Source:	Nokia, Nokia Shanghai Bell, Ericsson
Title:	Rel-18 pCR TS28.319 on Operations mapping, examples and sequence diagram for REST Solution for Access control for management service
Document for:	Approval
Agenda Item:	6.6.1.3
1	Decision/action requested
The group is requested to discuss and approve the pCR below
2	References
None
3	Rationale
None.
4	Detailed proposal
The following changes are proposed for TS 28.319
Introduction of Stage 3 with respect to Operations mapping to solution set which is mapped to the Stage 1 and stage 2 submitted in meeting #152.
Further there are examples related to the operations.
 Also the sequence diagram in the informative Annex have been updated according to the approved stage 2.

	Begin of modifications

Page 1

2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[xx]	IETF RFC 6749: " The OAuth 2.0 Authorization Framework".
[yy]	IETF RFC 8341: " Network Configuration Access Control Model".

Page 1

[bookmark: _Toc20150380][bookmark: _Toc27479628][bookmark: _Toc36025140][bookmark: _Toc44516240][bookmark: _Toc45272559][bookmark: _Toc51754558][bookmark: _Toc105582563][bookmark: _Hlk134784164][bookmark: _Hlk134784417]

[bookmark: _Toc156202109][bookmark: _Toc51919029][bookmark: _Toc75164409][bookmark: _Toc63348431][bookmark: _Toc63426207]4 Concepts and overview
[bookmark: _Toc156202110]4.1	Concepts
4.1.1	Identity and Access Control

Network Management systems are becoming a challenge to manage in terms of the users of the system as well as the access control that needs to be applied continuously on a need-to-know basis.
Flexibility and agility to adapt to these growing needs is the key for a sustainable identity and access control implementation.
	The service based architecture needs to factor seamless integration to any system for authentication and authorization of Management Service (MnS) consumers.
The need to make continuous access control related changes should be supported with ease and simplicity.
Today we have various human users, machine users and various resources that are continuously growing with complexities below:
· Human users seem to require various levels of access control.
· Machine type of communication in the direction towards automated systems require another type of access and may not necessarily be user name password based.
· Resources and modules themselves require various level of clearance depending on the sensitivity of the data being accessed.
	The identity and access control system should be designed for role based access control. Also the authorization rules may support the fine grained permissions i.e. based on MnS component A, B and C.
[bookmark: _Toc156202112]4.1.2 	Role based access control
This is based upon the concept of assigning the appropriate permissions and privileges to authorized users. The combinations of the permissions and privileges make up a role. The users who belong to a role should be assigned to resources based on a least privilege principle and access rules associated to the resource. The principle of least privileges states that the users should be granted access only to the data and the operations that are required to perform the job. This minimizes the possibility of a security breach.
The management system should be setup for access control by a system administrator who will have the know-how of creating the required users and roles. Roles will use the various access rules. Additionally, the system administrator will also need to setup the access rules for a MnS producer.
Roles could be in various categories like full access and restricted access.
[image: A black background with blue text and a black rectangle

Description automatically generated]Figure 4.9.x.1.1-y - role based access
Figure 4.9.x.1.1-y - role based access

The Figure 4.9.x.1.1-y - role based access shows how a user is assigned to a role. The roles in turn are able to act upon a resource with the required operation on a MnS Producer. The operations that can be performed are defined by the access rules.
The Figure 4.9.x.1.1-z shows an example of how role based access control is adapted to service based management architecture. In the service based management architecture, the user is regarded as MnS consumer, and the combination of resource and operation is represented by management services. Different MnS consumers can be assigned to one role or different roles. The access rules for roles will be configured according to the MnS consumer access right of management service instances which are composed by different MnS component A and component B or component C.
[image: A diagram of components

Description automatically generated]
Figure 4.9.x.1.1-z Example of role based access control of management services
MnS consumers belonging to different domains (e.g. NOP domain and Vertical domain) are assigned to different roles respectively. For each role, there is an associated access rule list which shows the allowed accessing scope of MnSs. MnS 1, MnS 2 and MnS 3 are different with each other in at least one of the component A, component B and component C.
[bookmark: _Toc156202113]4.1.3	Entities in access control
In a distributed system the responsibilities of authentication and authorization is split between several entities (Figure 4.1.2.-1):

[image: A black screen with blue text

Description automatically generated]
Figure 4.1.2.-1: Entities in access control

The above figure shows the various entities that need to be involved in setting up and using access control. Irrespective of any implementation and functional split, the concept of access control is based on the following steps:
· The resource server needs to relate to the request coming from the user to a known identity
· The resource server needs to relate to the request coming from the user to resource, which in case of SBMA means a combination of MnS components as of TS 28. 533, i.e. MnS operations (component A), object instances or classes from the NRMs (component B), and alarm information or performance data (component C).
· The resource server needs to check whether the requesting identity is allowed to perform the requested operation on the requested resources. These checks can be assigned to a functional block for authentication and a block for authorization, no matter whether these functional blocks are internal parts of a management function (e.g. as part of a Netconf server) or whether these blocks are visible as standalone services (e.g. like a dedicated OAuth authorization server).
· As precondition for any access control and irrespective of any implementation or deployment, the owner of the resources needs to configure these functional blocks in order to define which identity is allowed to access which resources.

Access control is highly specific to the solution set, the protocol and the CRUD operations defined by the solution underlying the solution set. For example, oAUTH offers the possibility of the authentication and authorization function integrated and Netconf has the possibility of authentication taking place separately on the transport layer and the authorization separately on the Netconf server. Netconf will use standardized RFC 8341 Network Configuration Access Control Model (NACM). REST solutions with OpenAPI will use OAUTH2.0.
The different entities need to have a common notion of the security-related parameters. E.g. Authentication and authorization function and potential user need to use the same notion of identity, as well as authentication and authorization function and potential resource server need to use the same notion of resource. Therefore the involved entities need to be based on an overarching security-related information model(explained in next section related to Information Model), which is the basis for the concrete data models of the security-related interfaces that are needed to fulfil the security-related use cases of access control

[bookmark: _Toc156202114]4.2 Usecases
[bookmark: _Toc156202115]4.2.1	 Authentication and authorization
· Authorization function and resource server need to have a common understanding of resources and refer to the same resources and corresponding actions. The access control information needs to be provisioned in the authentication and authorization function.
· To carry out authentication and authorization based on role-based access the following tasks needs to be in place.
1. Pre-deployment task – This relates to the identification of the resources represented by the MnS component B and C and it associated operations represented by MnS component A. This is typically done by a Network Equipment Provider (NEP) during the design phase.
1. Post deployment task – this relates to the set of administrative tasks which are requires to enable role-based access control typically caried out by a network operator (NOP). This is done once the system is up and running and access control needs to be administered.
NOTE: The NOP may have a system administration department in charge of defining and configuring role-based access control.
Post the above tasks we have the possibility to have role-based access in operation with every service call being authenticated and authorized.
When an MnS is invoked, the MnS consumer authenticates towards an authentication service producer. This is then followed by checking the access rights with respect to the role-based access. This takes place in the authorization service producer which is invoked from the MnS producer to check if its resources can be accessed with respect to the related operation.

[bookmark: _Toc156202116]4.2.2	 Identity to roles association
The identity or user of the system needs to be assigned the permissions to carry out the management operations. A set of permissions is defined as a role. An efficient and flexible means is to define various roles by a network operator. In a second step, association of the roles to an identity (entity or human user) is carried out.

[bookmark: _Toc156202117]4.2.3	 Roles associated to resources (consisting of IOCs(),MOIs() and corresponding operations
Role-based access control defines roles. Roles are associated to access rules which are combinations of resources and operations (e.g., CRUD operations). The resources can be represented by IOCs(static) and/or MOIs (dynamic). Hence the resources in context are typically Component B and the operations are Component A.
Component C which represents that management data is also a possible resource to be access control protected.
Note: Whether and how component C will be access controlled is FFS.

[bookmark: _Toc156202118]5 Requirements
· UC-MSAC-0x - 3GPPP management system shall support role-based access control for the resources represented by the MnS component A, B and C.
· UC-MSAC-0x.01- 3GPP management system shall support authentication and authorisation for management services.
· UC-MSAC-0x.02 - 3GPP management system shall support identity to role assignment.
· UC-MSAC-0x.03 - 3GPP management system shall support roles which are associated to resources (IOCs() and/or MOIs()) and the corresponding operations.

[bookmark: _Toc156202119]6 Solution description
6.1 Information model
Editor’s note: the management of the classes defined in the information model is for FFS

[bookmark: _Toc156202120]6.2 Information architecture

	This clause elaborates the information architecture of the classes necessary to enable the role based access control explained in the section above. This section elaborates the concept into further logical classes that need to interact to enable the design.
The classes, attributes specified here shall be seen as concepts that might not have a direct mapping in some solution sets.

@startuml #152 information model for access control
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide empty members
hide circle

class Identity
class Role
Identity "*" -d- "*" Role
Role "*" -d- "*" "Access Rule"

class "Access Rule" {
resources
operation
action
componentCdata
}

@enduml
[image: Generated by PlantUML]

Figure 5.1-1 Information model for role based access control relationship
The information model above depicts the following to realise a role based access control relationship.
· One Identity could be associated to one or more Roles.
· One Role might be associated to one or more Access Rules. One Role might be associated to one or more Identities.
· The Access rule class allows protecting resources, by specifying which permissions are eligible for each resource. A resource is identified by the class name or class instance. The permission specifies which operation (identified by a CRUD) is applicable and possibly which action (allow or deny) is applicable".
The classes represent the information architecture that is necessary to implement an access control system. They are and not meant to be provisioned and managed like the NRM classes.
This clause provides an overview of the relationships between relevant classes in UML format.
As mentioned in the usecases the classes are provisioned during the integration time by a network operator. The data is sent to an authentication and authorization service producer.
Post this during integration time when a MnS consumer invokes an operation on the MnS producer, the authentication and authorization service producer validates the action on the resource to enable the decision for the MnS producer. The decision could be that the MnS producer allows or disallows the action on the resource.
The information architecture translates to the design which considers the below
· The authentication function mainly contains the ‘who’ of the MnS consumers. The authorization function contains the information of the resource and the action of the MnS producer associated to the ‘who’ of the MnS consumers. These functions could be collocated or distributed.
· The MnS consumer is associated to ‘who’ is carrying out the operation and has to be known to the resource owner who will provide this information. The MnS consumer interacts with an authentication function to identify itself.
· The MnS consumer interacts with the authorization function whether it can carry out the action on the resource. The resource owner also provisions the information associating various resources and corresponding actions to valid MnS consumers as a pre-step.
· The MnS consumer interacts with the MnS producer after getting responses from the authentication and authorization functions. The MnS producer further does a validation if the action on its resource can be allowed or not.
The above interactions can be realized in any implementation.
[bookmark: _Toc156202121]7	Model
7.1	Class diagrams
Below are the classes that need to interact in order to store the data required for the authentication and authorization operations with respect to role based access control.
@startuml #152 classes and fields
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
'hide members
hide empty members
hide circle
'skinparam maxMessageSize 250

class Identity
{
 String identityName
 String identityType
 String credential
}

class Role
{
 String roleName
 List accessRules
}

class "Access Rule" {
String ruleName
String resources
List operations
List actions
String componentCdata
}

Identity "*" -down- "*" Role
Role "*" -down- " *" "Access Rule"

@enduml
[image: Generated by PlantUML]

Figure 5.2-1 Classes for role based access control name containment
The classes related to Identity, Role, Access rules are contained within the authentication and authorization service producer.

[bookmark: _Toc156202122]7.2	Class definitions
[bookmark: _Toc156202123]7.2.1	Identity
[bookmark: _Toc156202124]7.2.1.1	Definition
This class represents an identity of a MnS consumer.
It is used for authentication and authorization.
The MnS consumer can be a human or a machine user. This class enables the creation and storage of an identity of a MnS consumer. The information in this class is the starting point for a MnS consumer to identity who it is. This is validated against an authentication service producer.
For the authentication operation to take place the identity related information has to be provisioned into the system by a network operator who could be an administrator. The administrator adds the identityType attribute and identityName attribute which characterizes a machine user or human user respectively. For example, an operator might have an identity like a tenant mapped to the relevant list of roles.
Attribute credential is used to provide information for the credential used together with identity when requesting authentication. The examples of credential are password, certificate, biometric, etc.
The roleList attribute defines the role names associated to a particular Identity.
The class stores the details of the expected tasks to be performed by an identity. The tasks are what is to be done on the network management system. To ease the administration on the system, the tasks are organised as roles. The user can be associated to one or more roles.

[bookmark: _Toc156202125]7.2.1.2	Attribute
The Identity class includes the following attributes:
	Attribute Name
	S

	identityType
	M

	identityName
	M

	credential
	O

	Attributes related to role
	

	roleList
	M

[bookmark: _Toc156202126]7.2.1.3	Attribute constraints
None
[bookmark: _Toc156202127]7.2.2	Role
[bookmark: _Toc156202128]7.2.2.1	Definition
The Role class represents a task or collection of tasks in a network management system.
The Role class enables the storage of information as to what resources and actions an identity can work upon. This class maintains the resources that are known to the management system. This contains all the granular level resources and the corresponding actions.

The roleName attribute defines the name of a role.

The accessRulesList attribute contains a list of access rules that contain the list of granular permission sets.This could be the possible order in which the access rules are considered by the MnS producer.

[bookmark: _Toc156202129]7.2.2.2	Attribute
	Attribute Name
	S

	roleName
	M

	Attribute related to role
	

	accessRulesList
	M

[bookmark: _Toc156202130]7.2.2.3	Attribute constraints
None
[bookmark: _Toc156202131]7.2.3	AccessRule
[bookmark: _Toc156202132]7.2.3.1	Definition
The AccessRule class represents the granular resource and actions in a network management system on which an action has to be performed.

This class enables the storage of the resource types in the system and the possible actions that are allowed on it. The permutations and combinations of these permissions are assigned to a role.

The ruleName attribute binds the instances in the network as well as the permissions and the operations allowed upon it.
The resources attribute defines the resources. The resources are classes(IOC) or instances of classes(MOI) in the network that need to be access controlled. The resources define the root instances or the leaf instances. For example, the Managed Element could be the root object and the attributes could be referred to as the leaf objects. The resources here could be whole classes or specific instances of classes with a known DN value or could be an expression(eg: XPATH or JEX) that could be resolved by the producer to get the nodes at runtime.
Examples of the resources attribute value could be as below. Please note this is not an exhaustive set of examples and shown for depiction purpose.
a. Values related to IOC
· Description: this means that
· all attributes of an IOC are eligible for the access rule
· at operation time, all instances of this IOC are eligible for the access rule.
· Examples:
1. IOC name		: "ManagedElement"
2. Expression resolving to IOCs under a subnetwork SN1 :
"/SubNetwork[id="SN1"]/ManagedElement"
b. Values related to one or more instances of an IOC
· Description: this means that
· all attributes of the IOC are eligible for the access rule
· at operation time, only the specified instances of this IOC are eligible for the access rule.
· Examples:
1. Specific instance of IOC name	: "SN1/ME1"
c. Values related to one or more IOC attributes
· Description: this means that
· only the specified attributes of the IOC are eligible for the access rule
· at operation time, all attributes of the instances of this IOC are eligible for the access rule.
· Examples:
1. Attribute name: "SubNetwork/ManagedElement/vendorName"
2. Expression resolving to specific instance of attribute name "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes[vendorName="Company XY"]"
3. Specific attribute instance: "SN1/ME1/vendorName=’Company XY’"
d. Any combination between a-c.

The operations attribute define the list of operations that are permitted on the resources value encompassed under this ruleName.
The actions is an optional attribute which specifies whether the operation allows to permit all or deny all and maybe used depending on the solution set.
The componentCData is an optional attribute which specifies the management data to be allowed or not.
[bookmark: _Toc156202133]7.2.3.2	Attribute
	Attribute Name
	S

	ruleName
	M

	resources
	M

	operations
	M

	actions
	O

	componentCData
	O

[bookmark: _Toc156202134]7.2.3.3	Attribute constraints
None
Editor’s note: Additional example to elaborate Identity, Role, Access rules is for FFS

[bookmark: _Toc156202135]7.3	Attribute definitions
[bookmark: _Toc156202136]7.3.1	Attribute properties
The following table defines the properties of attributes specified in the present document.

	Attribute Name
	Documentation and Allowed Values
	Properties

	identityType
	This indicates a type of identifier

AllowedValues: username, email address, phone number, IP address, machineuser

	type: ENUM
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	identityName
	This defines a readable string to uniquely represent an identity
AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	credential
	The credential of an MnS consumer or producer used for authentication with authentication service producer. It could be password, certificate, key, pass phrase, etc., based on authentication protocol and factor.

AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: No value
isNullable: False

	roleList
	This defines the list of roles associated with an identity

AllowedValues: NA
	type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	roleName
	This string defines a unique representation of the name of a role

AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	accessRuleList
	This defines the list of access rules associated with a role

AllowedValues: NA
	type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	ruleName
	This string defines a unique representation of the name of an access rule.
The name of the access rule could also contain the name of the management service

AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	resources
	This attribute defines a MnS component type B represented by information models of managed entities. A MnS component type B is also called Network Resource Model (NRM).
MnS component type B examples are:
1)	Network resource models as defined in TS 28.622
2)	 Network resource models as defined in TS 28.541

A resource might be:
* AnIOC or MOIs
* A specific instance of an IOC,
* An attribute or attributes
* Specific instance of attribute or attributes

AllowedValues: NA

	type: String
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	operations
	This defines the Component A related operations for resources.
The operations related to attributes are also contained in this set.

The operations are of the MnS as defined in 28.532

AllowedValues: NA

	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	actions
	This defines whether the operation is allowed or denied on the operation

AllowedValues: allow, deny
	type: ENUM
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	componentCData
	This attribute defines a MnS component type C which is the performance management data, KPIs of the managed entity and fault information of the managed entity.
The following are examples of Management service component type C:
1. Alarm information as defined in TS 28.532 and TS 28.545
2. Performance data as defined in TS 28.552 , TS 28.554 and TS 32.425.

AllowedValues: NA
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

[bookmark: _Toc156202137]8	Operations
	Once the data is provisioned in an authentication and authorization function it has to be utilised by an MnS consumer and MnS producer. Hence we need to define the below functions which provide information to the MnS producer as to who is accessing which resources.
[bookmark: _Toc156202138]8.1	authentication operation
[bookmark: _Toc156202139]8.1.1	Description
This operation is invoked by MnS consumer to request the authentication service producer to authenticate MnS consumer. MnS consumer and authentication service producer shall use one of the following methods for authentication:
-	Mutual authentication between MnS consumer and authentication service producer provided by the transport layer solution. Mutual TLS is the concept where the client and the server authenticate each other in this case we have the MnS consumer authenticating itself.
-	Client credentials assertion based authentication.
When client credentials assertion based authentication is used, the operation is invoked by a MnS consumer to request authentication by authentication service producer. The authentication service producer gets the identifier and credential of the MnS consumer for validation. Based on identifier in the request, authentication service producer gets identity information, e.g. credential of the identity, associated role(s) of the identity, etc., from local data store (e.g., a directory). The authentication service producer authenticates the MnS consumer by validating the identity information. associated to the role(s) the MnS consumer belongs to.
If authentication is successful, the authentication service producer sends successful response with assertion to the MnS consumer. MnS producer validates the assertion to authenticate a MnS consumer.
If fail for authentication, the authentication service producer sends failure response to the MnS consumer.
[bookmark: _Toc156202140]8.1.2	Input parameters

	Parameter Name
	S
	Information Type / Legal Values

	Comment

	identityName

	M
	String
	This parameter specifies the identity of the MnS consumer that is to be authenticate.

	attributeListIn

	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This parameter may have a null value. When this parameter is supplied, it contains a list of name/value pairs specifying attribute identifiers and their values to be assigned to the identity to be authenticated.

[bookmark: _Toc156202141]8.1.3	Output parameters
	Parameter name
	S
	Matching Information / Legal Values
	Comment

	attributeListOut
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This list of name/value pairs contains the attributes of the authenticated MnS consumer and the actual value assigned to each.

	Status
	M
	ENUM (OperationSucceeded, OperationFailed)
	

[bookmark: _Toc156202142]8.1.4	Exceptions and constraints
	Exception Name
	Definition

	operation_failed
	Condition: Operation is failed
Returned Information: The output parameter status
Exit state: Entry State

[bookmark: _Toc156202143]8.2	authorization operation
[bookmark: _Toc156202144]8.2.1	Description
The operation is used to authorize a MnS consumer by the authorization service producer.
MnS consumer, MnS producer and authorization service producer shall use one of the following methods for authorization:
- Token based authorization framework including various grant modes (e.g., as specified in RFC 6749)
-	Static authorization as specified (e.g. in RFC 8341 for NACM)
When token based authorization framework is used, authorization service producer receives authorization request, gets the assertion of the MnS consumer related to the authentication and probably other context information (e.g. resource , action) from the request. If access token is supported by the MnS producer and consumer:
- The MnS consumer gets access token from authorization service producer by providing the assertion from authentication session.
- The MnS consumer starts normal operation with MnS producer with the access token. The MnS producer validates the token. If the token is valid, the MnS producer performs the action(operation) on the resource authorized and returns result to the MnS consumer.
If access token is not supported by the MnS producer and consumer:
- When normal operation starts, the MnS producer validate the authentication assertion and check permission of the MnS consumer with authorization service producer.
- The MnS producer performs the operation on the targeted resource which is part of the authorized scope and returns result to the consumer if the MnS request is allowed according to permissions.
If fail for authorization, the authorization service producer sends failure response to the consumer.
[bookmark: _Toc156202145]8.2.2	Input parameters
	Parameter Name
	S
	Information Type / Legal Values
	Comment

	attributeListIn
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This parameter may have a null value. When this parameter is supplied, it contains a list of name/value pairs specifying attribute identifiers and their values to be assigned to the identity to be authorized.

[bookmark: _Toc156202146]8.2.3	Output parameters
	Parameter name
	S
	Matching Information / Legal Values
	Comment

	attributeListOut
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This list of name/value pairs contains the attributes of the authorization for the MnS consumer and the actual value assigned to each.

	Status
	M
	ENUM (OperationSucceeded, OperationFailed)
	

[bookmark: _Toc156202147]8.2.4	Exceptions and constraints
	Exception Name
	Definition

	operation_failed
	Condition: Operation is failed
Returned Information: The output parameter status
Exit state: Entry State

Annex A (normative): Solution sets
A.1	RESTful HTTP-based solution set

	Start of modification

A.1.1	Mapping of the operations

Solution shall be based on OpenID connect protocol and OAuth 2.0 (see RFC 6749 [x]).
OpenID Connect is a simple identity layer on top of the OAuth 2.0 protocol and used in authentication. It enables clients to verify the identity of the MnS Consumer based on the authentication performed by an Authorization Service Producer.
OAuth introduces an authorization layer and separates the role of the client (MnS Consumer) from that of the resource owner (e.g., Operator). In OAuth, the client requests access to resources controlled by the resource owner and hosted by the resource server (MnS Producer) and is issued a different set of credentials than those of the resource owner.
The client obtains an access token which is a string denoting a specific scope, lifetime, and other access attributes. Access tokens are issued to clients by an authorization service producer with the approval of the resource owner. The client uses the access token to access the protected resources hosted by the resource server.
To request an access token, the client obtains authorization from the resource owner. The authorization is expressed in the form of an authorization grant, which the client uses to request the access token.
We consider two grant types in clause 1.3 (see RFC 6749 [x]). The access control shall support the following two types of grants:
(1) authorization code
(2) client credential
A.1.1.1	Human user as MnS consumer for authentication and authorization
The OpenID connect protocol and OAuth 2.0 authorization code grant (see RFC 6749 [x]) are used to authenticate and authorize human management service consumer.
In this solution, the authentication service producer takes role of OpenID Provider (OP) and authorization endpoint of OAuth 2.0 which authenticates the end user in OAuth 2.0 authorization code grant scenario.
The MnS consumer is end user of OpenID connect protocol.
The authorization service producer takes role of token endpoint of OAuth 2.0, which issues access token to the client.
The MnS producer plays the role of the resource server.
Authentication of human MnS consumer includes two steps which is the client on behalf of human user sends authentication request in the first step and the human user logins with credentials in the second step.
A.1.1.2	Machine user as MnS consumer for authentication and authorization
OAuth 2.0 client credential grant (see RFC 6749 [x]) is used to authenticate and authorize machine management service consumer
The authentication service producer authenticates management service consumer by validating the client credential.
The management service consumer implements confidential client of OAuth 2.0.
The authorization service producer implements token endpoint of OAuth 2.0, which issue access token to the client.
The management service producer implements resource server.
The access control service is implemented in OpenAPI in table 6.1-3.
	Access control operation
	HTTP Method
	Resource URI
	S

	authentication
	GET
	/oauth2/authorize
	M

	authorization
	POST
	/oauth2/token
	M

Table 6.2.2.2-1: Implement access control services in OpenAPI SS
A.1.1.2.1	Mapping of authentication operation
The below clause maps the classes and the access control services to OpenAPI parameters in table 6.1-4 for input and table 6.1-5 for the output.

	Class IS attribute name
	Class SS attribute name
	SS parameter location
	S
	Remark

	Identity.identityName
	client_id
	query
	M
	A unique identifier of a MnS consumer.
For machine MnS consumer, it could be DN, FQDN, etc. It is included in authentication request.
For MnS consumer via human user, it could be user name, email address, phone number, etc.
The parameter consumer_id is introduced in access control solution in addition to parameters defined in OAuth2.0.

	Identity.credential
	credential
	query
	CM
	It is secret or certificate based assertion.
For human MnS consumer, it is included in login request from user agent to authentication service producer.
For machine MnS consumer, it is in authentication request.
The parameter credential is introduced in access control solution in addition to parameters defined in Oauth2.0.

	
	redirect_uri
	query
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is redirection URI to which the authentication response from authentication service producer will be sent.
The parameter redirect_uri is defined in Oauth2.0.

	
	scope
	query
	CM
	It is used only for MnS consumer via human user scenario. OpenID Connect requests shall contain the “openid” as scope value which is used to indicate an authentication check.

The parameter scope is defined in OAuth2.0.

Table 6.1-4: Mapping class to OpenAPI input parameters (HTTP GET)

	SS parameter location
	SS parameter name
	Class attribute
	S
	Remark

	response status codes/body
	status
	
	M
	It is response status code, and optional error description in response body for error response.

	response body
	client_id
	attributeListOut
	M
	same to identifier in the request.
The parameter consumer_id is introduced in access control solution in addition to parameters defined in OAuth2.0.

	response body
	Code
	attributeListOut
	CM
	It is oauth2 and OpenID connect specific parameter.
It presents and its value is set to authorization code generated by the authentication service producer. It's only applicable to human management service consumer.
The parameter code is defined in OAuth2.0.

Table 6.2.2.3-1: Mapping class to OpenAPI output parameters (HTTP GET))

A.1.1.2.2	Mapping of authorization operation
The below clause maps the classes and the access control services to OpenAPI parameters in table 6.1-6 for input and table 6.1-7 for the output.

	Class attribute
	SS parameter name
	SS parameter location
	S
	Remark

	
	grant_type
	query
	M
	It is oauth2 specific parameter used to designate how to authenticate a client. It's set to "authorization_code" for authorization of human management service consumer, and "client_credential " for authorization of machine management service consumer
The parameter grant_type is defined in OAuth2.0.

	Identity.identityName
	client_id
	query
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is unique id, e.g. DN, FQDN, assigned to the client.
The parameter client_id is defined in OAuth2.0.

OpenID Connect adds an identity layer on top of oAUTH 2.0 framework

	Class attribute
	Client_secret
	
	
	Confidential client typically requires a client_id and client_secret. No need of refresh token as it is machine to machine

	
	redirect_uri
	query
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is redirection URI to which the authentication response from authentication service producer will be sent.
The parameter redirect_uri is defined in OAuth2.0.

These have to registered prior to being invoked to the client else can be used maliciously

	Identity.identityName
	Scope
	
	
	Scopes should only indicate the access rule which is required.

If scope includes ‘openID’ then
the identity token is also sent back to the client as part of authentication.

Table 6.2.2.4-1: Mapping Class to OpenAPI input parameters (HTTP POST)

	SS parameter location
	SS parameter name
	Class attribute
	S
	Remark

	response status codes/body
	status
	
	M
	It is response status code, and optional error description in response body for error response.

	response body
	access_token
	attributeListOut
	CM
	It is the access token issued by the authorization server.
The access token shall be a JSON Web Token (JWT) as specified in IETF RFC 7519 [z]. The access token shall include the claims encoded as a JSON object and then digitally signed using JWS as specified in IETF RFC 7515 [a] and in clause 13.4.1 of 3GPP TS 33.501 [8].
The digitally signed access token shall be converted to the JWS Compact Serialization encoding as a string as specified in clause 7.1 of IETF RFC 7515 [a].

The parameter access_token is defined in OAuth2.0.

Table 6.2.2.4-2: Mapping Class to OpenAPI output parameters

A.1.2	OpenAPI definitions
A.1.3	Examples
This sections depicts informative examples of the operations from the sections above
A.1.3.1	Human user as MnS consumer for authentication and authorization
Informative example: human MnS consumer authentication and authorization :
Authentication request sent from a client on behalf of a human MnS consumer to an authentication service producer:
GET /oauth2/authorize?\
 client_id=client.example.com\
 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fac\
 &response_type=code\
 &scope=openid
Host: authenticationserver.example.com

Login request from user agent to authentication service producer:
GET /oauth2/authorize?\
 Client_id=consumer1@example.com\
 &credential_type=secret\
 &credential=SHJKUJUYKKLH\
Host: authenticationserver.example.com

Authentication response:
HTTP/2 302 Found
Location: https://client.example.org/ac?consumer_id=consumer1@example.com&code=SplxlOBeZQQYbYS6WxSbIA

Authorization request with grant type code
POST /oauth2/token?\
 grant_type=authorization_code\
 &code=SplxlOBeZQQYbYS6WxSbIA\
 &client_id=client.example.com\
 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fac
Host: authorizationserver.example.com

Authorization response
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "context": "expire in 60m"
 }

A.1.3.2	Machine user as MnS consumer for authentication and authorization
Informative example: machine MnS consumer authentication and authorization:
Authentication and authorization request:
POST /oauth2/token?\
 grant_type=client_credentials\
 &client_id=consumer1.example.com\
 &credential_type=jwt\
 &credential=eyJhbGciOiJSUzI1NiIsIng1dCI6Imd4OHRHeXN5amNScUtq
Host: authorizationserver.example.com

Authentication and authorization response:
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "context": "expire in 60m"
 }

Annex Z (Informative):
Z.1	Informative sequence diagram: Commissioning flow to be carried out by an administrator:

The sequence diagram below explains the IOCs to be used as a pre-requisite for enabling the role based access control. The notes above in the diagram also depict an example of each of the tasks.
The sequence diagram below explains the operations and the interactions with the authentication and authorization service which typically should suit any implementation be in oAUTH or a NACM implementation.
The notes along the flows show the examples related to the IOCs provisioning operations.
Editors note: the sequence diagram update will be FFS

@startuml #153 - Setting up commissioning of Authentication and Authorization
autonumber
participant "MnS consumer (Administrator)" as MnScA
participant "MnS producer (Authentication and Authorization Service producer)" as MnSpA

== Commissioning for Role based access control ==
MnScA -> MnSpA++: createMOI(AccessRule,ruleName,resources,operations) request
note right: "fullAccessRule, /SubNetwork[id="SN1"]/ManagedElement, Read/Write"
create AccessRule
MnSpA -> AccessRule: MnS producer creates a "AccessRule " instance
MnScA <- MnSpA--: createMOI(AccessRule,resources,operations) response

MnScA -> MnSpA++: createMOI(Role, roleName, List<AccessRule>) request
note right: "fullaccess, fullAccessRule"
create Role
MnSpA -> Role: MnS producer creates a "Role" instance
MnScA <- MnSpA--: createMOI(Role, roleName, List<AccessRule>) response

MnScA -> MnSpA++: createMOI(Identity, user, password, List<Role>) request
note right: "adminUser, *****, fullaccess"
create Identity
MnSpA -> Identity: MnS producer creates a "Identity" instance
MnScA -> MnSpA--: createMOI(Identity, user, password, List<Role>) response

@enduml
[image: Generated by PlantUML]

Figure Z.1 - Sequence of commissioning for role based access control

Z.1.1 Commissioning usecases to be carried out by an administrator
· To carry out authentication and authorization based on role based access a set of tasks needs to be in place at the commissioning phase.
The network equipment vendor will typically take care of the below:
· The granularity level at which the management objects need to be authorized
· The actions that need to be permitted on these granular level objects
This is typically carried out by an administrator who has to setup the system for operational purposes which included authentication and authorization for every operation. Hence the administrator will need to have a good view of the permissions of the devices being integrated and managed. The administrator will need to know the possible scope of action for various users in the system on the instances that are created. The administrator will need to know the roles that need to be created in the system as well as the mapping of the same to the users. Below is the detail of every task.
The below elaborates the sequence flow to depict the IOCs involved for provisioning.
Z.1.1.1 a. Permissions Access rules with resources and actionsoperations
· Permissions Access rules are combinations of static resources and operationsactions. The network equipment vendor can introduce the resources and actions operations at various levels of granularity as well as in the language that can be suitable for the vendor. The recommended rules in the REST solution set are XPATH or JEX. When the commissioning phase happens it is important to translate these access rulespermissions to the authentication and authorization system so that it is aware of the static resources and corresponding operations actions on them for access control.
Hence the IOC for PermissionForMnSsAccessRule is required to create the necessary data.

Z.1.1.2b. Role creation with association to AccessRulespermissions and conditions
The meaningful task is the role which defines the responsibility realm for the user. Hence the role contains the overall distribution of resources and operationsactions it can work on by resolving the condition within the access ruleand permissions. The static resources identified need to be combined with the dynamically created instances of the resource in order to be assigned to a meaningful task in the system.
The roles are typically created according to the convenience and hierarchy of the organisation. Coarse grained or fine grained access rules permissions can be created with the help of roles.
The management system should be setup for access control by a system administrator who will have the know how of creating the required users and roles. Roles will use the various possibilities to map resources and actions.
Hence the IOC for Role is required to create the necessary data related to various roles in the system.

Z.1.1.3c. Identity to role assignment
The identity or user of the system needs to be assigned the responsibilities to carry out the OAM operations. Hence the set of responsibilities are defined in various roles. Assignment of the roles to an identity is required to make the administrative task more efficient and flexible. This also shields the administrator from getting into the details of the know how of granular resources and actions relevant to it.
Hence the IOC for Identity is required to create the necessary data.
Z.2 Informative sequence diagram: Authentication and Authorization with role based access control:

Post the above tasks we have the possibility to have role-based access in operation with every service call being authenticated and authorized.
The below sequence diagram shows how the operations are invoked from a consumer towards an authentication and authorization service producer.
When an MnS is invoked, the MnS consumer authenticates towards an authentication service producer. This is then followed by checking the access rights with respect to the role-based access. This takes place in the authorization service producer which is invoked from the MnS producer to check if its resources can be accessed with respect to the related operation.
Hence then need of an authentication and authorization service producer which will validate a user who want to access the resources as well as validates what the user can access.

@startuml #153 - Setting up Authentication and Authorization flows with both oAuth and NACM
autonumber
'participant "MnS consumer (Administrator)" as MnScA
participant "MnS producer (Authentication and Authorization Service producer)" as MnSpA

== Operational flow for confidential client ==

participant "MnS consumer" as MnSc
participant "MnS producer" as MnSp

alt oAuth
'create AandAServiceProvider
MnSc -> MnSpA++: Authenticate(identity), Authorise(role, accessRule)
note right: Example of client request - 'adminUser', '****', openID&AccessRule
MnSpA -> MnSc--: return identity token,access token
MnSc -> MnSp++: Executes an operation(access token)
MnSp -> MnSp: Validate the Token
MnSp -> MnSp--: Execute operation
else NACM
 MnSc <- MnSc: Authentication is completed on the transport layer
MnSc -> MnSp++: Executes an operation()
create NACMServer
MnSp -> NACMServer: AuthorizeResourcesAndActions() request
NACMServer -> MnSp--: AuthorizeResourcesAndActions() response
MnSp <- MnSp: Execute operation
end

MnSc <- MnSp: Execution completed

@enduml
[image: Generated by PlantUML]

[image: Generated by PlantUML]
Figure Z.2 - Sequence diagram for operations of authentication and authorization

	End of changes

image1.png
rules

User

Roles

Resource

image2.png
NOP domain

Vertical domain

MnS consumerl

MnS consumer2

MnS consumer3

l\/l /:
Role 1 Role 2
“Access rule list [Access rule list 2
MnS 2 MnS 3
MnS 1 .
(Component A2 (Component A 3

(Component A L
+ Component B 1)

+ Component B 2
+ Component C 2)

+ Component B 3
+ Component C 3)

image3.png
Resource Owner

Authentication and authorization data
provisioning

Information on who the User

MnS consumers are
(who needs access)

Interaction
post access
control

Authentication function

Information on who can
access which resource and
what action

Resource server

(resource and action)

Authorization function

Secure system with access control

image4.png
Igentiy]

Role

Access Rule

operation
action
componertcdata

image5.png
Identy

String identyName
String identyType.
Sting credertial

Role

Sting rolehame
Uit accessRules

Access Rule

Stiing riehiame:
Sting resources

List operations

Lis actions

Siting componeniCdata

image6.png
MnS consumer (Administrator) I MnS producer (Authentication and Authorization Service producer) I
1 1 createMOI(AccessRuls ruleName resources operations) vequest)\ _

instance

3 createMOI(AccessRuls resources operations) response

<

4 createMOI(Role, roleName, List<AccessRule>) request

1‘ 6 createMOI(Role, roleName, List<AccessRule) response

7 createMOI(dentity, user, password, List<Role>) request

menmyl

9 createMOl(Idzntity, user, password, List<Role>) respanse !

-
8 MnS producer creates a "ldzntity” instance
>| |

MnS consumer (Administrator) I MnS producer (Authentication and Authorization Service producer) I AccessRule I Role I menmyl

image7.png
MnS producer (Authentication and Authorization Service producer) MnS consumer MnS producer

13 Executes an operation access token),

1 Authenticate(idzntity), Authorise(role, accessRule),

[2 retum identity token,access token

>

4 Validate the Token

—

5 Execute operation

6 Authentication is completed on the transport layef

(=

| 7 Executes an operation()

8 AuthorizeResourcesAndActions() request | NACMServer
1 8 AuthorizeResourcesAndActions() request . |

9 AuthorizeResourcesAndActions(respanse

10 Execute operati

|

| |_ 11 Execution complsted '
' e '

MnS producer (Authentication and Authorization Service producer) MnS consumer MnS producer NACMServer

image8.png
MnS consumer

MnS pfor roducer (Authentication and Authorization Service producer)

MnS producer

T loAuth]

:

| Authenticate(identityName)

<

retum identity token

1 Authorise with identity token

return access token

getRolesForldentity (dentity=)

—

xecutes an operation(Modify Alarm operation /n/Companent A on Component B or C)

permissionsOnResourcesAndAction(Role=)

Executes an operation(Modify Alarm /n Companefit A on Companent B or C)

Validate the Token()

Execute operation

Execution completed :

Execute operati

AuthorizeResourcesAndActions() request

NACMServer

| AutharizeResourcesAndActions(respanse

! getRolesForldentitydentity=)
| permissionsOnResourcesAndActions(Role=)

[

<

MnS consumer

MnS pfor roducer (Authentication and Authorization Service producer)

MnS producer

NACMServer

