Error! No text of specified style in document.
14
Error! No text of specified style in document.

3GPP TSG-SA5 Meeting #152 	S5-238145
Chicago,US, 13-17 November 2023
Source:	Nokia, Nokia Shanghai Bell, Ericsson
Title:	Rel-18 pCR 32.161 Improve Jex
Document for:	Approval
Agenda Item:	6.5.1.6
1	Decision/action requested
The group is requested to discuss and approve the pCR below
2	References
[1]		3GPP TS 31.161: " Management and orchestration; JSON expressions (Jex)"
3	Rationale
None.
4	Detailed proposal
The following changes are proposed for TS 31.161[1].

	Begin of modifications

[bookmark: introduction][bookmark: _Toc148536605]Introduction
Information can be represented in a structured way using markup languages. Well-known and widely used markup languages are for example XML and JSON.
It is often required to identify distinct portions in XML or JSON documents. For XML, XPath has been designed for that purpose. XPath is very powerful and includes capabilities for conditional node selection with predicates. XPath expressions can select one or more portions of an XML document.
JSON Pointer serves a similar purpose. However, its capabilities are limited compared to XPath. For example, JSON Pointer expressions can identify only a specific node or subtree of a JSON document and not multiple nodes or subtrees. Furthermore, conditions are not supported in the information selection process.
This calls for a notation applicable to JSON documents with more advanced features than JSON Pointer. This notation is called Jex (JSON expressions). It is inspired by and based on XPath.
Even though XPath was originally designed to select one or more nodes of an XML document, XPath expressions operate on a conceptual data model, the XPath data model. A mapping from the XML Information Set to the XPath data model is provided in Annex B of XPath 1.0 [2].
The main purpose of the Jex specification is to provide a mapping from a JSON document to the XPath data model. With this in place XPath expressions are (indirectly) applicable to JSON.
This specification will also introduce a few profiles for XPath. These profiles are designed to provide the functionality required for network and service management.
Clause 4 provides a short review of the XPath data model. Clause 6 defines the mapping of a JSON document to the XPath data model, and clause 7 introduces a few Jex profiles. Annex A demonstrates to use of Jex for network management tasks.
Readers should be familiar with XPath 1.0 [2] and JSON (IETF RFC 8259 [6]).
[bookmark: scope][bookmark: _Toc148536606]
1	Scope
To be added
[bookmark: references][bookmark: _Toc148536607]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999 (https://www.w3.org/TR/xpath-10/)
[3]	XML Path Language (XPath) 2.0, W3C Recommendation 14 December 2010 (Link errors corrected 3 January 2011; Status updated October 2016), (https://www.w3.org/TR/xpath20/)
[4]	XML Path Language (XPath) 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-31/)
[5]	XQuery and XPath Data Model 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-datamodel-31/)
[6]	IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[bookmark: definitions][bookmark: _Toc148536608]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc148536609]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc148536610]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc148536611]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
<ABBREVIATION>	<Expansion>
JEX			JSON Expression
[bookmark: clause4][bookmark: _Toc148536612]4	XPath data model
The XPath data model is described in clause 5 of W3C Xpath1.0 specification [2]. It is a conceptual model without formal notation.
The model consists of nodes with relationships between them. There are seven types of nodes defined: root node, element node, text node, attribute node, namespace node, processing instruction node, comment node.
Note that the data model for XPath 2.0 [3] and XPath 3.1 [4] is described in XQuery and in XPath Data Model 3.1 [5]. This model is not used in this specification.
[bookmark: _Toc148536613]5	JSON restrictions
[bookmark: _Toc148536614]5.1	Supported JSON documents
A JSON document (JSON text) is a serialized JSON value (clause 2, IETF RFC 8259 [6]). A JSON value is a JSON object, a JSON array, a number, a string or any of the three linteral names true, false or null.
A Jex expressions can be applied only against documents containing a single JSON object. All other values or any combination of values (at the top level) are not supported.
The following example document is valid. It contains a single JSON object.
	{
 "a": 1,
 "b": 2
}

The next document is not supported for use with Jex expressions, though it is a valid JSON document. It contains a JSON array at the top level.
	[
 {
 "a": 1,
 "b": 2
 }
]

[bookmark: _Toc148536615]5.2	Supported JSON arrays
A JSON array consists of an ordered list of array items. Each array item can be a scalar value, a JSON object, or a JSON array. According to clause 5 of RFC 8259 [5] there is no requirement that the values in an array are of the same type.
Jex supports only arrays with the following properties:
· The array items of an array are all of the same type.
· Array items can be only scalars or JSON objects, but not JSON arrays.
When working with the JSON definitions of a NRM the following statements are always true:
[bookmark: _Toc148536616]6	Mapping of JSON to the XPath data model
[bookmark: _Toc148536617]6.1	Mapping of JSON documents
A JSON document is mapped to the (conceptual) root node. The root node has no name.
[bookmark: _Toc148536618]6.2	Mapping of scalar values
A scalar value in JSON is a string, a number, or one of the tree literal names true, false or null. These values are mapped to text nodes.
Editor's note: It is ffs if the text node should not have an attached type (a string, a number, or one of the tree literal names).This would be a deviation from the XPath 1.0 data model.
[bookmark: _Toc148536619]6.3	Mapping of name/value pairs
[bookmark: _Toc148536620]6.3.1	Case: The value is a scalar
The name of the name/value pair is mapped to an element node. The name of the element node is equal to the name of the name/value pair.
The value of the name/value pair is mapped to a text node as described in clause 9.3.3.
The text node coming from the value of a mapped name/value pair is the child of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the mapped name/value pair is the parent of the text node coming from the value of the mapped name/value pair.
Example:
	"a": 1
	<a>1

[bookmark: _Toc148536621]6.3.2	Case: The value is a JSON object
The name of the name/value pair is mapped to an element node. The name of the element node is equal to the name of the name/value pair.
The value of the name/value pair consists of an unordered list of name/value pairs. Each name of these name/value pairs is mapped to an element node. No order can be assumed for these element nodes.
The element nodes coming from the value of the mapped name/value pair are children of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the mapped name/value pair is the parent of the element nodes coming from the value.
Example:
	"a": {
 "b": 1,
 "c": 2
}
	<a>
 1
 <c>2</c>

or
	"a": {
 "b": 1,
 "c": 2
}
	<a>
 <c>2</c>
 1

	"a": {
 "b": 1,
 "c": {
 "d": 2,
 "e": 3
 }
}
	<a>
 1
 <c>
 <d>2</d>
 <e>3</e>
 </c>

[bookmark: _Toc148536622]6.3.3	Case: The value is a JSON array
The name of the name/value pair is mapped to a specific number of element nodes. The number of element nodes is equal to the number of array items. The names of these element nodes are all identical and equal to the name of the name/value pair.
The order of element nodes is the same as the order of the array items in the corresponding JSON.
The element nodes coming from the value of the mapped name/value pair are children of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the name/value pair is the parent of the element nodes coming from the array items of the JSON array.
Example:
	"a": [
 1,
 2,
 3
]
	<a>1
<a>2
<a>3

	"a": [
 {"b": 1,
 "c": 2
 },
 {"b": 3,
 "c": 4
 },
 {"b": 5,
 "c": 6
 },
]
	<a>
 1
 <c>2</c>

<a>
 3
 <c>4</c>

<a>
 5
 <c>6</c>

[bookmark: _Toc148536623]6.3.4	XPath data model concepts required by JSON
A JSON document is mapped to root nodes, element nodes and text nodes. Attribute nodes, namespace nodes, processing instruction nodes and comment nodes have no equivalent in JSON.
The concept of document order is applicable only for element nodes coming from JSON arrays.
The concept of variables is not used in Jex.
Editor's note: Clarify if multiple or only one root element is allowed.
[bookmark: _Toc148536624]7	Jex expressions
[bookmark: _Toc148536625]7.1	Introduction
Jex uses the same syntax, the same concepts and the same definitions as XPath. Jex expressions are a subset of XPath expressions. All subsets support only the abbreviated syntax. The output of a Jex expression is always a node set.
Different subsets are defined in the following clauses. All subsets have the same allowed location path expression. Subsets differ in the capabilities of the predicates. A subset is also called Jex profile.
Editor's node: It is ffs if the output of a Jex expression should also include true and false. This would largely increase the number of uses cases where these expressions could be used.
[bookmark: _Toc148536626]7.2	Evaluation context
Jex expressions are evaluated in a context, that is a subset of the XPath evaluation context. The Jex context includes
· a node (the context node)
· a pair of non-zero positive integers (the context position and the context size)
· a function library
The initial context node of a Jex expression is specified where the Jex pression is used. This initial context node is often referred to
Editor's node: Clarify that context position and the context size works only for element nodes coming from JSON arrays.
[bookmark: _Toc148536627]7.3	The location path
A Jex expression is an absolute location path. An absolute location path consists of "/", optionally followed by a relative location path. A "/" by itself selects the root node of the document.
AbsoluteLocationPath ::= '/' RelativeLocationPath
A relative location path consists of a sequence of one or more location steps separated by "/".
RelativeLocationPath ::= Step | RelativeLocationPath '/' StepRelativeLocationPath ::= LocStepExpr ('/' LocStepExpr)*
Only the child axis is supported. The child axis is the default axis and omitted in the abbreviated syntax of a location step. A location step is either a primary location step or a sequence of parenthesized location steps.
LocStepExpr ::= PrimaryLocStepExpr | ParSeqLocStepExpr
SeqStepLocExpr ::= PrimaryLocStepExpr (',' PrimaryLocStepExpr)*
ParSeqLocStepExpr ::= '(' SeqLocStepExpr ')'
The primary location step contains only a node test and an optional predicate.
PrimaryLocStepExpr ::= NodeTest Predicate?
The node test is a data node name test. The asterisk "*" is supported and selects all element children of the context node.
NodeTest ::= DataNodeNameTest
DataNodeNameTest ::= '*' | DataNodeNameQName
DataNodeName ::= [^"]*
Editor's note: The exact EBNF for DataNodeName is ffs.
The "DataNodeNameQName" is either a class name, the string "attributes", an attribute name, or an attribute field name.
Editor's note: EBNF for QName tbd.
The predicate is an expression encapsulated in rectangular brackets.
Predicate ::= '[' PredicateExpr ']'
The capabilities of the predicate expression differ for the different Jex profiles.
Editor's note: Add XPath 2.0 capability to select multiple nodes with a sequence, e.g. "…/(a,b)".
[bookmark: _Toc148536628]7.4	Jex basic for node selectionBasic
An expression in Jex basic is an absolute location path. It returns the set of nodes selected by the location path. The output node set may be empty.
JexBasicExpr ::= AbsoluteLocationPath
A location step is only a primary location step.
LocStepExpr ::= PrimaryLocStepExpr
Predicates are used in Jex Basic profile for selecting
· element nodes representing managed object instances based on the value of their naming attribute "id".
· array items representing attribute elements based on their positional index.
This profile allows to select managed object instances, attributes, attribute fields and attribute elements of multi-valued attributes. Conditional element node selection is not supported except for the special cases mentioned in the two bullet points above.
PredicateExpr ::= MoiSelectorExpr | AttributeElementSelector
MoiSelectorExpr ::= 'id=' QuotedString
AttributeElementSelector ::= NonNegativeInteger
NonNegativeInteger ::= [0-9]+
QuotedString ::= '"' [^"]* '"'
Editor's note: The exact EBNF for QuotedString is ffs.
The function library in Jex Basic is empty.
Editor's note: Add XPath capability to select multiple nodes using "|" between location paths. Or should the "nodeSelector" attribute be an array?
Examples:
The following Jex expression selects all attributes of the "SubNetwork" whose "id" is 1, or the complete managed object, depending on the context.
	/SubNetwork[id="SN1"]/attributes

In the next examples the Jex expressions select one attribute of a specific manged object.
	/SubNetwork[id="SN1"]/attributes/userLabel
/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/vendorName

An example for selecting an attribute field may look as follows.
	/SubNetwork[id="SN1"]/attributes/plmnId/mcc

All attributes of an object instance can be selected with the wildcard "*".
	/SubNetwork[id="SN1"]/attributes/*

The following expression selects the first attribute element of a multi-valued attribute.
	/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[0]

The following example shows how all "ManagedElement" instances, that are a child of the "SubNetwork with the "id" equal to 1, are selected using a name test. The next location step selects the "vendorName" attribute of the previously selected "ManagedElement" instances.It is also possible to select all "ManagedElement" instances, that are a child of the "SubNetwork with the "id" equal to 1, with a name test without specifying each instance by its "id". In this example the output node set may include more than one node, whereas in the previous examples the output node set includes exactly one node.
	/SubNetwork[id="SN1"]/ManagedElement/attributes/vendorName

Note that the EBNF allows also JEX expressions that do not make sense und will result in an empty node output set in most cases.
	/SubNetwork[id="SN1"]/attributes[id="A1"]
/SubNetwork[id="SN1"]/attributes/userLabel[2]
/SubNetwork[2]/attributes/plmnId/mcc

[bookmark: _Toc148536629]7.5	Jex advanced for node selectionAdvanced
Jex Advanced extends Jex Basic with more powerful predicates for selecting nodes. Both equality and inequality expressions are supported.
PredicateExpr ::= NodeSelector | AttributeElementSelector
AttributeElementSelector ::= Integer
NodeSelector ::= EqualityExpr | InEqualityExpr
Equality expressions have on the left side of the equal sign operator an abolute location path expression or a relative location path expression.
PathExpr ::= AbsoluteLocationPath | RelativeLocationPath
On the right side of the equal sign operator is either a string, a number or one of the three literals true, false, or null.
EqualityExpr ::= PathExpr '=' (String | Number | true | false | null)
Inequality expressions shall have a number on the right side of the operator.
InEqualityExpr ::= PathExpr '<' Number | PathExpr '>' Number
| PathExpr '<=' Number | PathExpr '>=' Number
An expression in Jex advanced is an absolute location path. It returns the set of nodes selected by the location path. The output node set may be empty.
JexAdvancedExpr ::= AbsoluteLocationPath
Jex Advanced extends Jex Basic with more powerful predicates for selecting data nodes.
PredicateExpr ::= OrExpr | AttributeElementSelector
AttributeElementSelector ::= NonNegativeInteger
OrExpr ::= AndExpr ('or' AndExpr)*
AndExpr ::= ComparisionExpr ('and' ComparisionExpr)*
ComparisionExpr ::= EqualityExpr | RelationalExpr | PathExpr
PathExpr ::= AbsoluteLocationPath | RelativeLocationPath
Equality and relational expressions have on the left side of the operator an absolute location path or a relative location path. On the right side of the operator equality expressions have a quoted string, a number or one of the three literals true, false, or null. Relational expressions have on the right side of the operator a number.
EqualityExpr ::= PathExpr ('=' | '!=') (QuotedString
 | Number
 | true | false | null)
RelationalExpr ::= PathExpr ('<' | '>' | <=' | '>=') Number
The data type of the value on the right side of the operator shall have the same data type as the value produced by the location path on the left side of the operator.
Editor's note: Clarify the behaviour for the case that the data types are not the same.
The function library in Jex Advanced contains the Xpath string function contains().
Editor's note: Add "contains" function to EBNF.
The function library in Jex Advanced is empty.
Examples:
In the first example the specified "ManagedElement" instance is selected only when the "vendorNamae" attribute has the value "Company XY".
	/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes[vendorName="Company XY"]

Instead of the instance only one attribute can be selected.
	/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes[vendorName="Company XY"]/userLabel

The Jex expression in the next example selects all "ManagedElements" from the vendor "Company XY".
	/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]

The following example selects the threshold level identified by the "level" 3.
	/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[level=3]

The location paths in the predicates in the examples above are relative location paths with a single location step. Multiple location steps are also possible.
	/SubNetwork[id="SN1"]/attributes[plmnId/mnc=789]

The location path in the predicate can also be an absolute location path. This allows to test conditions prevailing somewhere else in the object tree.
	some example

The following example shows how multiple attributes can be selected using a sequence expression.
	/SubNetwork[id="SN1"]/attributes/(userLabel, userDefinedNetworkType)

Sequence expressions can also be used to select objects of different classes.
	/SubNetwork[id="SN1"]/(ThesholdMonitor, PerfMetricJob)/attributes

Multiple conditions can appear in a predicate.
	/SubNetwork[id="SN1"]/attributes[userLabel="Berlin NW" and userDefinedNetworkType="5G"]

[bookmark: _Toc27559733][bookmark: _Toc36039478][bookmark: _Toc138174523]Editor's node: Describe what happens if the type on both sides is not the same?
7.6	Jex conditions for condition evaluation
Editor's note: Add EBNF for Jex conditions.
Example of a Jex conditions expression
	/SubNetwork[id="SN1"]/attributes/plmnId/mnc=789 and
/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/vendorName="Company XY"

Annex A (normative):
EBNF
A.1	EBNF for Jex basic
This appendix specifies the normative version of the EBNF for Jex basic.
Editor's note: Add EBNF
A.2	EBNF for Jex advanced
This appendix specifies the normative version of the EBNF for Jex advanced.
Editor's note: Add EBNF
A.3	EBNF for Jex conditions
This appendix specifies the normative version of the EBNF for Jex conditions.
Editor's note: Add EBNF
Annex B (informative):
Comparison of Jex with XPath 1.0
A.1	Comparision of Jex basic with XPath 1.0
A.2	Comparision of Jex advanced with XPath 1.0
The function library in Jex Basic is empty.
Only one predicate is allowed per step.
Only the following operators are supported “=”.
Use of parenthesis is not supported.
Namespaces are not supported.
Only the child axis is supported.
The concept of variables is not used in Jex.
Editor's note: Content in this clause needs to be revisited.
A.3	Comparision of Jex conditions with XPath 1.0
The function library in Jex Basic includes only th “contains()” function.
Only one predicate is allowed per step.
Only the following operators are supported “=”, “!=”, “<”, “>”, “<=”, “>=”, “or”, “and”.
Namespaces are not supported.
Only the child axis is supported.
The concept of variables is not used in Jex.
 When using comparison operators “=”, “!=”, “<”, “>”, “>=” or “<=” both side must result in a single scalar value: string, number “true”, “false” “null”. If this is not the case the expression shall have the value false. E.g., if multiple attributes or a multivalued attribute or an MOI is selected by the left side the result will be false.
Editor's note: Content in this clause needs to be revisited.
[bookmark: _Toc148536630]Annex CA (informative):
Example use cases
[bookmark: _Toc148536631]CA.1	Introduction
All these use cases have in common that one or mode nodes need to be identified. To these selected nodes a certain semantics is attached.
[bookmark: _Toc148536632]CA.2	Notification subscription
1 Subscribe to all alarm notifications of one specific "ManagedElement" instance below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes",
"notificationTyes": ["alarmNotifications"]

2 Subscribe to all alarm notifications of all "ManagedElement" instances below a specific "SubNetwork" .
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes",
"notificationTyes": ["alarmNotifications"]

3 Subscribe to all alarm notifications of the managed object tree whose root object is a specific "ManagedElement" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]",
"notificationTyes": ["alarmNotifications"]

4 Subscribe to all alarm notifications of all managed object trees whose root objects are a "ManagedElement" instances below a specifc "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement",
"notificationTyes": ["alarmNotifications"]

5 Subscribe to all alarm notifications of "ManagedElement" instances from vendor "Company XY" below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]",
"notificationTyes": ["alarmNotifications"]

6 Subscribe to all alarm notifications of the object subtrees whose root objects are "ManagedElement" instances from vendor "Company XY".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[attributes/vendorName="Company XY"]",
"notificationTyes": ["alarmNotifications"]

7 Subscribe to attribute value change notifications of a specific attribute of a specific managed object.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/opState",
"notificationTyes": ["avcNotification"]

8 Subscribe to attribute value change notifications of multiple specific attributes of a specific managed object.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState, adminState)",
"notificationTyes": ["avcNotification"]

[bookmark: _Toc148536633]CA.3	Acces control
1 Allow read access to one specific "ManagedElement" instance below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes",
"crudOps": ["read"],
"permission": "allow"

2 Allow read access to all "ManagedElement" instances below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes",
"crudOps": ["read"],
"permission": "allow"

3 Allow read access to the managed object tree whose root object is a specific "ManagedElement" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]",
"notificationTyes": ["alarmNotifications"]

4 Allow read access to all managed object trees whose root objects are "ManagedElement" instances below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement",
"notificationTyes": ["alarmNotifications"]

5 Allow read access to "ManagedElement" instances from vendor "Company XY" below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]",
"crudOps": ["read"],
"permission": "allow"

6 Allow read access to the object subtrees whose root objects are "ManagedElement" instances from vendor "Company XY".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[attributes/vendorName="Company XY"]",
"crudOps": ["read"],
"permission": "allow"

7 Allow read access to a specific attribute of a specific managed object.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/opState",
"crudOps": ["read"],
"permission": "allow"

8 Allow read access to multiple specific attributes of a specific managed object.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState, adminState)",
"crudOps": ["read"],
"permission": "allow"

Allow read access to the alarm list of a specific "ManagedElement".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/AlarmList[id="AL1"]/attributes",
"crudOps": ["read"],
"permission": "allow"

Allow to create, read, update and delete "PerfMetricJob" instances on a specific "ManagedElement".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/PerfMetricJob",
"crudOps": ["create", "read", "update", "delete"],
"permission": "allow"

[bookmark: _Toc148536634]CA.4	Performance metric collection
Collect a specific measurement on "ManagedElement" instances from vendor "Company XY".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]",
"measurement": ["measurementName"]

C.5	Notification filtering
Select notifications based on the notificationType and other notification parameters. In a notification all parameters are on the top level. The result of the selection is interpreted as a logical value.
	notificationFilter: "/[perceivedSeverity="CRITICAL"]"

notificationFilter: "/[alarmType="Communications Alarm" and perceivedSeverity="CRITICAL"]"

notificationFilter: "/[specificProblem[contains(.,"Flood")] and perceivedSeverity="CRITICAL"]"

notificationFilter: "/[specificProblem[contains(.,"Fire")] and (perceivedSeverity="CRITICAL" or perceivedSeverity="MAJOR")]"

notificationFilter: "/[specificProblem[contains(.,"Fire")] and (perceivedSeverity="MAJOR" or perceivedSeverity="MAJOR")]"

Editor's note: The exact format of the Jex expression for notification filtering is ffs.
Editor's note: Clarify need for test Jex expressions.

	End of modifications

3GPP
