3GPP TSG-SA5 Meeting #152
S5-237719
Chicago,US, 13-17 November 2023
Source:
Ericsson Hungary
Title:
Rel-18 pCR 32.161 Update-extend JEX definitions
Document for:
Approval

Agenda Item:
6.5.1.6 - eSBMA_WoP#6
1
Decision/action requested

Approval
2
References

[1]

3GPP TS 31.161: Management and orchestration; JSON expressions (Jex)
[2]

3GPP 28.622: Generic Network Resource Model (NRM) ; Integration Reference Point (IRP); Information Service (IS)

3
Rationale

There are errors in the current Jex definition. Beyond that Clarifications and extensions are needed.
Jex is a valuable tool for filtering on JSON data structures. It is foreseen that is could be used for filtering notifications too, see [2] clause 4.3.22.2 notificationFilter. To allow notification filtering the following extensions are needed:

1. “!=” not-equal
2. logical AND opertor
3. logical OR operator
4. use of parenthesis.
The EBNF was tested by the https://mdkrajnak.github.io/ebnftest/ against the test following JEX expressions:

/SubNetwork[id="SN1"]/attributes

/SubNetwork[id="SN1"]/attributes/userLabel

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/vendorName

/SubNetwork[id="SN1"]/attributes/plmnId/mcc

/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[0]

/SubNetwork[id="SN1"]/ManagedElement/attributes/vendorName

/SubNetwork[id="SN1"]/attributes/plmnId/mcc

/SubNetwork[id="SN1"]/attributes/plmnId/*

/SubNetwork[id="SN1"]/ManagedElement[id="ME1" and attributes/vendorName="Company XY"]

/SubNetwork[id="SN1"]/ManagedElement[id="ME1" and attributes/vendorName="Company XY"]/attributes/userLabel

/SubNetwork[id="SN1"]/ManagedElement/[attributes/vendorName="Company XY"]

/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[level=3]

/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[0]

/SubNetwork[id="SN1"]/ManagedElement/attributes/vendorName

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes

/SubNetwork[id="SN1"]/ManagedElement/attributes

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]

/SubNetwork[id="SN1"]/ManagedElement

/SubNetwork[id="SN1"]/ManagedElement[attributes/vendorName="Company XY"]

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/opState

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState, adminState)

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState|adminState)

/[notificationType="notifyNewAlarm" and perceivedSeverity="CRITICAL"]

/[notificationType="notifyNewAlarm" and (alarmType="Communications Alarm" and perceivedSeverity="CRITICAL")]

/[notificationType="notifyNewAlarm" and specificProblem[contains(.,"Flood")] and perceivedSeverity="CRITICAL"]

/[notificationType="notifyNewAlarm" and specificProblem[contains(.,"Fire")] and (perceivedSeverity="CRITICAL" or perceivedSeverity="MAJOR")]

/[notificationType="notifyChangedAlarmGeneral" and specificProblem[contains(.,"Fire")] and (perceivedSeverity="MAJOR" or perceivedSeverity="MAJOR")]

/a/[b>123 or c!="something" and d="ddd" and (specificProblem[contains(.,"Flood")] or (f!="fff" and g<=-57)]
Note: Negative test are missing, so the EBNF expression may allow unreasonable JEX expressions too.

4
Detailed proposal

	Begin of modifications

Introduction

Information can be represented in a structured way using markup languages. Well-known and widely used markup languages are for example XML and JSON.

It is often required to identify distinct portions in XML or JSON documents. For XML, XPath has been designed for that purpose. XPath is very powerful and includes capabilities for conditional node selection with predicates. XPath expressions can select one or more portions of an XML document.

JSON Pointer serves a similar purpose. However, its capabilities are limited compared to XPath. For example, JSON Pointer expressions can identify only a specific node or subtree of a JSON document and not multiple nodes or subtrees. Furthermore, conditions are not supported in the information selection process.

This calls for a notation applicable to JSON documents with more advanced features than JSON Pointer. This notation is called Jex (JSON expressions). It is inspired by and based on XPath.

Even though XPath was originally designed to select one or more nodes of an XML document, XPath expressions operate on a conceptual data model, the XPath data model. A mapping from the XML Information Set to the XPath data model is provided in Annex B of XPath 1.0 [2].
This document specifies JSON Expressions (JEX) a notation tahat takes as an input a JSON document and a JEX expression and produces as an output a subset of the JSON document, that is a set of JSON data nodes. The output can also be interpreted as a boolean (true/false) where an empty subset indicates false and a non-empty subset indicates true.
The main purpose of the Jex specification is to provide a mapping from a JSON document to the XPath data model. With this in place XPath expressions are (indirectly) applicable to JSON.

This specification will also introduce a few profiles for XPath. These profiles are designed to provide the functionality required for network and service management.

Clause 4 provides a short review of the XPath data model. Clause 6 defines the mapping of a JSON document to the XPath data model, and clause 7 introduces a few Jex profiles. Annex A demonstrates to use of Jex for network management tasks.

Readers should be familiar with XPath 1.0 [2] and JSON (IETF RFC 8259 [6]).
	Next modification

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

JEX
JSON Expression
	Next modification

6.3.4
XPath data model concepts required by JSON

A JSON document is mapped to root nodes, element nodes and text nodes. XML attribute nodes, namespace nodes, processing instruction nodes and comment nodes have no equivalent in JSON.

The concept of document order is applicable only for element nodes coming from JSON arrays.
Note: SBMA MnS producers are not required to store multiple MOIs in a fix order and are not required to store multiple attribute values in a fixed order (unless isOrdered=true) so while concept of document order is applicable to specific JSON documents, it is unreliable if used against stored data.
The concept of variables is not used in Jex.
	Next modification

7.1
Introduction

Jex uses the same syntax, the same concepts and the same definitions as XPath. Jex expressions are a subset of XPath expressions. All subsets support only the abbreviated syntax. The output of a Jex expression is a node set. The output can also be interpreted as a boolean (true/false) where an empty subset indicates false and a non-empty subset indicates true.
Different subsets are defined in the following clauses. All subsets have the same allowed location path expression. Subsets differ in the capabilities of the predicates. A subset is also called Jex profile.

7.2
Evaluation context

Jex expressions are evaluated in a context, that is a subset of the XPath evaluation context. The Jex context includes

· a node (the context node)

· a pair of non-zero positive integers (the context position and the context size)

· a function library
· namespaces are not considered, all JSON elements are considered to be in the NULL namespace
The initial context node of a Jex expression is specified where the Jex pression is used. This initial context node is often referred to

Editor's node: Clarify that context position and the context size works only for element nodes coming from JSON arrays. Clarify that SBMA MnS producers are not required to store multiple MOIs in a fix order and are not required to store multiple values in a fixed order (unless isOrdered=true) so while the usage of position() can be useful on certain JSON documents, it is unreliable if used against stored data.
7.3
The location path

A Jex expression is an absolute location path. An absolute location path consists of "/", optionally followed by a relative location path. A "/" by itself selects the root node of the document.
AbsoluteLocationPath ::= '/' RelativeLocationPath

A relative location path consists of a sequence of one or more location steps separated by "/".
RelativeLocationPath ::= Step | RelativeLocationPath '/' Step

Only the child axis is supported. The child axis is the default axis and omitted in the abbreviated syntax of a location step. The location step contains only a node test and an optional predicate.

Step ::= DataNodeName Predicate?

DataNodeName
::= '*' | NameString
NameString ::= #'[^"[\]=!<>()\n]*'

The asterisk "*" is supported and selects all element children of the context node. The "DataNodeName" is either a class name, the string "attributes", an attribute name, or an attribute field name. Other values may be specified in applying JEX in other use-cases.

The predicate is an expression encapsulated in rectangular brackets. Predicates are use to filternode-sets selecten in a Step.
Predicates ::= '[' PredicateExpr ']'
The capabilities of the predicate expression differ for the different Jex profiles.

Editor's note: Add XPath 2.0 capability to select multiple nodes with a sequence, e.g. "…/(a,b)".

7.4
Jex Basic

Predicates are used in Jex Basic profile for selecting

· element nodes representing managed object instances based on the value of their naming attribute "id"

· array items representing attribute elements based on their positional index.

This profile allows to select managed object instances, attributes, attribute fields and attribute elements of multi-valued attributes. Conditional element node selection is not supported except for the special cases mentioned in the two bullet points above.

PredicateExpr ::= MoiSelector | AttributeElementSelector

MoiSelector ::= 'id=' QuotedString

AttributeElementSelector ::= NonNegativeInteger
NonNegativeInteger ::= [0-9]+

NameString ::= #'[^"[\]=!<>\n]*'
QuotedString ::= '"' String '"'

String ::= #'[^"]*'

Examples:

The following Jex expression selects all attributes of the "SubNetwork" whose "id" is 1.
	/SubNetwork[id="SN1"]/attributes

In the next examples the Jex expressions select one attribute of a specific managed object.

	/SubNetwork[id="SN1"]/attributes/userLabel

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/vendorName

An example for selecting an attribute field may look as follows.

	/SubNetwork[id="SN1"]/attributes/plmnId/mcc

An example for selecting an multiple attribute fields may look as follows.

	/SubNetwork[id="SN1"]/attributes/plmnId/(mcc|mnc)

The following expression selects the first attribute element of a multi-valued attribute.

	/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[0]

It is also possible to select the vendorName of all "ManagedElement" instances, that are a child of the "SubNetwork with the "id" equal to 1, with a name test without specifying each ManagedElement instance by its "id". In this example the output node set may include more than one node, whereas in the previous examples the output node set includes exactly one node.

	/SubNetwork[id="SN1"]/ManagedElement/attributes/vendorName

Note that the EBNF allows also JEX expressions that do not make sense und will result in an empty node output set in most cases.

	/SubNetwork[id="SN1"]/attributes[id="A1"]

/SubNetwork[id="SN1"]/attributes/userLabel[2]

/SubNetwork[2]/attributes/plmnId/mcc

7.4.1
Jex Basic Limitations compared to Xpath

The function library in Jex Basic is empty.
Only one predicate is allowed per step.

Only the following operators are supported “=”.
Use of parenthesis is not supported.
Namespaces are not supported.

Only the child axis is supported.
The concept of variables is not used in Jex.
7.4.2
Jex Basic complete EBNF
	(* JEX Basic *)

AbsoluteLocationPath ::= '/' RelativeLocationPath

RelativeLocationPath ::= Step | RelativeLocationPath '/' Step

Step ::= DataNodeName Predicate?

DataNodeName ::= '*' | NameString

Predicate ::= '[' PredicateExpr ']'

PredicateExpr ::= MoiSelector | AttributeElementSelector

MoiSelector ::= 'id=' QuotedString

AttributeElementSelector ::= NonNegativeInteger

NonNegativeInteger ::= #'[0-9]+'

NameString ::= #'[^"[\]=!<>\n]*'

QuotedString ::= '"' String '"'

String ::= #'[^"]*'

Editors note: Validate by https://mdkrajnak.github.io/ebnftest/
7.5
Jex Advanced

Jex Advanced extends Jex Basic with more powerful predicates for selecting nodes. Both equality and inequality expressions are supported. Inside the predicate logical “and”, “or” operators are supported and paratheses can be used to group the individual expressions.

PredicateExpr ::= SimplePredicateExpr | PredicateExpr (" or " | " and ") PredicateExpr

SimplePredicateExpr ::= BasicPredicateExpr | "(" PredicateExpr ")"

BasicPredicateExpr ::= NodeSelector | AttributeElementSelector | EmbeddedPredicate | MoiSelector

EmbeddedPredicate ::= Step

NodeSelector ::= EqualityExpr | RelationExpr | ContainsExpr

Expression are defined to test for equality, non-equality, relational operators and string containment

EqualityExpr ::= PathExpr ("=" | "!=") (QuotedString | Number | "true" | "false" | "null")

RelationExpr ::= PathExpr ("<" | ">" | "<=" | ">=") Number

ContainsExpr ::= "contains(.," QuotedString ")"
Number ::= Integer (* | real number *)

PathExpr ::= AbsoluteLocationPath | RelativeLocationPath

Integer ::= NonNegativeInteger | ("-" NonNegativeInteger)

The function library in Jex Advanced contains the Xpath string function contains().
Examples:

In the first example the specified "ManagedElement" instance is selected only when the "vendorName" attribute has the value "Company XY".

	/SubNetwork[id="SN1"]/ManagedElement[id="ME1" and attributes/vendorName="Company XY"]

Instead of the MOI only one attribute can also be selected.

	/SubNetwork[id="SN1"]/ManagedElement[id="ME1" and attributes/vendorName
="Company XY"]/attributes/userLabel

The Jex expression in the next example selects all "ManagedElements" from the vendor "Company XY".

	/SubNetwork[id="SN1"]/ManagedElement/[attributes/vendorName="Company XY"]

The following example selects the threshold levels identified by the "level" 3.

	/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[level=3]

Editor's node: Describe what happens if the type on both sides is not the same
?
7.5.1
Jex Advanced Limitations compared to Xpath

The function library in Jex Basic includes only th “contains()” function.
Only one predicate is allowed per step.

Only the following operators are supported “=”, “!=”, “<”, “>”, “<=”, “>=”, “or”, “and”.

Namespaces are not supported.

Only the child axis is supported.
The concept of variables is not used in Jex.
7.5.2
Jex Advanced complete EBNF

	(* Jex Advanced *)

AbsoluteLocationPath ::= '/' RelativeLocationPath

RelativeLocationPath ::= Step | RelativeLocationPath '/' Step

Step ::= DataNodeName Predicate?

DataNodeName ::= NameString ;

Predicate ::= '[' PredicateExpr ']'

PredicateExpr ::= SimplePredicateExpr | PredicateExpr (" or " | " and ") PredicateExpr

SimplePredicateExpr ::= BasicPredicateExpr | "(" PredicateExpr ")"

BasicPredicateExpr ::= NodeSelector | AttributeElementSelector | EmbeddedPredicate | MoiSelector

EmbeddedPredicate ::= Step

NodeSelector ::= EqualityExpr | RelationExpr | ContainsExpr

EqualityExpr ::= PathExpr ("=" | "!=") (QuotedString | Number | "true" | "false" | "null")

RelationExpr ::= PathExpr ("<" | ">" | "<=" | ">=") Number

ContainsExpr ::= "contains(.," QuotedString ")"

Number ::= Integer (* | real number *)

PathExpr ::= AbsoluteLocationPath | RelativeLocationPath

Integer ::= NonNegativeInteger | ("-" NonNegativeInteger)

MoiSelector ::= 'id=' QuotedString

AttributeElementSelector ::= NonNegativeInteger

NonNegativeInteger ::= #'[0-9]+'

NameString ::= #'[^"[\]=!<>\n]*'

QuotedString ::= '"' String '"'

String ::= #'[^"]*'

Editors note: Validate by https://mdkrajnak.github.io/ebnftest/
	Next modification

Annex A (informative):
Example use cases

A.1
Introduction

All these use cases have in common that one or mode nodes need to be identified. To these selected nodes a certain semantics is attached.

A.2
Notification subscription

1 Subscribe to all data change notifications notifications of one specific "ManagedElement" instance below a specific "SubNetwork" instance.
	"scope": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes
",

"notificationTyes": ["notifyMOIChanges"]

2 Subscribe to all data change notifications notifications notifications of all "ManagedElement" instances below a specific "SubNetwork" .

	"scope": "/SubNetwork[id="SN1"]/ManagedElement/attributes",

"notificationTyes": ["notifyMOIChanges"]

3 Subscribe to all alarm notifications of the managed object tree
whose root object is a specific "ManagedElement" instance.
	"scope": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]",

"notificationTyes": ["notifyNewAlarm”,”notifyClearedAlarm”,”notifyChangedAlarmGeneral"]

4 Subscribe to all alarm notifications of all managed object trees whose root objects are a "ManagedElement" instances below a specific "SubNetwork" instance.
	"scope": "/SubNetwork[id="SN1"]/ManagedElement",

"notificationTyes": ["notifyNewAlarm”,”notifyClearedAlarm”,”notifyChangedAlarmGeneral"]

5 Subscribe to all alarm notifications of all managed object trees whose root objects are "ManagedElement" instances from vendor "Company XY" below a specific "SubNetwork" instance.
	"scope": "/SubNetwork[id="SN1"]/ManagedElement/[attributes/vendorName="Company XY"]",

"notificationTyes": ["notifyNewAlarm”,”notifiedClearedAlarm”,”notifyChangedAlarmGeneral"]

6 Subscribe to all alarm notifications of the object subtrees whose root objects are "ManagedElement" instances from vendor "Company XY". TODO this cannot be done without the contins() function
	"scope": "/SubNetwork[id="SN1"]/ManagedElement[attributes/vendorName="Company XY"]",

"notificationTyes": ["notifyNewAlarm”,”notifiedClearedAlarm”,”notifyChangedAlarmGeneral"]

7 Subscribe to attribute value change notifications of a specific attribute of a specific managed object.

	"scope": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/opState",

"notificationTyes": ["notifyMOIChanges"]

8 Subscribe to attribute value change notifications of multiple specific attributes of a specific managed object.

	"scope": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState|adminState)",

"notificationTyes": ["notifyMOIChanges"]

Editor’s note: Similar updates to other examples are needed as well.
	Next modification

A.x
Filtering Notifications

Select notifications based on the notificationType and other notification parameters. In a notification all parameters are on the top level. The result of the selection is interpreted as a logical value.
	notificationFilter: “/notifyNewAlarm[perceivedSeverity="CRITICAL"]”
notificationFilter: “/notifyNewAlarm[alarmType="Communications Alarm" and perceivedSeverity="CRITICAL"]”
notificationFilter: “/notifyNewAlarm[specificProblem[contains(.,"Flood")] and perceivedSeverity="CRITICAL"]”
notificationFilter: “/notifyNewAlarm[specificProblem[contains(.,"Fire")] and (perceivedSeverity="CRITICAL" or perceivedSeverity="MAJOR")]”
notificationFilter: “/notifyChangedAlarmGeneral[specificProblem[contains(.,"Fire")] and (perceivedSeverity="MAJOR" or perceivedSeverity="MAJOR")]”

	End of modifications

�Better tells what it is. Also the 2 lterms nodetest, nametest are redundant

�A limited charset

�The full predicate must be within []

�What does this mean?

�Adding attributes to scope/dataNodeSelector is meaningful only for data change notifications

�For selections that select an MOI the subtree under it is always also selected. In XPATH when a element is selected that means the full element which includes all its descendants.

