

	
3GPP TSG-SA5 Meeting #152	S5-237582
 Chicago, USA, 13-17 November 2023
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.533
	CR
	draftCR
	rev
	1
	Current version:
	17.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	 Rel-18 InputToDraftCR 28.533 on REST and OpenAPI based solution set for Access control

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	S5

	
	

	Work item code:
	MSAC
	
	Date:
	2023-11-03

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	1) There has been no CHANGE FROM WHAT WAS AGREED in CONTENT from previous meetings. Few sections have been rearranged keeping in mind that the stage 1, stage 2 and stage 3 are separate sections in the recently proposed TS(meeting #151) which has to be approved in SA plenary
2) Stage 1 has been appended with following details
 - Entities responsible to enable access control have been explained so that the concept evolves based on this thinking
 - The usecases have been added explicitly though they have been agreed in previous meetings
3) Stage 2 has been reformulated with the below after having discussions in meeting #151
 - Since the NRM based definition does not hold good for access control classes the design is modified as information model
 - The design(information model consisting of supporting classes) which is technology agnostic is based on UML and not along the NRM guidelines
 - The pending topic in stage 2 was how to also assign instances to a role for access control(was being discussed under the topic of Conditions)
 - The previous design of PermissionForMnSs and instances have now been simplified and combined as Access Rules
4) Stage 3 has been introduced for Rest based solution set and NetConf to get an idea of the translation from stage 2

	
	

	Summary of change:
	Introduction of Stage 3 with respect to REST and OpenAPI solution set which is mapped to the Stage 1 and stage 2 submitted in meeting #152

	
	

	Consequences if not approved:
	No clarity on Stage 3 with respect to REST and OpenAPI solution set for access control

	
	

	Clauses affected:
	4.9.x,X.x, Y.x, Annex Z.x

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	New TS is yet to be approved in SA plenary

	
	

	This CR's revision history:
	This is input to approved DraftCR S5-235998
DraftCR S5-235998 is a revision of S5-234845

S5-234845 is a revision of S5-233137
S5-233137 is a revision of S5-227070
S5-227070 is a revision of S5-226544
S5-234845 is a revision of S5-233137
S5-233137 is a revision of S5-227070
S5-227070 is a revision of S5-226544

S5-235947 is the input to latest approved DraftCR S5-234845

Page 1

2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[xx]	IETF RFC 6749: " The OAuth 2.0 Authorization Framework".
[yy]	IETF RFC 8341: " Network Configuration Access Control Model".

Page 1

[bookmark: _Toc51919029][bookmark: _Toc75164409][bookmark: _Toc63348431][bookmark: _Toc63426207]
4.9.x	Identity and Access Control
Network Management systems are becoming a challenge to manage in terms of the users of the system as well as the access control that needs to be applied continuously on a need-to-know basis.
Flexibility and agility to adapt to these growing needs is the key for a sustainable identity and access control implementation.
	The service based architecture needs to factor seamless integration to any system for authentication and authorization of Management Service (MnS) consumers.
The need to make continuous access control related changes should be supported with ease and simplicity.
Today we have various human users, machine users and various resources that are continuously growing with complexities below:
· Human users seem to require various levels of access control.
· Machine type of communication in the direction towards automated systems require another type of access and may not necessarily be user name password based.
· Resources and modules themselves require various level of clearance depending on the sensitivity of the data being accessed.
	The identity and access control system should be designed for role based access control. Also the authorization rules may support the fine grained permissions i.e. based on MnS component A, B and C.
	4.9.x.1 Usecases
4.9.x.1.1 	Role based access control
This is based upon the concept of assigning the appropriate permissions and privileges to authorized users. The combinations of the permissions and privileges make up a role. The users who belong to a role should be assigned to resources based on a least privilege principle and access rules associated to the resource. The principle of least privileges states that the users should be granted access only to the data and the operations that are required to perform the job. This minimizes the possibility of a security breach.
The management system should be setup for access control by a system administrator who will have the know-how of creating the required users and roles. Roles will use the various access rules. Additionally, the system administrator will also need to setup the access rules for a MnS producer.
Roles could be in various categories like full access and restricted access. The access rules will be defined on a MnS producer which could relate to all or combinations of component A, component B and component C.
[image: A black background with blue text and a black rectangle

Description automatically generated]Figure 4.9.x.1.1-y - role based access
Figure 4.9.x.1.1-y - role based access

The Figure 4.9.x.1.1-y - role based access shows how a user is assigned to a role. The roles in turn are able to act upon a resource with the required operation on a MnS Producer. The actions that can be performed are defined by the access rules.
4.9.x.1.2	 Authentication and authorization
· To carry out authentication and authorization based on role-based access the following tasks needs to be in place.
1. Pre-deployment task – This relates to the identification of the resources represented by the MnS component B and C and it associated operations represented by MnS component A. This is typically done by a Network Equipment Provider (NEP) during the design phase.
1. Post deployment task – this relates to the set of administrative tasks which are requires to enable role-based access control typically caried out by a network operator (NOP). This is done once the system is up and running and access control needs to be administered.
NOTE: The NOP may have a system administration department in charge of defining and configuring role-based access control.
Post the above tasks we have the possibility to have role-based access in operation with every service call being authenticated and authorized.
When an MnS is invoked, the MnS consumer authenticates towards an authentication service producer. This is then followed by checking the access rights with respect to the role-based access. This takes place in the authorization service producer which is invoked from the MnS producer to check if its resources can be accessed with respect to the related operation.

4.9.x.1.3	 Identity to roles association
The identity or user of the system needs to be assigned the permissions to carry out the management operations. A set of permissions is defined as a role. An efficient and flexible means is to define various roles by a network operator. In a second step, association of the roles to an identity (entity or human user) is carried out.

4.9.x.1.4	 Roles to associated to resources (consisting of IOCs(static),MOIs(dynamic) and corresponding operations
Role-based access control defines roles. Roles are associated to access rules which are combinations of resources and operations (e.g., CRUD operations). The resources can be represented by IOCs(static) and/or MOIs (dynamic). Hence the resources in context are Component B and Component C and the operations are Component A.

4.9.x.2 Requirements
· UC-MSAC-0x - 3GPPP management system shall support role-based access control for the resources represented by the MnS component A, B and C.
· UC-MSAC-0x.01- 3GPP management system shall support authentication and authorisation for management services.
· UC-MSAC-0x.02 - 3GPP management system shall support identity to role assignment.
· UC-MSAC-0x.03 - 3GPP management system shall support roles which are associated to resources (IOCs(static) and/or MOIs(dynamic)) and the corresponding operations.

[bookmark: _Toc20150380][bookmark: _Toc27479628][bookmark: _Toc36025140][bookmark: _Toc44516240][bookmark: _Toc45272559][bookmark: _Toc51754558][bookmark: _Toc105582563][bookmark: _Hlk134784164][bookmark: _Hlk134784417]X.2	Class diagrams
X.2.1	Relationships
	This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant for the concept of the role based access control. This clause provides an overview of the relationships between relevant classes in UML. Subsequent clauses provide more detailed specification of various aspects of these classes.
In order to realise the use cases for authentication and authorization, the need is to model the required IOCs and the relevant operations which utilise the IOCs. The operations supported on the IOCs are those supported by the generic management services.
As mentioned in the usecases the IOCs are provisioned during the integration time by a network operator. The data is sent to an authentication and authorization service producer.
Post this during integration time when a MnS consumer invokes an operation on the MnS producer, the authentication and authorization service producer validates the action on the resource to enable the decision for the MnS producer. The decision could be that the MnS producer allows or disallows the action on the resource.
Below are the IOCs that need to interact in order to store the data required for the authentication and authorization operations with respect to role based access control.
[image: A diagram of a computer

Description automatically generated]
Figure X.2.1-1 NRM for role based access control name containment
The IOCs related to Identity, Role, PermissionForMnSs are name contained within the Subnetwork or ManagedFunction or ManagedElement.

@startuml for S5-235513
skinparam ClassStereotypeFontStyle normal
skinparam ClassBackgroundColor White
skinparam shadowing false
skinparam monochrome true
hide members
hide circle
'skinparam maxMessageSize 250

class Identity <<InformationObjectClass>>
class Role <<InformationObjectClass>>
class PermissionForMnSs <<InformationObjectClass>>
class Permission <<DataType>>
class ComponentBAttributePermission <<DataType>>

Identity "1" o-down-> "*" Role
Role "1" o-down-> "*" PermissionForMnSs
PermissionForMnSs "1" o-down-> "*" Permission
Permission "1" o-down-> "*" ComponentBAttributePermission

@enduml
[image: Generated by PlantUML]

Figure X.2.1-1 NRM for role based access control relationship
Editor’s note: access right, for particular consumer, pertaining to attributes of Component B will differ. How to model this functionality is FFS

X.2.2	Inheritance
This subclause depicts the inheritance relationships. The IOCs are derived from the TOP class
[image: A diagram of a structure

Description automatically generated]
Figure X.2.2-1 Inheritance diagram for role based access control

[bookmark: _Toc44001382][bookmark: _Toc51580960][bookmark: _Toc52356223][bookmark: _Toc55227793][bookmark: _Toc74329057][bookmark: _Toc44001383][bookmark: _Toc51580961][bookmark: _Toc52356224][bookmark: _Toc55227794][bookmark: _Toc74329058]X.3	Class definitions
X.3.1	Identity
X.3.1.1	Definition
This IOC represents an identity of a MnS consumer.
It is used for authentication and authorization. It can be name-contained by SubNetwork or Managed Function or a Managed Element.
The MnS consumer can be a human or a machine user. This IOC enables the creation and storage of an identity of a MnS consumer. The information in this IOC is the starting point for a MnS consumer to identity who it is. This is validated against an authentication service producer.
For the authentication operation to take place the identity related information has to be provisioned into the system by a network operator who could be an administrator. The administrator adds the identityType attribute and identityName attribute which characterizes a machine user or human user respectively. For example, we could have an identity like a tenant mapped to the relevant list of roles.
Attribute credential is used to provide information for the credential used together with identity when requesting authentication. The examples of credential are password, certificate, biometric, etc.
The roleRefLis attribute defines the role names associated to a particular user.
The IOC stores the details of the expected tasks to be performed by an identity. The tasks are what is to be done on the network management system. To ease the administration on the system, the tasks are organised as roles. The user can be associated to one or more roles.

X.3.1.2	Attribute
The Identity IOC includes the attributes inherited from Top IOC (as defined in Generic resource Model) and the following attributes:
	Attribute Name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	identityType
	M
	T
	F
	F
	T

	identityName
	M
	T
	F
	F
	F

	credential
	O
	T
	T
	F
	T

	Attributes related to role
	
	
	
	
	

	roleRefList
	M
	T
	F
	F
	T

X.3.1.3	Attribute constraints
None
X.3.1.4	Notifications
The common notifications defined in clause X.5 are valid for this IOC, without exceptions or additions.

X.3.2	Role
X.3.2.1	Definition
The Role IOC represents a task or collection of tasks in a network management system.
The Role can be name contained under the Subnetwork or Managed Function or a Managed Element.
The Role IOC enables the storage of information as to what resources and actions an identity can work upon. This IOC maintains the static resources that are known to the management system during integration time. This contains all the granular level resources and the corresponding actions.

The permissionsForMnSs attribute contains a list of PermissionForMnSs to contain the list of granular permission sets.

X.3.2.2	Attribute
	Attribute Name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	roleName
	M
	T
	F
	F
	T

	Attribute related to role
	
	
	
	
	

	permissionsForMnSsList
	M
	T
	F
	F
	T

X.3.2.3	Attribute constraints
None
X.3.2.4	Notifications
The common notifications defined in clause X.5 are valid for this IOC, without exceptions or additions.
X.3.3	PermissionForMnSs
X.3.3.1	Definition
The PermissionForMnSs IOC represents the granular resource and actions in a network management system.
The PermissionForMnSs can be name contained under the Subnetwork or Managed Function or a Managed Element

This IOC enables the storage of the resource types in the system and the possible actions that are allowed on it. The permutations and combinations of these permissions are assigned to a role.

The mnsType attribute is the type of the management service as defined TS 28.622.
The permissionList attribute contains a list of permissions.

X.3.3.2	Attribute
	Attribute Name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	mnsType
	M
	T
	T
	F
	F

	Attribute related to role
	
	
	
	
	

	permissionList
	M
	T
	T
	F
	F

X.3.3.3	Attribute constraints
None
X.3.3.4	Notifications
The common notifications defined in clause X.5 are valid for this IOC, without exceptions or additions.

X.3.4	Permission <<dataType>>
X.3.4.1	Definition

The Permission data type represents the object level and granular attribute level resource and corresponding actions in a network management system.

The attribute componentA specifies an operation on a management service or an NRM.

The attribute ComponentBObjectClass specifies a NRM which is the protected resource for access control. Further attribute level access control would be specified by the attribute componentBAttributePermissionList which contains the list of permissions for the attributes.
The attribute componentC specifies the resource related to the alarm or performance. The attribute componentC specifies for example the performance management data or KPI.
X.3.4.2	Attribute
	Attribute Name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	componentA
	M
	T
	F
	F
	F

	componentBObjectClass
	M
	T
	F
	F
	T

	
componentBAttributePermissionList
	O
	T
	F
	F
	T

	
componentC
	O
	T
	F
	F
	T

X.3.4.3	Attribute constraints
None
X.3.4.4	Notifications
The common notifications defined in clause X.5 are valid for this IOC, without exceptions or additions.

X.3.5	ComponentBAttributePermission <<dataType>>
X.3.4.1	Definition
The ComponentBAttributePermission data type represents the attribute level resource and corresponding actions in a network management system.

The attribute componentBAttributeName specifies an attribute name related to the NRM.
The attribute componentBAttributeOperation specifies the operation on the attribute of the NRM this is part of. For example the operation could be read only or writable.

X.3.4.2	Attribute
	Attribute Name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	componentBAttributeName
	M
	T
	F
	F
	F

	[bookmark: _Hlk143704970]componentBAttributeOperation
	O
	T
	F
	F
	T

X.3.4.3	Attribute constraints
None
X.3.4.4	Notifications
The common notifications defined in clause X.5 are valid for this IOC, without exceptions or additions.

X.4	Attribute definitions
X.4.1	Attribute properties
The following table defines the properties of attributes specified in the present document.

	Attribute Name
	Documentation and Allowed Values
	Properties

	identityType
	This defines a readable string to uniquely represent an identity

AllowedValues: username, email address, phone number, IP address, machineuser

	type: ENUM
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	identityName
	This indicates a type of identifier,

AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	credential
	The credential of an MnS consumer or producer used for authentication with authentication service producer. It could be password, certificate, key, pass phrase, etc., based on authentication protocol and factor.

AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: No value
isNullable: False

	roleRefList
	This defines the list of roles associated with an identity

AllowedValues: NA
	type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	roleName
	This string defines the name of a role

AllowedValues: NA
	type: String
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	mnsType
	This attribute defines the type of management service

AllowedValues: ProvMnS, FaultSupervisionMnS, StreamingDataReportMnS, FileDataReportingMnS

	type: ENUM
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	permissionsForMnSsList
	This defines the list of permissions for MnSs which constitue the resources and corresponding actions

AllowedValues: NA
	type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	permissionList
	This defines the list permissions for resources and corresponding actions for static objects

AllowedValues: NA
	type: Permission
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	componentA
	This defines the operation of the MnS as defined in 28.532

AllowedValues: NA
	type: string
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

	
	
	

	componentBObjectClass
	This attribute defines a MnS component type B represented by information models of managed entities. A MnS component type B is also called Network Resource Model (NRM).
MnS component type B examples are:
1)	Network resource models as defined in TS 28.622
2)	 Network resource models as defined in TS 28.541

AllowedValues: eg: ManagedNFService, HeartbeatControl, NtfSubscriptionControl, AlarmList, TraceJob, PerfMetricJob,
	type: ENUM
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	
	
	

	
	
	

	componentBAttributePermissionList
	This defines the list of componentBAttributePermissions which contains the IOC attribute and corresponding actions

AllowedValues: NA
	type: componentBAttributePermissions
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	componentC

	This attribute defines a MnS component type C which is the performance management data, KPIs of the managed entity and fault information of the managed entity.
The following are examples of Management service component type C:
1. Alarm information as defined in TS 28.532 and TS 28.545
2. Performance data as defined in TS 28.552 , TS 28.554 and TS 32.425.

AllowedValues: NA
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	
	
	

	componentBAttributeName
	This attribute defines a attribute of a MnS component type B represented by information models of managed entities. A MnS component type B is also called Network Resource Model (NRM).
Attributes of MnS component type B examples are:
1)	Network resource models as defined in TS 28.622
2)	 Network resource models as defined in TS 28.541

AllowedValues: NA
	type: string
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	componentBAttributeOperation
	This indicates which operation is specified on the particular component B attribute

AllowedValues: Read-only, Writable
	type: ENUM
multiplicity: 1
isOrdered: NA
isUnique: NA
defaultValue: None
isNullable: False

X.5	Common Notifications
[bookmark: _Toc20150488][bookmark: _Toc27479751][bookmark: _Toc36025286][bookmark: _Toc44516393][bookmark: _Toc45272708][bookmark: _Toc51754706][bookmark: _Toc105582736][bookmark: _Hlk142069780]X.5.1	Access control notifications
The below CM notifications are valid for the access control related IOCs.
4.5.2	Configuration notifications
This clause presents a list of notifications, defined inTS 28.532, that a MnS consumer can receive. The notification header attribute objectClass/objectInstance, defined in TS 32.302, captures the DN of an instance of an IOC defined in the present document.
	Name
	S
	Notes

	notifyMOIObjectCreation
	O
	

	notifyMOIObjectDeletion
	O
	

	notifyMOIAttributeValueChanges
	O
	

	notifyMOIChanges
	O
	

	notifyEvent
	O
	

Y.x	Access Control management service
Y.x.1	Operations
Y.x.1.1	authentication operation (CM)
Y.x.1.1.1	Description
This operation is invoked by MnS consumer to request the authentication service producer to authenticate MnS consumer. MnS consumer and authentication service producer shall use one of the following methods for authentication:
-	Mutual authentication between MnS consumer and authentication service producer provided by the transport layer protection solution.
-	Client credentials assertion based authentication.
When client credentials assertion based authentication is used, the operation is invoked by a MnS consumer to request authentication by authentication service producer. The authentication service producer gets the identifier and credential of the MnS consumer for validation. Based on identifier in the request, authentication service producer gets identity information, e.g. credential of the identity, associated role(s) of the identity, etc., from local data store (e.g., a directory). The authentication service producer authenticates the MnS consumer by validating the identity information. associated to the role(s) the MnS consumer belongs to.
If authentication is successful, the authentication service producer sends successful response with assertion to the MnS consumer. MnS producer validates the assertion to authenticate a MnS consumer.
If fail for authentication, the authentication service producer sends failure response to the MnS consumer.
Y.x.1.1.2	Input parameters

	Parameter Name
	S
	Information Type / Legal Values

	Comment

	identityName

	M
	String
	This parameter specifies the identity of the MnS consumer that is to be authenticate.

	attributeListIn

	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This parameter may have a null value. When this parameter is supplied, it contains a list of name/value pairs specifying attribute identifiers and their values to be assigned to the identity to be authenticated.

Y.x.1.1.3	Output parameters
	Parameter name
	S
	Matching Information / Legal Values
	Comment

	attributeListOut
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This list of name/value pairs contains the attributes of the authenticated MnS consumer and the actual value assigned to each.

	Status
	M
	ENUM (OperationSucceeded, OperationFailed)
	

[bookmark: _Toc20494421][bookmark: _Toc26975444][bookmark: _Toc35856317][bookmark: _Toc44001172][bookmark: _Toc51580771][bookmark: _Toc52356034][bookmark: _Toc55227604][bookmark: _Toc105504765]Y.x.1.1.4	Exceptions and constraints
	Exception Name
	Definition

	operation_failed
	Condition: Operation is failed
Returned Information: The output parameter status
Exit state: Entry State

Y.x.1.2	authorization operation (M)
Y.x.1.2.1	Definition
The operation is used to authorize a MnS consumer by the authorization service producer.
MnS consumer, MnS producer and authorization service producer shall use one of the following methods for authorization:
-
- Token based authorization framework including various grant modes (e.g., as specified in RFC 6749 [xx])
-	Static authorization as specified (e.g.,. in RFC 8341 for NACM [yy])
When token based authorization framework is used, authorization service producer receives authorization request, gets the assertion of the MnS consumer related to the authentication and probably other context information (e.g. resource , action) from the request. If access token is supported by the MnS producer and consumer:
- The MnS consumer gets access token from authorization service producer by providing the assertion from authentication session.
- The MnS consumer starts normal operation with MnS producer with the access token. The MnS producer validates the token. If the token is valid, the MnS producer performs the action(operation) on the resource authorized and returns result to the MnS consumer.
If access token is not supported by the MnS producer and consumer:
- When normal operation starts, the MnS producer validate the authentication assertion and check permission of the MnS consumer with authorization service producer.
- The MnS producer performs the operation on the targeted resource which is part of the authorized scope and returns result to the consumer if the MnS request is allowed according to permissions.
If fail for authorization, the authorization service producer sends failure response to the consumer.
Y.x.1.2.2	Input parameters
	Parameter Name
	S
	Information Type / Legal Values
	Comment

	attributeListIn
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This parameter may have a null value. When this parameter is supplied, it contains a list of name/value pairs specifying attribute identifiers and their values to be assigned to the identity to be authorized.

Y.x.1.2.3	Output parameters
	Parameter name
	S
	Matching Information / Legal Values
	Comment

	attributeListOut
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	This list of name/value pairs contains the attributes of the authorization for the MnS consumer and the actual value assigned to each.

	Status
	M
	ENUM (OperationSucceeded, OperationFailed)
	

Y.x.1.1.4	Exceptions and constraints
	Exception Name
	Definition

	operation_failed
	Condition: Operation is failed
Returned Information: The output parameter status
Exit state: Entry State

	Start of modification

6	Solution sets
6.1	Example access rules for implementation
	The design of the previous sections need to be realised in specific solutions sets. Hence we create examples of access rules mapped to roles and identities which will be elaborated in the different solution sets. Below are examples of some access rules.
6.1.1 Allow full access
This rule is a related to allowing full access to a ‘admin’ user with access to all nodes in a region with attribute level operation permission.
	"rule 1": "/SubNetwork[id="SN1"]/ManagedElement/",
"operation": ["read"],
"action": "allow"
"rule 2": "/SubNetwork[id="SN1"]/ManagedElement/attributes/operationalState",
"operation": ["update"],
"action": "allow"

Table 6.1.1-1 full access rule
6.1.2 Allow limited access
This rule is related to allowing limited access to normal user with limited access to all few nodes with attribute level operation permission
	"rule 2": "/SubNetwork[id="SN1"]/ManagedElement/attributes/operationalState",
"operation": ["update"],
"action": "allow"

Table 6.1.2-1 limited access rule

6.2 RESTful HTTP-based solution set
6.2.1	JSON document to provision the authentication and authorization server
	The below JSON is the possible provisioning inputs required for an oAuth server for the example in clause 6.1.

{
 "realm": "test-realm",
 "roles": {
 "realm": [
 {
 "name": "manageAllManagedElementsRole",
 "composite": true,
 "composites": {
 "client": {
 "RegionScope": [
 "accessRule-1",
 "accessRule-2"
],
 "neInstanceScope": [
 "PLMN-PLMN/GNODEB-1",
 "GNODEB-2"
],
 "monitoring": [
 "alarm-read",
 "alarm-manage"
],
 "monitoring_attribute": [
 "alarm_operationalState-read",
 "alarm_operationalState-manage"
]
 }
 }
 },
 {
 "name": "manageSpecificManagedElementsAndAttributesRole",
 "composite": true,
 "composites": {
 "client": {
 "neInstanceScope": [
 "PLMN-PLMN/GNODEB-1",
 "GNODEB-2"
],
 "monitoring_attribute": [
 "alarm_operationalState-read",
 "alarm_operationalState-manage"
]
 }
 }
 }
],
 "clientRoles": {
 "RegionScope": [
 {
 "name": "/SubNetwork[id="SN1"]/ManagedElement/",
 "description":"accessRule-1"
 },
 {
 "name": "accessRule-2",
 "description":"/SubNetwork[id="SN1"]/ManagedElement/attributes/operationalState"
 }
],
 "neInstanceScope": [
 {
 "name": "PLMN-PLMN/GNODEB-1",
 "description":"Specific network element within a PLMN"
 },
 {
 "name": "GNODEB-2",
 "description":"Specific network element "
 }
],
 "monitoring": [
 {
 "name": "alarm-read",
 "description":"Permission on Alarm object"
 },
 {
 "name": "alarm-update",
 "description":"Permission on Alarm object"
 }
],
 "monitoring_attribute": [
 {
 "name": "alarm_operationalState-read",
 "description":"Permission on Alarm attribute "
 },
 {
 "name": "alarm_operationalState-update",
 "description":"Permission on Alarm attribute "
 }
]
 }
 },
 "clients": [
 {
 "clientId": "RegionScope",
 "description":"Scope related to region"
 },
 {
 "clientId": "neInstanceScope",
 "description":"Scope related to specific NEs"
 },
 {
 "clientId": "monitoring",
 "description":"Permission reated to object"
 },
 {
 "clientId": "monitoring_attribute",
 "description":"Permission reated to attribute"
 },
 {
 "clientId": "test-client",
 "description": "authorizarion_code",
 "clientAuthenticatorType": "client-secret",
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": true,
 "serviceAccountsEnabled": false,
 "publicClient": true
 },
 {
 "clientId": "test-client-confidential",
 "description": "confidential_client",
 "clientAuthenticatorType": "client-secret",
 "secret": "**********",
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": true,
 "serviceAccountsEnabled": false,
 "publicClient": false
 }
],
 "users":[
 {
 "username" : "userNEAndAttribute",
 "description": "access to specific Network elements",
 "credentials":[{
 "userLabel" :"My passwordTest",
 "secretData":{}
 }],
 "realmRoles":[
 {
 "manageSpecificManagedElementsAndAttributesRole"
 }
]
 }
 },
 {
 "username" : "adminUser",
 "description": "access to all roles",
 "credentials":[{
 "userLabel" :"My passwordAdmin",
 "secretData":{}
 }],
 "realmRoles":[
 {
 "manageAllManagedElementsRole",
 "manageSpecificManagedElementsAndAttributesRole"
 }
]
 }
]
6.3 }
6.2.2	Operations
Solution shall be based on OpenID connect protocol and OAuth 2.0 (see RFC 6749 [x]).
OpenID Connect is a simple identity layer on top of the OAuth 2.0 protocol and used in authentication. It enables clients to verify the identity of the MnS Consumer based on the authentication performed by an Authorization Service Producer.
OAuth introduces an authorization layer and separates the role of the client (MnS Consumer) from that of the resource owner (e.g., Operator). In OAuth, the client requests access to resources controlled by the resource owner and hosted by the resource server (MnS Producer) and is issued a different set of credentials than those of the resource owner.
Instead of using the resource owner's credentials to access protected resources, the client obtains an access token which is a string denoting a specific scope, lifetime, and other access attributes. Access tokens are issued to clients by an authorization service producer with the approval of the resource owner. The client uses the access token to access the protected resources hosted by the resource server.
In OAuth, an authorization grant is a credential representing the resource owner's authorization (to access its protected resources) used by the client to obtain an access token. To request an access token, the client obtains authorization from the resource owner. The authorization is expressed in the form of an authorization grant, which the client uses to request the access token.
OAuth2.0 specifies four grant types in clause 1.3 (see RFC 6749 [x]). The access control shall support the following two types of grants:
(1) authorization code
(2) client credential
All other procedure related to these two grant types is used.
In OAuth the access token is a string. The access policies of this string are not defined by OAuth. This solution adds on top by defining how to specify these access policies. In OAuth authorization request, the scope parameter is optional. With OpenID connect, the scope parameter is required to have value "openid", other values are optional. In Access control, the scope parameter is not used for access right scope during authentication / authorization request. The access right is provisioned for the identities during preparation phase or runtime phase, refer to TS28.533 [13].
6.2.2.1	Human user as MnS consumer for authentication and authorization
The OpenID connect protocol and OAuth 2.0 authorization code grant (see RFC 6749 [x]) are used to authenticate and authorize human management service consumer.
In this solution, the authentication service producer takes role of OpenID Provider (OP) and authorization endpoint of OAuth 2.0 which authenticates the end user in OAuth 2.0 authorization code grant scenario.
The MnS consumer is end user of OpenID connect protocol.
The authorization service producer takes role of token endpoint of OAuth 2.0, which issues access token to the client.
The MnS producer plays the role of the resource server.
Authentication of human MnS consumer includes two steps which is the client on behalf of human user sends authentication request in the first step and the human user logins with credentials in the second step.
6.2.2.2	Machine user as MnS consumer for authentication and authorization
OAuth 2.0 client credential grant (see RFC 6749 [x]) is used to authenticate and authorize machine management service consumer
The authentication service producer authenticates management service consumer by validating the client credential.
The management service consumer implements confidential client of OAuth 2.0.
The authorization service producer implements token endpoint of OAuth 2.0, which issue access token to the client.
The management service producer implements resource server.

The access control service is implemented in OpenAPI in table 6.1-3.
	Access control service
	HTTP Method
	Resource URI
	S

	authentication
	GET
	/oauth2/authorize
	M

	authorization
	POST
	/oauth2/token
	M

Table 6.2.2.2-1: Implement access control services in OpenAPI SS
6.2.2.3	Mapping of authentication operation
The below clause maps the classes and the access control services to OpenAPI parameters in table 6.1-4 for input and table 6.1-5 for the output.

	Class IS attribute name
	Class SS attribute name
	SS parameter location
	S
	Remark

	Identity.identityName
	consumer_id
	query
	M
	A unique identifier of a MnS consumer.
For machine MnS consumer, it could be DN, FQDN, etc. It is included in authentication request.
For MnS consumer via human user, it could be user name, email address, phone number, etc. It is included in both of authentication request from the client (actioning on behalf of human user) to authentication service producer and login request from user agent to authentication service producer.
The parameter consumer_id is introduced in access control solution in addition to parameters defined in OAuth2.0.

	Identity.credential
	credential
	query
	CM
	It is secret or certificate based assertion.
For human MnS consumer, it is included in login request from user agent to authentication service producer.
For machine MnS consumer, it is in authentication request.
The parameter credential is introduced in access control solution in addition to parameters defined in OAuth2.0.

	
	client_id
	query
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is unique id, e.g. DN, FQDN, assigned to the client.
The parameter client_id is defined in OAuth2.0.

	
	redirect_uri
	query
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is redirection URI to which the authentication response from authentication service producer will be sent.
The parameter redirect_uri is defined in OAuth2.0.

	
	response_type
	query
	CM
	It is oauth2 and OpenID connect specific parameter.
It presents and its value is "code" in the authentication request from the client (actioning on behalf of human MnS consumer) to authentication service producer for human MnS consumer authentication. It is empty in the authentication request from authorization service producer (actioning on behalf of machine MnS consumer) to authentication service producer for machine MnS consumer authentication
The parameter response_type is defined in OAuth2.0.

	
	scope
	query
	CM
	It is used only for MnS consumer via human user scenario. OpenID Connect requests shall contain the "openid" as scope value.

The parameter scope is defined in OAuth2.0.

Table 6.1-4: Mapping class to OpenAPI input parameters (HTTP GET)

	SS parameter location
	SS parameter name
	Class attribute
	S
	Remark

	response status codes/body
	status
	
	M
	It is response status code, and optional error description in response body for error response.

	response body
	consumer_id
	attributeListOut
	M
	same to identifier in the request.
The parameter consumer_id is introduced in access control solution in addition to parameters defined in OAuth2.0.

	response body
	code
	attributeListOut
	CM
	It is oauth2 and OpenID connect specific parameter.
It presents and its value is set to authorization code generated by the authentication service producer. It's only applicable to human management service consumer.
The parameter code is defined in OAuth2.0.

Table 6.2.2.3-1: Mapping class to OpenAPI output parameters (HTTP GET))

6.2.2.4	Mapping of authorization operation
The below clause maps the classes and the access control services to OpenAPI parameters in table 6.1-6 for input and table 6.1-7 for the output.

	SS parameter location
	SS parameter name
	Class attribute
	S
	Remark

	query
	grant_type
	
	M
	It is oauth2 specific parameter used to designate how to authenticate a client. It's set to "authorization_code" for authorization of human management service consumer, and "client_credential " for authorization of machine management service consumer
The parameter grant_type is defined in OAuth2.0.

	query
	client_id
	Identity.identityName
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is unique id, e.g. DN, FQDN, assigned to the client.
The parameter client_id is defined in OAuth2.0.

OpenID Connect adds an identity layer on top of oAUTH 2.0 framework

	
	Client_secret
	
	
	Confidential client typically requires a client_id and client_secret. No need of refresh token as it is machine to machine

	query
	redirect_uri
	
	CM
	It is used only for human MnS consumer scenario. It is part of associated client acting on behalf of the human consumer. It is redirection URI to which the authentication response from authentication service producer will be sent.
The parameter redirect_uri is defined in OAuth2.0.

These have to registered prior to being invoked to the client else can be used maliciously

	
	Scope
	
	
	Scopes should only indicate what type of data access is required and not the location of the resource server.

If scope =openID then
the identity token is also sent back to the client. Maybe required if some client wants to display the user name.

	
	resource
	
	
	As defined in RFC 8707 this defines the location of the resource server(eg:https://rs1.exaample.com).
This is towards the token endpoint
Specification says that you request access for one resource server for which you need access
 When a token is received you will have an ‘aud’ parameter mentioning the resource server

	
	Code_challenge(PKCE)
	
	
	RFC 7636 on PKCE

This is used to ensure that the legitimate client gets the authorization code. The is introduces randomness. The client make a private random string and send it in the code challenge which is hashed and base 64 encoded

	
	Code_challenge_method(PKCE)
	
	
	If the PKCE is used then the code challenge mentions the method used for hashing eg: SHA256

This is useful because when the authorization_code is exchanged for the token the hashed string is sent along with the method.

This is used by the authorization server that a legitimate client asked for a token.

Table 6.2.2.4-1: Mapping Class to OpenAPI input parameters (HTTP POST)

	SS parameter location
	SS parameter name
	Class attribute
	S
	Remark

	response status codes/body
	status
	
	M
	It is response status code, and optional error description in response body for error response.

	response body
	access_token
	attributeListOut
	CM
	It is the access token issued by the authorization server.
The access token shall be a JSON Web Token (JWT) as specified in IETF RFC 7519 [z]. The access token shall include the claims encoded as a JSON object and then digitally signed using JWS as specified in IETF RFC 7515 [a] and in clause 13.4.1 of 3GPP TS 33.501 [8].
The digitally signed access token shall be converted to the JWS Compact Serialization encoding as a string as specified in clause 7.1 of IETF RFC 7515 [a].

The parameter access_token is defined in OAuth2.0.

	response body
	token_type
	attributeListOut
	CM
	It is type of the access token.
The parameter token_type is defined in OAuth2.0.

	
	aud
	
	
	The URI of the resource server for which the access can be granted. This is used such that the resource server checks if it is the right or wrong audience while validating

Table 6.2.2.4-2: Mapping Class to OpenAPI output parameters

6.2.2.5	End points in authorization server
The below table explains the various end points that can be used by the MnS consumer for various purposes.

	End point on authorization server
	Remark

	/token
	Used with HTTP Post to get the access token. Typically used with client_credentials grant type.

	/authorise
	For security with JWT (RFC 9101)
Can be used in the following format
Alternate 1: The parameters are in a JWT and pass the JWT token
GET /authorize?client_id=abc1234& request=<JWT>
The JWT is the JSON web signature token.
Further still the JWT can be encrypted to get a JWE

Alternate 2: The parameters are in a JWT and pass the reference in case of a long string in the parameter

Send the parameters to a backend, sign and then encrypt it. Now pass the reference to the client who then sends
After client does a redirect we get below example
https://example.com/authorize?client_id=abc123&request_uri= <reference>

	/revocation
	RFC 7009
Here post the approval flow, the client can access the revocation end point and revoke a access or refresh token

POST <token revocation endpoint>
POST /revoke
Token = some-string&token_type_hint=access_token

	/inspect
	Token introspection endpoint RFC 7662. Could be used for additional security measure for resource server to check if token is valid or not

Allows protected resources to query the authorization server to determine the set of metadata

Eg: Type of access token. This could be a self contained JWS structured token or an opaque string

POST /inspect authorization: bearer <token>

Response could contain for example information like active or not, revoked, expired, scopes, client_Id, etc.

	/client registration
	Dynamic client registration RFC7591

option 1: ship the client credentials and details
option 2 : dynamically and programmatically register to the server and get the client details
	ten securely store the client id and client secret

How does it work
the client hits a client registration end point in the authorization server
Client sends a JWT token with all the claims and the software statement which has been registered in the authorization server

	/client configuration end point
	Dynamic client registration management RFC7592

need to manage the registration like get, put delete the registrations.
Once we have registered then we get back a registration_access_token. This is then used to get an registration details again with the Get request or possibly used to modify the registration with a PUT request

	/pushed authorization request(PAR)
	Used with HTTP POST
Used with backend confidential clients
Used as an additional step before authorise end point invocation
Instead of sending all the parameters in plain text the options are
1) Send parameters to the client backend and receive the URL from the authorization server so that in the next authorize GET request the URL can be sent
The client can also send a JWT which is wrapped in a JWE to secure the parameters being sent from the client to the PAR endpoint

Table 6.2.2.5-1: End points (HTTP POST)

6.2.3	Impact on the interface between MnS consumer and MnS producer
	The token will be sent in the header as a bearer token as below from MnS Consumer to the Mns producer.
Authorization: Bearer <token>
	In cases where additional security is required, the token can be sent as a lightweight JWT token. The JWT token is signed by the private key of the authorization server. When then JWT token has to be opened up in the resource server, it should be in possession of the public key of the same.
	Another aspect is to ensure that the MnS consumer is also able to prove to the Mns producer that it was the one who sent the token. This involves the concept of proof of possession. Example here is mutual TLS which could be used here where every party(which is the MnS consumer) here needs to prove that they have the private key for which the certificate was signed and exchanged along with the token.

6.3	Netconf based solution set

Annex Y (Informative):
Y.1	Informative example: Human user as MnS consumer for authentication and authorization :
Informative example: human MnS consumer authentication and authorization :
Authentication request sent from a client on behalf of a human MnS consumer to an authentication service producer:
GET /oauth2/authorize?\
 consumer_id=consumer1@example.com\
 &client_id=client.example.com\
 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fac\
 &response_type=code\
 &scope=openid
Host: authenticationserver.example.com

Login request from user agent to authentication service producer:
GET /oauth2/authorize?\
 consumer_id=consumer1@example.com\
 &credential_type=secret\
 &credential=SHJKUJUYKKLH\
Host: authenticationserver.example.com

Authentication response:
HTTP/2 302 Found
Location: https://client.example.org/ac?consumer_id=consumer1@example.com&code=SplxlOBeZQQYbYS6WxSbIA

Authorization request with grant type code
POST /oauth2/token?\
 grant_type=authorization_code\
 &code=SplxlOBeZQQYbYS6WxSbIA\
 &client_id=client.example.com\
 &redirect_uri=https%3A%2F%2Fclient.example.com%2Fac
Host: authorizationserver.example.com

Authorization response
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "context": "expire in 60m"
 }

Y.2 Informative example: Machine user as MnS consumer for authentication and authorization:
Informative example: machine MnS consumer authentication and authorization:
Authentication and authorization request:
POST /oauth2/token?\
 grant_type=client_credentials\
 &consumer_id=consumer1.example.com\
 &credential_type=jwt\
 &credential=eyJhbGciOiJSUzI1NiIsIng1dCI6Imd4OHRHeXN5amNScUtq
Host: authorizationserver.example.com

Authentication and authorization response:
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "context": "expire in 60m"
 }

	End of changes

Annex Z (Informative):
Z.1	Informative sequence diagram: Commissioning flow to be carried out by an administrator:

The sequence diagram below explains the IOCs to be used as a pre-requisite for enabling the role based access control. The notes above in the diagram also depict an example of each of the tasks.
The sequence diagram below explains the operations and the interactions with the authentication and authorization service which typically should suit any implementation be in oAUTH or a NACM implementation.
The notes along the flows show the examples related to the IOCs provisioning operations.

[image: Generated by PlantUML]
Figure Z.1 - Sequence of commissioning for role based access control

Commissioning usecases to be carried out by an administrator
· To carry out authentication and authorization based on role based access a set of tasks needs to be in place at the commissioning phase.
The network equipment vendor will typically take care of the below:
· The granularity level at which the management objects need to be authorized
· The actions that need to be permitted on these granular level objects
This is typically carried out by an administrator who has to setup the system for operational purposes which included authentication and authorization for every operation. Hence the administrator will need to have a good view of the permissions of the devices being integrated and managed. The administrator will need to know the possible scope of action for various users in the system on the instances that are created. The administrator will need to know the roles that need to be created in the system as well as the mapping of the same to the users. Below is the detail of every task.
The below elaborates the sequence flow to depict the IOCs involved for provisioning.
a. Permissions with resources and actions
· Permissions are combinations of static resources and actions. The network equipment vendor can introduce the resources and actions at various levels of granularity as well as in the language that can be suitable for the vendor. When the commissioning phase happens it is important to translate these permissions to the authentication and authorization system so that it is aware of the static resources and corresponding actions on them for access control.
Hence the IOC for PermissionForMnSs is required to create the necessary data.

b. Role creation with association to permissions and conditions
The meaningful task is the role which defines the responsibility realm for the user. Hence the role contains the overall distribution of resources and actions it can work on by resolving the condition and permissions. The static resources identified need to be combined with the dynamically created instances of the resource in order to be assigned to a meaningful task in the system.
The roles are typically created according to the convenience and hierarchy of the organisation. Coarse grained or fine grained permissions can be created with the help of roles.
The management system should be setup for access control by a system administrator who will have the know how of creating the required users and roles. Roles will use the various possibilities to map resources and actions.
Hence the IOC for Role is required to create the necessary data related to various roles in the system.

c. Identity to role assignment
The identity or user of the system needs to be assigned the responsibilities to carry out the OAM operations. Hence the set of responsibilities are defined in various roles. Assignment of the roles to an identity is required to make the administrative task more efficient and flexible. This also shields the administrator from getting into the details of the know how of granular resources and actions relevant to it.
Hence the IOC for Identity is required to create the necessary data.
Z.2 Informative sequence diagram: Authentication and Authorization with role based access control:

Post the above tasks we have the possibility to have role-based access in operation with every service call being authenticated and authorized.
The below sequence diagram shows how the operations are invoked from a consumer towards an authentication and authorization service producer.
When an MnS is invoked, the MnS consumer authenticates towards an authentication service producer. This is then followed by checking the access rights with respect to the role-based access. This takes place in the authorization service producer which is invoked from the MnS producer to check if its resources can be accessed with respect to the related operation.
Hence then need of a authentication and authorization service producer which will validate a user who want to access the resources as well as validates what the user can access.
[image: Generated by PlantUML]
Figure Z.2 - Sequence diagram for operations of authentication and authorization

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

