3GPP TSG-SA5 Meeting #152
S5-237471
Chicago,US, 13-17 November 2023
Source:
Huawei
Title:
Discussion on issues caused by multiple IntentReports per Intent
Document for:
Discussion

Agenda Item:
6.4.4.3
1
Decision/action requested

Background information to support CR S5-23xxxx
2
References

[1]
3GPP TS 28.312 Intent driven management services for mobile networks
3
Rationale

3.1
Problem description
TS 28.312 [1] Figure 6.2.1.1.1-1 contains the following UML class diagram.

[image: image2.png]Represents the folllowing I0Cs: ™. «ProxyClass»
SubNetwork I ManagedEntity
f
lenames»

«nformationObjectClass»
IntentHandlingFunct

«InformationObjectClass»| 2 & | «InformationObjectClass»
Intent IntentReport

In this class diagram, the relationship from Intent to IntentReport has cardinality 1:*. This means that multiple IntentReport instances may exist for each Intent instance.
This 1:* cardinality causes many issues, such as:

Issue 1: There may be multiple instances of IntentReport, each containing an IntentFeasibilityCheckReport. This means that there may be multiple IntentFeasibilityCheckReports per Intent. What should the MnS consumer do if multiple IntentFeasibilityCheckReports exist, some saying the intent is feasible and others saying that the intent is not feasible?
Impact: Extra logic is needed in the MnS producer to prevent conflicts between multiple IntentFeasibilityCheckReports.
Issue 2: There may be multiple instances of IntentReport, each containing an IntentFulfilmentReport. This means that there may be multiple IntentFulfilmentReports per Intent. What should the MnS consumer do if multiple IntentFulfilmentReports exist, some saying an expectation is fulfilled and others saying that the same expectation is not fulfilled?
Impact: Extra logic is needed in the MnS producer to prevent conflicts between multiple IntentFulfilmentReports.
Issue 3: If an MnS consumer wishes to subscribe to creation of an IntentConflictReport, the subscription will be complex.
Impact: The MnS consumer must subscribe to changes to all existing IntentReport instances for the Intent. Also, the MnS consumer must subscribe to creation of new IntentReport instances for the Intent and check if these new IntentReport instances contain an IntentConflictReport.

Issue 4: If an MnS consumer wishes to subscribe to changes to an IntentFulfilmentReport, the subscription will be complex.
Impact: The MnS consumer must subscribe to changes to all existing IntentReport instances for the Intent. Also, the MnS consumer must subscribe to creation of new IntentReport instances for the Intent and check if these new IntentReport instances contain an IntentFulfilmentReport.

Issue 5: The lifecycle of the IntentReport objects will become more complex. TS 28.312 [1] clause 6.2.1.2.2.1 states “The IntentReport instance is created by MnS producer automatically when create an Intent instance. When the MnS producer delete an intent instance based on request from MnS consumer, the corresponding intent report instance is also deleted by MnS producer automatically.”
Impact: This text needs to be updated if there are multiple IntentReports per Intent.
Issue 6: Allowing an IntentReport instance to be created at any time will create race conditions.
Impact: It is not enough for an MnS consumer to subscribe to creation of an IntentReport instance, because an instance may already exist. Therefore, the MnS consumer must also read the Intent MOI to check if any IntentReport instances already exist.
3.2
Proposed solution
It is proposed that the relationship from Intent to IntentReport should have cardinality 1:1. This means that one IntentReport instance exists for each Intent instance.

This proposal resolves the above-mentioned issues as follows:

Issue 1: With a proposed 1:1 relationship from Intent to IntentReport, and the current 1:1 relationship from IntentReport to IntentFeasibilityCheckReport, there will be only one IntentFeasibilityCheckReport per Intent.
Impact: The MnS producer does not need to prevent conflicting IntentFeasibilityCheckReports per Intent.

Issue 2: With a proposed 1:1 relationship from Intent to IntentReport, and the current 1:1 relationship from IntentReport to IntentFulfilmentReport, there will be only one IntentFulfilmentReport per Intent.
Impact: The MnS producer does not need to prevent conflicting IntentFulfilmentReports per Intent.

Issue 3: The MnS consumer may subscribe to changes to the IntentReport instance for the Intent, and check if the IntentReport instance contains an IntentConflictReport.
Impact: The MnS consumer only needs to create a single subscription per Intent.
Issue 4: The MnS consumer may subscribe to changes to the IntentReport instance for the Intent, and check if the IntentReport instance contains an IntentFulfilmentReport.
Impact: The MnS consumer only needs to create a single subscription per Intent.

Issue 5: The text in 28.312 clause 6.2.1.2.2.1 does not need to be updated.
Impact: None.
Issue 6: The MnS consumer can assume that one IntentReport instance exists for each Intent instance.
Impact: The MnS consumer does not need to keep track of the IntentReport instances.

Therefore, this proposed solution simplifies the implementations of the MnS consumer and the MnS producer.
3.3
Other issues to consider
During SA5#150, there was a discussion which resulted in choosing to have multiple IntentReport instances for each Intent instance. It was mentioned that allowing multiple IntentReport instances would enable the following possible scenarios:

Splitting IntentReport by report type
In this scenario, each Intent would be associated with 3 IntentReports, one which contains fulfilment information, one which contains conflict information, and one which contains feasibility check information. For the MnS producer, there is no strong advantage or disadvantage. But for the MnS consumer, this adds a lot of complexity with no benefit. The existing description in 28.312 does not describe how the MnS consumer should know which IntentReport instance contains each type of information.
Splitting IntentReport by time
In this scenario, one IntentReport instance could contain the latest reports, and other historical IntentReport instances could be associated with the Intent. This would allow an MnS consumer to easily read historical report information for an Intent instance. However, 28.312 has no mechanism for the MnS consumer to request that historical report information should be retained, or the required duration. Also, there is no mechanism to prevent one MnS consumer reading the historical report information of another MnS consumer. The justification is also unclear, the major use of historical report information is probably to perform feasibility checking of future intents, and this is performed within the MnS producer, so there is no obvious need to send the historical information to the MnS consumer. If the MnS consumer needs to know historical information about its own intents, it would be more practical for the MnS consumer to store this historical information within the MnS consumer.
4
Detailed proposal

It is proposed that the relationship from Intent to IntentReport should have cardinality 1:1.

Please refer to CR S5-237472 for proposed solution.
[image: image1]