Error! No text of specified style in document.
19
Error! No text of specified style in document.

3GPP TSG-SA5 Meeting #151
S5-236577
Xiamen, China, 9th Oct 2023 - 13th Oct 2023
Source:
Nokia, Nokia Shanghai Bell

Title:
Rel-18 pCR 32.161 Add JSON expressions
Document for:
Approval

Agenda Item:
6.5.1.6 - eSBMA_WoP#6
1
Decision/action requested

The group is requested to discuss and approve the pCR below

2
References

[1]

3GPP TS 31.161: " Management and orchestration; JSON expressions (Jex)"
3
Rationale

None.
4
Detailed proposal

The following changes are proposed for TS 31.161[1].

	Begin of modifications

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999 (https://www.w3.org/TR/xpath-10/)
[3]
XML Path Language (XPath) 2.0, W3C Recommendation 14 December 2010 (Link errors corrected 3 January 2011; Status updated October 2016), (https://www.w3.org/TR/xpath20/)

[4]
XML Path Language (XPath) 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-31/)
[5]
XQuery and XPath Data Model 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-datamodel-31/)
[6]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
	Next modification

Introduction

Information can be represented in a structured way using markup languages. Well-known and widely used markup languages are for example XML and JSON.

It is often required to identify distinct portions in XML or JSON documents. For XML, XPath has been designed for that purpose. XPath is very powerful and includes capabilities for conditional node selection with predicates. XPath expressions can select one or more portions of an XML document.

JSON Pointer serves a similar purpose. However, its capabilities are limited compared to XPath. For example, JSON Pointer expressions can identify only a specific node or subtree of a JSON document and not multiple nodes or subtrees. Furthermore, conditions are not supported in the information selection process.

This calls for a notation applicable to JSON documents with more advanced features than JSON Pointer. This notation is called Jex (JSON expressions). It is inspired by and based on XPath.

Even though XPath was originally designed to select one or more nodes of an XML document, XPath expressions operate on a conceptual data model, the XPath data model. A mapping from the XML Information Set to the XPath data model is provided in Annex B of XPath 1.0 [2].

The main purpose of the Jex specification is to provide a mapping from a JSON document to the XPath data model. With this in place XPath expressions are (indirectly) applicable to JSON.

This specification will also introduce a few profiles for XPath. These profiles are designed to provide the functionality required for network and service management.

Clause 4 provides a short review of the XPath data model. Clause 6 defines the mapping of a JSON document to the XPath data model, and clause 7 introduces a few Jex profiles. Annex A demonstrates to use of Jex for network management tasks.

Readers should be familiar with XPath 1.0 [2] and JSON (IETF RFC 8259 [6]).
	Next modifications

4
XPath data model

The XPath data model is described in clause 5 of W3C Xpath1.0 specification [2]. It is a conceptual model without formal notation.

The model consists of nodes with relationships between them. There are seven types of nodes defined: root node, element node, text node, attribute node, namespace node, processing instruction node, comment node.

Note that the data model for XPath 2.0 [3] and XPath 3.1 [4] is described in XQuery and in XPath Data Model 3.1 [5]. This model is not used in this specification.

5
JSON restrictions
5.1

Supported JSON documents

A JSON document (JSON text) is a serialized JSON value (clause 2, IETF RFC 8259 [6]). A JSON value is a JSON object, a JSON array, a number, a string or any of the three linteral names true, false or null.
A Jex expressions can be applied only against documents containing a single JSON object. All other values or any combination of values (at the top level) are not supported.
The following example document is valid. It contains a single JSON object.
	{

 "a": 1,

 "b": 2

}

The next document is not supported for use with Jex expressions, though it is a valid JSON document. It contains a JSON array at the top level.
	[

 {

 "a": 1,

 "b": 2

 }
]

5.2
Supported JSON arrays
A JSON array consists of an ordered list of array items. Each array item can be a scalar value, a JSON object, or a JSON array. According to clause 5 of RFC 8259 [5] there is no requirement that the values in an array are of the same type.
Jex supports only arrays with the following properties:
· The array items of an array are all of the same type.

· Array items can be only scalars or JSON objects, but not JSON arrays.
When working with the JSON definitions of a NRM the following statements are always true:

6
Mapping of JSON to the XPath data model

6.1

Mapping of JSON documents
A JSON document is mapped to the (conceptual) root node. The root node has no name.

6.2
Mapping of scalar values
A scalar value in JSON is a string, a number, or one of the tree literal names true, false or null. These values are mapped to text nodes.
Editor's note: It is ffs if the text node should not have an attached type (a string, a number, or one of the tree literal names).This would be a deviation from the XPath 1.0 data model.
6.3
Mapping of name/value pairs

6.3.1
Case: The value is a scalar
The name of the name/value pair is mapped to an element node. The name of the element node is equal to the name of the name/value pair.
The value of the name/value pair is mapped to a text node as described in clause 9.3.3.

The text node coming from the value of a mapped name/value pair is the child of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the mapped name/value pair is the parent of the text node coming from the value of the mapped name/value pair.

Example:

	"a": 1
	<a>1

6.3.2
Case: The value is a JSON object
The name of the name/value pair is mapped to an element node. The name of the element node is equal to the name of the name/value pair.

The value of the name/value pair consists of an unordered list of name/value pairs. Each name of these name/value pairs is mapped to an element node. No order can be assumed for these element nodes.
The element nodes coming from the value of the mapped name/value pair are children of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the mapped name/value pair is the parent of the element nodes coming from the value.

Example:

	"a": {

 "b": 1,

 "c": 2

}
	<a>
 1

 <c>2</c>

or

	"a": {

 "b": 1,

 "c": 2

}
	<a>
 <c>2</c>

 1

	"a": {

 "b": 1,

 "c": {
 "d": 2,

 "e": 3
 }

}
	<a>
 1

 <c>
 <d>2</d>

 <e>3</e>

 </c>

6.3.3
Case: The value is a JSON array
The name of the name/value pair is mapped to a specific number of element nodes. The number of element nodes is equal to the number of array items. The names of these element nodes are all identical and equal to the name of the name/value pair.
The order of element nodes is the same as the order of the array items in the corresponding JSON.
The element nodes coming from the value of the mapped name/value pair are children of the element node coming from the name of the mapped name/value pair. Vice versa, the element node coming from the name of the name/value pair is the parent of the element nodes coming from the array items of the JSON array.

Example:

	"a": [

 1,

 2,
 3
]
	<a>1
<a>2
<a>3

	"a": [

 {"b": 1,

 "c": 2
 },
 {"b": 3,

 "c": 4

 },

 {"b": 5,

 "c": 6

 },

]
	<a>
 1

 <c>2</c>

<a>
 3

 <c>4</c>

<a>
 5

 <c>6</c>

6.3.4
XPath data model concepts required by JSON

A JSON document is mapped to root nodes, element nodes and text nodes. Attribute nodes, namespace nodes, processing instruction nodes and comment nodes have no equivalent in JSON.
The concept of document order is applicable only for element nodes coming from JSON arrays.

The concept of variables is not used in Jex..
7
Jex expressions

7.1
Introduction
Jex uses the same syntax, the same concepts and the same definitions as XPath. Jex expressions are a subset of XPath expressions. All subsets support only the abbreviated syntax. The output of a Jex expression is always a node set.
Different subsets are defined in the following clauses. All subsets have the same allowed location path expression. Subsets differ in the capabilities of the predicates. A subset is also called Jex profile.

Editor's node: It is ffs if the output of a Jex expression should also include true and false. This would largely increase the number of uses cases where these expressions could be used.
7.2
Evaluation context
Jex expressions are evaluated in a context, that is a subset of the XPath evaluation context. The Jex context includes

· a node (the context node)

· a pair of non-zero positive integers (the context position and the context size)

· a function library
The initial context node of a Jex expression is specified where the Jex pression is used. This initial context node is often referred to
Editor's node: Clarify that context position and the context size works only for element nodes coming from JSON arrays.
7.3
The location path
A Jex expression is an absolute location path. An absolute location path consists of "/", optionally followed by a relative location path. A "/" by itself selects the root node of the document.
AbsoluteLocationPath ::= '/' RelativeLocationPath
A relative location path consists of a sequence of one or more location steps separated by "/".
RelativeLocationPath ::= Step | RelativeLocationPath '/' Step
Only the child axis is supported. The child axis is the default axis and omitted in the abbreviated syntax of a location step. The location step contains only a node test and an optional predicate.
Step ::= NodeTest Predicate?

The node test is a name test. The asterisk "*" is supported and selects all element children of the context node.
NodeTest ::= NameTest
NameTest ::= '*' | QName
The "QName" is either a class name, the string "attributes", an attribute name, or an attribute field name.
Editor's note: EBNF for QName tbd.

The predicate is an expression encapsulated in rectangular brackets.

Predicate ::= '[' PredicateExpr ']'

The capabilities of the predicate expression differ for the different Jex profiles.

Editor's note: Add XPath 2.0 capability to select multiple nodes with a sequence, e.g. "…/(a,b)".
7.4
Jex Basic
Predicates are used in Jex Basic profile for selecting
· element nodes representing managed object instances based on the value of their naming attribute "id"
· array items representing attribute elements based on their positional index.

This profile allows to select managed object instances, attributes, attribute fields and attribute elements of multi-valued attributes. Conditional element node selection is not supported except for the special cases mentioned in the two bullet points above.
PredicateExpr ::= MoiSelector | AttributeElementSelector

MoiSelector ::= 'id=' String
AttributeElementSelector ::= Integer
Integer ::= [0-9]+

String ::= '"' [^"]* '"'
The function library in Jex Basic is empty.
Editor's note: Add XPath capability to select multiple nodes using "|" between location paths. Or should the "nodeSelector" attribute be an array?
Examples:
The following Jex expression selects all attributes of the "SubNetwork" whose "id" is 1, or the complete managed object, depending on the context.
	/SubNetwork[id="SN1"]/attributes

In the next examples the Jex expressions select one attribute of a specific manged object.
	/SubNetwork[id="SN1"]/attributes/userLabel

/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/vendorName

An example for selecting an attribute field may look as follows.
	/SubNetwork[id="SN1"]/attributes/plmnId/mcc

The following expression selects the first attribute element of a multi-valued attribute.
	/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[0]

It is also possible to select all "ManagedElement" instances, that are a child of the "SubNetwork with the "id" equal to 1, with a name test without specifying each instance by its "id". In this example the output node set may include more than one node, whereas in the previous examples the output node set includes exactly one node.
	/SubNetwork[id="SN1"]/ManagedElement/attributes/vendorName

Note that the EBNF allows also JEX expressions that do not make sense und will result in an empty node output set in most cases.
	/SubNetwork[id="SN1"]/attributes[id="A1"]
/SubNetwork[id="SN1"]/attributes/userLabel[2]
/SubNetwork[2]/attributes/plmnId/mcc

7.5

Jex Advanced

Jex Advanced extends Jex Basic with more powerful predicates for selecting nodes. Both equality and inequality expressions are supported.
PredicateExpr ::= NodeSelector | AttributeElementSelector

AttributeElementSelector ::= Integer
NodeSelector ::= EqualityExpr | InEqualityExpr
Equality expressions have on the left side of the equal sign operator an abolute location path expression or a relative location path expression.
PathExpr ::= AbsoluteLocationPath | RelativeLocationPath
On the right side of the equal sign operator is either a string, a number or one of the three literals true, false, or null.
EqualityExpr ::= PathExpr '=' (String | Number | true | false | null)
Inequality expressions shall have a number on the right side of the operator.
InEqualityExpr ::= PathExpr '<' Number | PathExpr '>' Number
| PathExpr '<=' Number | PathExpr '>=' Number
The function library in Jex Advanced is empty.

Examples:
In the first example the specified "ManagedElement" instance is selected only when the "vendorNamae" attribute has the value "Company XY".
	/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes[vendorName="Company XY"]

Instead of the instance only one attribute can be selected.
	/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes[vendorName="Company XY"]/userLabel

The Jex expression in the next example selects all "ManagedElements" from the vendor "Company XY".
	/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]

The following example selects the threshold level identified by the "level" 3.
	/SubNetwork[id="SN1"]/ThresholdMonitor[id="TM1"]/attributes/ThresholdLevels[level=3]

Editor's node: Describe what happens if the type on both sides is not the same?
Annex A (informative):
Example use cases
A.1
Introduction

All these use cases have in common that one or mode nodes need to be identified. To these selected nodes a certain semantics is attached.
A.2
Notification subscription
1 Subscribe to all alarm notifications of one specific "ManagedElement" instance below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes",

"notificationTyes": ["alarmNotifications"]

2 Subscribe to all alarm notifications of all "ManagedElement" instances below a specific "SubNetwork" .

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes",

"notificationTyes": ["alarmNotifications"]

3 Subscribe to all alarm notifications of the managed object tree whose root object is a specific "ManagedElement" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]",

"notificationTyes": ["alarmNotifications"]

4 Subscribe to all alarm notifications of all managed object trees whose root objects are a "ManagedElement" instances below a specifc "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement",

"notificationTyes": ["alarmNotifications"]

5 Subscribe to all alarm notifications of "ManagedElement" instances from vendor "Company XY" below a specific "SubNetwork" instance.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]",
"notificationTyes": ["alarmNotifications"]

6 Subscribe to all alarm notifications of the object subtrees whose root objects are "ManagedElement" instances from vendor "Company XY".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[attributes/vendorName="Company XY"]",
"notificationTyes": ["alarmNotifications"]

7 Subscribe to attribute value change notifications of a specific attribute of a specific managed object.
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/opState",
"notificationTyes": ["avcNotification"]

8 Subscribe to attribute value change notifications of multiple specific attributes of a specific managed object.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState, adminState)",

"notificationTyes": ["avcNotification"]

A.3
Acces control
1 Allow read access to one specific "ManagedElement" instance below a specific "SubNetwork" instance.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes",

"crudOps": ["read"],

"permission": "allow"

2 Allow read access to all "ManagedElement" instances below a specific "SubNetwork" instance.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes",

"crudOps": ["read"],

"permission": "allow"

3 Allow read access to the managed object tree whose root object is a specific "ManagedElement" instance.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]",

"notificationTyes": ["alarmNotifications"]

4 Allow read access to all managed object trees whose root objects are "ManagedElement" instances below a specific "SubNetwork" instance.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement",

"notificationTyes": ["alarmNotifications"]

5 Allow read access to "ManagedElement" instances from vendor "Company XY" below a specific "SubNetwork" instance.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]",
"crudOps": ["read"],
"permission": "allow"

6 Allow read access to the object subtrees whose root objects are "ManagedElement" instances from vendor "Company XY".

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[attributes/vendorName="Company XY"]",

"crudOps": ["read"],

"permission": "allow"

7 Allow read access to a specific attribute of a specific managed object.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/opState",

"crudOps": ["read"],

"permission": "allow"

8 Allow read access to multiple specific attributes of a specific managed object.

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/attributes/(opState, adminState)",

"crudOps": ["read"],

"permission": "allow"

Allow read access to the alarm list of a specific "ManagedElement".

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/AlarmList[id="AL1"]/attributes",

"crudOps": ["read"],

"permission": "allow"

Allow to create, read, update and delete "PerfMetricJob" instances on a specific "ManagedElement".
	"nodes": "/SubNetwork[id="SN1"]/ManagedElement[id="ME1"]/PerfMetricJob",

"crudOps": ["create", "read", "update", "delete"],

"permission": "allow"

A.4
Performance metric collection

Collect a specific measurement on "ManagedElement" instances from vendor "Company XY".

	"nodes": "/SubNetwork[id="SN1"]/ManagedElement/attributes[vendorName="Company XY"]",

"measurement": ["measurementName"]

	End of modifications

3GPP

