Page 1

3GPP TSG-SA5 Meeting #150

 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-235408
Goteborg, Sweden, 21st Aug 2023 - 25th Aug 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	DraftCR
	rev
	-
	Current version:
	17.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-18 Input to DraftCR 32.158 Add design pattern for error responses

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	eSBMA
	
	Date:
	2023-08-10

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	The design pattern for an error response is missing.

	
	

	Summary of change:
	The design pattern for an error response is added.

	
	

	Consequences if not approved:
	Undefined error response format.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

6.6
Design pattern for error responses

6.6.1
Introduction
In case an error occurs on the MnS Producer when processing an HTTP request an error response is returned to the MnS Consumer. The request is not applied at all, even those parts of the request, that have no errors and could be applied. The case of partial success, i.e. the case where some parts of the request are applied and some are not, is not covered by this clause.
This clause first describes error response codes to be used in the error response status line and then error response body formats.
6.6.2
HTTP error codes

A status code of the classes 4xx (Client Error) or 5xx (Server Error) is returned to the MnS Consumer in the error response status line. A complete list of error status codes is maintained by IANA.

Table X.1-1 and Table X.1-2 list the status codes that shall be supported by MnS Producer and MnS Consumer implementations compliant to this specification.
Table 6.6.2-1: Supported 4xx client error status codes
	Error status code
	Reference
	Description

	400 Bad Request
	IETF RFC 7231 [2]
	indicates that the server cannot or will not process the request due to something that is perceived to be a client error (e.g., malformed request syntax, invalid request message framing, or deceptive request routing).

	403 Forbidden
	IETF RFC 7231 [2]
	indicates that the server understood the request but refuses to authorize it.

	404 Not Found
	IETF RFC 7231 [2]
	indicates that the origin server did not find a current representation for the target resource or is not willing to disclose that one exists.

	405 Method Not Allowed
	IETF RFC 7231 [2]
	indicates that the method received in the request-line is known by the origin server but not supported by the target resource.

	406 Not Acceptable
	IETF RFC 7231 [2]
	indicates that the target resource does not have a current representation that would be acceptable to the user agent, according to the proactive negotiation header fields received in the request (Section 5.3), and the server is unwilling to supply a default representation.

	408 Request Timeout
	IETF RFC 7231 [2]
	indicates that the server did not receive a complete request message within the time that it was prepared to wait.

	410 Gone
	IETF RFC 7231 [2]
	indicates that access to the target resource is no longer available at the origin server and that this condition is likely to be permanent.

	411 Length Required
	IETF RFC 7231 [2]
	indicates that the server refuses to accept the request without a defined Content-Length field containing the length of the message body in the request message.

	413 Payload Too Large
	IETF RFC 7231 [2]
	indicates that the server is refusing to process a request because the request payload is larger than the server is willing or able to process.

	414 URI Too Long
	IETF RFC 7231 [2]
	indicates that the server is refusing to service the request because the request-target is longer than the server is willing to interpret.

	415 Unsupported Media Type
	IETF RFC 7231 [2]
	indicates that the origin server is refusing to service the request because the payload is in a format not supported by this method on the target resource.

	422 Unprocessable Entity
	IETF RFC 4918 [17]
	indicates the server understands the content type of the request entity (hence a 415(Unsupported Media Type) status code is inappropriate), and the syntax of the request entity is correct (thus a 400 (Bad Request) status code is inappropriate) but was unable to process the contained instructions.

	426 Upgrade Required
	IETF RFC 7231 [2]
	indicates that the server refuses to perform the request using the current protocol but might be willing to do so after the client upgrades to a different protocol.

	429 Too Many Requests
	IETF RFC 6585 [18]
	indicates that the user has sent too many requests in a given amount of time ("rate limiting").

Table 6.6.2-2: Supported 5xx server error status codes
	Error status code
	Reference
	Description

	500 Internal Server Error
	IETF RFC 7231 [2]
	Indicates that the server encountered an unexpected condition that prevented it from fulfilling the request.

	501 Not Implemented
	IETF RFC 7231 [2]
	indicates that the server does not support the functionality required to fulfill the request.

	502 Bad Gateway
	IETF RFC 7231 [2]
	indicates that the server, while acting as a gateway or proxy, received an invalid response from an inbound server it accessed while attempting to fulfill the request.

	503 Service Unavailable
	IETF RFC 7231 [2]
	indicates that the server is currently unable to handle the request due to a temporary overload or scheduled maintenance, which will likely be alleviated after some delay.

	504 Gateway Timeout
	IETF RFC 7231 [2]
	indicates that the server, while acting as a gateway or proxy, did not receive a timely response from an upstream server it needed to access in order to complete the request.

	505 HTTP Version Not Supported
	IETF RFC 7231 [2]
	indicates that the server does not support, or refuses to support, the major version of HTTP that was used in the request message.

A MnS Producer may use other error response codes as well. However, there is no guarantee that a MnS Consumer understands the semantics beyond what is specified in clause 6 of IETF RFC 7231 [2]: "A client MUST understand the class of any status code, as indicated by the first digit, and treat an unrecognized status code as being equivalent to the x00 status code of that class".

6.6.3
Error response body

6.6.3.1
Overview

HTTP status codes provide high level error information. This is often not sufficient, for example in situations where the MnS Producer wants to aid the MnS Consumer in generating a valid request. In these cases, the MnS Producer needs to include an error response body in the response, that contains more details on the error than the error code can provide.
The error response body specified in the present document is an extension of the problem details object defined in IETF RFC 7807 [19]. The following three properties of the problem details object are re-used for describing a problem:
· The optional "status" property that contains the status code for the error.

· The mandatory "type" property that provides high level error information. In RFC 7807 this is a URI!!!!
· The optional "title" that provides a short, human-readable summary of the problem type. It shall not change from occurrence to occurrence of the problem.

Potential support for the "details" and "instance" properties is outside the provisions of the present document.
The three re-used properties are extended in the present document with the following property:
· The optional "reason" property" that provides more details on the error conditions than the "type" property.
The "status", "type", "title" and "reason" property are called generic problem details properties. They are applicable to all HTTP methods and request media types. In addition, the following method specific properties are defined:

· The optional "badQueryParams" property that provides information about bad query parameters in GET requests.

· The mandatory "badOp" property that specifies the operation in JSON Patch and 3GPP JSON Patch requests, that cannot be satisfied.

· The optional "badAttributes" property provides information about bad attributes in PUT, POST, JSON Merge Patch and 3GPP JSON Merge Patch requests.

· The optional "badObjects" property provides information about bad objects in 3GPP JSON Merge Patch requests.

A single request may have more than one problem. This situation may occur for example when a GET request has multiple bad query parameters, or when a PATCH request contains multiple bad operations. For that reason the optional "otherProblems" property is provided that allows to return one ore more additional problem detail descriptions.

A MnS Consumer cannot assume that the returned list of problems is exhaustive and includes all problems in the request. A MnS producer may stop processing the request upon detection of the first problem and return an error response.

If all problems have the same error status code, that code shall be used in the status line of the error response. The "status" property of each problem description may repeat that code. However, if the problems have different error codes, the "207 Multi-Status" (IETF RFC4918 [???]) code shall be used in the response status line. The "status" property related to each problem shall contain the specific status code.

The concrete format of the error response body depends on the request. The media type for all error response formats is "application/vnd.3gpp.error+json". The following clauses provide the details.

6.6.3.2
Error response format for GET requests

Each problem is described by the generic problem detail properties, and the additional "badQueryParams" property. The "type" property shall be present. The "status" property shall be present only under the conditions specified in clause X.2.1.
A MnS Consumer cannot assume that the returned list of bad query parameters in "badQueryParams" includes all bad parameters in the request. A MnS Producer may stop processing the request upon detection of the first bad query parameter and return an error response.
The JSON schema for the error response body is as follows.
	{

 "type": "object",

 "properties": {

 "status": {"type": "string"},

 "type": {"type": "string"},

 "reason": {"type": "string"},

 "title": {"type": "string"},

 "badQueryParams": {"type": "array","items": {"type": "string"}},

 "otherProblems": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "status": {"type": "string"},

 "type": {"type": "string"},

 "reason": {"type": "string"},

 "title": {"type": "string"},

 "badQueryParams": {"type": "array","items": {"type": "string"}}

 }

 }

 },

 "required": ["type"]

 },

 "required": ["type"]

}

6.6.3.3
Error response format for PUT, POST, DELETE, JSON Merge Patch and 3GPP JSON Merge Patch requests
The error response is a JSON array of JSON objects with the generic problem details, and the "badAttributes" and "badObjects" properties. The "type" property shall be present. The "status" property shall be present only under the conditions specified in clause 6.6.3. The "badObjects" property is applicable only for 3GPP JSON Merge Patch.

The value of "badAttributes" or "badObjects" is a pointer referencing the bad node. The pointer is is a relative URI and constructed according to the rules defined in clause 6.4.3 for the "path" property of 3GPP JSON Patch.
A MnS Consumer cannot assume that the returned list of bad attributes in "badAttributes" or bad objects in "badObjects" includes all bad attributes or bad objects in the request. A MnS Producer may stop processing the request upon detection of the first bad attribute or object and return an error response.
The JSON schema for the error response body is as follows.
	{

 "type": "object",

 "properties": {

 "status": {"type": "string"},

 "type": {"type": "string"},

 "reason": {"type": "string"},

 "title": {"type": "string"},

 "badAttributes": {"type": "array","items": {"type": "string"}},
 "badObjects": {"type": "array","items": {"type": "string"}},
 "otherProblems": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "status": {"type": "string"},

 "type": {"type": "string"},

 "reason": {"type": "string"},

 "title": {"type": "string"},

 "badAttributes": {"type": "array","items": {"type": "string"}},
 "badObjects": {"type": "array","items": {"type": "string"}}

 }

 }

 },

 "required": ["type"]

 },

 "required": ["type"]

}

6.6.3.4
Error response format for JSON Patch and 3GPP JSON Patch requests

Each problem is described by the generic problem detail properties, and the additional "badOp" property. The "type" and "badOp" properties shall be present. The "status" property shall be present only under the conditions specified in clause 6.6.3.
The patch operation, that cannot be satisfied, is identified with "badOp", whose value is a JSON Pointer identifying the object with the bad patch operation in the request body.
The JSON schema for the error response body is as follows.
	{

 "type": "object",

 "properties": {

 "status": {"type": "string"},

 "type": {"type": "string"},

 "reason": {"type": "string"},

 "title": {"type": "string"},

 "badOP": {"type": "string"},

 "otherProblems": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "status": {"type": "string"},

 "type": {"type": "string"},

 "reason": {"type": "string"},

 "title": {"type": "string"},

 "badOp": {"type": "string"}

 }

 }

 },

 "required": ["type", "badOp"]

 },

 "required": ["type", "badOp"]

}

6.6.4
The "type" property

The "type" property provides high level error information allowing to complement HTTP 4xx and 5xx error codes in case this is necessary or desired. It provides more details on the nature of the problem than the HTTP error codes. Problem types are specified for the following error response codes.

· 400 Bad Request

· 403 Forbidden

· 422 Unprocessable Content
· 500 Internal Server Error

· 503 Service Unavailable

Note that some error codes convey already all information that can be conveyed. For example, the "404 Not Found" status code indicates that the target resource does not exist or has no current representation. It is hard to see which information should be added to make the error response more helpful for the MnS Consumer.

The "type" property is an enumeration of string values. A MnS Producer should use the following values. Other values may be used as well if deemed more appropriate for specific errors.
· VALIDATION_ERROR (HTTP error code: 400 Bad Request): The request message does not validate and cannot be processed. Validation refers to two aspects: Validation of the received request message against the JSON schema definition of the request message, and validation of the information model state after applying the requested changes against the JSON schema definition of the information model, for example, if a new instance of a certain object class is allowed to be contained under the class of the specified parent object.
· REQUEST_OBJECT_TREE_MISMATCH (HTTP error code: 422 Unprocessable Entity): The request message is well formed and understood but cannot be completed due to the current state of the object tree on the MnS Producer. For example, this reason is used when an object is requested to be created below a parent object that does not exist.

· IE_NOT_FOUND (related error code: 400 Bad Request): The information element (object, attribute, attribute field, attribute element) requested to be modified does not exist.

· MODIFICATION_NOT_ALLOWED (HTTP error code: 403 Forbidden): The requested modification is correct and understood but not allowed.

· RETRIEVAL_NOT_ALLOWED (HTTP error code: 403 Forbidden): The retrieval request is well formed and understood but the retrieval of the specified information is not allowed.

· SERVER_LIMITATION (HTTP error code: 500 Internal Server Error): The request is well formed and understood by the MnS Producer, but the MnS Producer cannot satisfy the request due to server limitations.
· SERVICE_DISABLED (HTTP error code: 503 Service Unavailable): The MnS Producer has disabled itself and is currently unable or unwilling to handle the request. This condition may occur, for example, in overload situations.

· APPLICATION_LAYER_ERROR (HTTP error code: 500 Internal Server Error): The request is well formed and understood by the MnS Producer, but the MnS Producer cannot satisfy the request due to application layer issues.

6.6.5
The "reason" property

6.6.5.1
Overview

The "reason" property provides more details on the error conditions than the "type" property. For client-side errors, these reasons may provide hints to the MnS Consumer on how to generate a request without errors. For server-side errors, they may help the MnS Consumer to generate requests that may be satisfied by the MnS Producer.

When multiple reasons apply, the most fundamental reason should be put in the "reasons" property. For example, when a MnS Consumer attempts to replace an invariant attribute, and - in addition - the attribute value is invalid, then only the information that the attribute is invariant shall be contained in the "reason" property.

The "reason" property may be omitted when the MnS Producer does not want to disclose details on the error to the MnS Consumer.

Detailed error reasons are specified by the "reason" property for the following error codes:

· 400 Bad Request

· 403 Forbidden

· 422 Unprocessable Entity
· 500 Internal Server Error
Error reasons depend on the HTTP method, the patch format, and on if attributes or objects are manipulated. The following clauses specify error reasons for the different cases. The provided reasons are not exhaustive. Other values may be used as well. The name style of these enumeration literals shall follow clause 5.3.5.3 of 3GPP TS 32.156 [?].
6.6.5.2
Error reasons for GET

Valid values for the "reason" property for an error response related to HTTP GET are:

· RESPONSE_TOO_LARGE (related type: SERVER_LIMITATION, 500 Internal Server Error): The content requested to be returned exceeds the response body size limit of the MnS Producer.

· NO_DATA_ACCESS (related type: SERVER_LIMITATION, 500 Internal Server Error): The request is correct and understood by the MnS Producer, but the MnS Producer cannot access the requested data.
· QUERY_MALFORMED (related type: VALIDATION_ERROR, 400 Bad Request): The syntax of the query component is malformed. The "badQueryParams" property shall be absent.

· QUERY_PARAM_NAMES_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more query parameter names are invalid. The "badQueryParams" property shall indicate the names of the invalid parameters.

· QUERY_PARAM_VALUES_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more query parameters have an invalid value. The "badQueryParams" property shall indicate the names of the parameters with invalid value.

· QUERY_PARAMS_MISSING (related type: VALIDATION_ERROR, 400 Bad Request): One or more query parameters, that shall be present in the request or that shall be present in case another parameter is present, are missing in the query component. The "badQueryParams" property shall indicate the names of the missing parameters.

· QUERY_PARAMS_INCONSISTENT (related type: VALIDATION_ERROR, 400 Bad Request): Query parameters with mutual dependency constraints do not respect these constraints. The "badQueryParams" property shall indicate the names of the parameters not respecting the dependency constraints.

· ATTRIBUTES_NOT_READABLE (related type: RETRIEVAL_NOT_ALLOWED ,403 Forbidden): One or more attributes or attribute fields identified by the query parameters are not readable, according to the attribute property "isReadable". The "badQueryParams" property shall indicate the names of the parameters identifying attributes that are not readable.

· QUERY_PARAMS_TOO_COMPLEX (related type: SERVER_LIMITATION, 500 Internal Server Error): The query parameters and their values are valid but one or more of them cannot be processed as requested because complexity limits of the MnS Producer are reached, for example, a filter expression is syntactically correct but cannot be evaluated and yields no results since the expression is longer or more complex than the MnS producer can or is willing to process. The "badQueryParams" property shall indicate the names of the parameters that cannot be processed.

It is not an error when query parameters do not identify anything to be returned.

Note that the following query parameters are currently specified in the present document: "scopeType", "scopeLevel", "filter", "attributes", and "fields".

Examples:

Consider the following request:
	GET /SubNetwork=SN1?scopeType=COMPLETE_SUBTREE&scopeLevel=HIGHEST&\

 attributeFields=userLabel HTTP/1.1

Host: example.org

Accept: application/json

The "scopeType" and "scopeLevel" query parameters have invalid values. The query parameter "attributeField" is not defined. All problems have the same HTTP error status code. The error response may look like:
	HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The value of one or more query parameters is invalid.",

 "badQueryParams": ["scopeType", "scopeLevel"],
 "otherProblems": [

 {

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The name of one or more query parameters is invalid.",

 "badQueryParams": ["attributeFields"]

 }
]
}

In the next example the "scopeType" and "scopeLevel" query parameters have invalid values and the "fields" value is syntactically correct and valid, but too complex for the MnS Producer to process. In this case the problems have different HTTP error codes. The "207 Multi-Status" code is used in the response status line, and the "status" property of each problem details object contains to status code of that problem.
	HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "status": 400,

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The value of one or more query parameters is invalid.",

 "badQueryParams": ["attributes", "fields"],
 "problemDetails": [

 {

 "status": 400,

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAM_NAMES_INVALID",
 "title": "The name of one or more query parameters is invalid.",

 "badQueryParams": ["attributeFields"]

 },

 {

 "status": 500,

 "type": "SERVER_LIMITATION",

 "reason": "QUERY_PARAMS_TOO_COMPLEX",
 "title": "The semantics of one or more query parameters is too complex to be processed.",

 "badQueryParams": ["fields"]

 }
]
}

6.6.5.3
Error reasons for attribute manipulations
6.6.5.3.1
JSON Patch and 3GPP JSON Patch

This clause specifies reasons for errors that may occur when attempting to manipulate attributes of existing resources with JSON Patch and 3GPP JSON Patch. JSON Patch and 3GPP JSON Patch are used for partial resource updates.

This specification defines the following error reasons for use with JSON Patch and 3GPP JSON Patch:

· NEW_ATTRIBUTE_VALUE_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The attribute, attribute field or attribute element, as specified in the "path" property, cannot be added, or its value cannot be replaced, as requested, because the value, as specified in the "value" property, is invalid. Valid values are determined by the attribute properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", and "isNullable".

· NEW_ATTRIBUTE_NAME_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The attribute or attribute field cannot be added as requested, because its name, as specified in the "path" property, is invalid.

· NEW_ATTRIBUTE_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Entity): The attribute or attribute field cannot be added as requested, because its parent, as specified in the "path" property, does not exist.
· ATTRIBUTE_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): The attribute or attribute field cannot be removed, moved, copied, or is value cannot be replaced, as requested, because the "path" or "from" property identifies an attribute or attribute field, that does not exist.

· ATTRIBUTE_ELEMENT_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): The attribute element cannot be replaced, removed, moved, or copied, because the "path" or "from" property identifies an attribute element, that does not exist.
· ATTRIBUTE_INDEX_BAD (related type: IE_NOT_FOUND, 400 Bad Request): The attribute element cannot be added at the specified array location as requested, because the array element index specified in the "path" property is greater than the number of elements in the array.
· FINAL_MV_ATTRIBUTE_VALUE_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Entity): The attribute element, as specified in the "value" property cannot be added to or removed from the multi-valued attribute as requested, because this would result in an invalid value, according to the attribute properties "multiplicity" or "isUnique". The attribute element itself is valid.
· ATTRIBUTE_NOT_WRITABLE (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): The attribute or attribute field cannot be added, removed, or moved, or its value cannot be replaced, as requested, because the attribute or attribute field is not writable by MnS Consumers, according to the attribute property "isWritable".

· ATTRIBUTE_INVARIANT (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): The attribute or attribute field cannot be added, removed, or moved, or its value cannot be replaced, as requested, because the attribute or attribute field is invariant, according to the attribute property "isInvariant".

· OP_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The patch operation specified by the "op" property is not known by the MnS producer. This situation may occur, for example, when a patch operation is not supported or wrongly spelled.

Examples:

In this example the attribute field "attrB" is requested to be replaced with a new value.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "replace",
 "path": "/attributes/attrA/attrB",
 "value": "def"
 }
]

When "attrB" is invariant and its value cannot be replaced after object creation, the error response may look like:

	HTTP/1.1 403 Not Forbidden
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute, whose value is requested to be replaced, is invariant.",
 "badOp": "/0"

}

6.6.5.3.2
JSON Merge Patch, 3GPP JSON Merge Patch and PUT
This clause specifies reasons for errors that may occur when attempting to manipulate attributes of existing resources with JSON Merge Patch, 3GPP JSON Merge Patch and PUT. JSON Merge Patch and 3GPP Merge JSON Patch are used for partial resource updates. PUT is used for complete resource updates.
The following error reasons are defined for use with JSON Merge Patch, 3GPP JSON Merge Patch, and PUT:

· NEW_ATTRIBUTE_VALUE_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more attributes or attribute fields cannot be added, or their values cannot be replaced, as requested, because the received value is invalid. Valid values are determined by the attribute properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", and "isNullable". The "badAttributes" property provides the path to these attributes and attribute fields.

· NEW_ATTRIBUTE_NAME_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more attributes or attribute fields cannot be added as requested, because the received attribute or attribute field name is invalid. The "badAttributes" property provides the path to these attributes and attribute fields.

· ATTRIBUTE_NOT_WRITABLE (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more attributes or attribute fields cannot be added or removed, or their values cannot be replaced, as requested, because the attributes or attribute fields are not writable by MnS Consumers, according to the attribute property "isWritable". The "badAttributes" property provides the path to these attributes and attribute fields.

· ATTRIBUTE_INVARIANT (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more attributes or attribute fields cannot be added or removed, or their values cannot be replaced, as requested, because the attributes or attribute fields are invariant, according to the attribute property "isInvariant". The "badAttributes" property provides the path to these attributes and attribute fields.

The following additional error reasons are defined for use with JSON Merge Patch and 3GPP JSON Merge Patch:

· ATTRIBUTE_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): One or more attribute or attribute fields cannot be removed as requested, because they do not exist. The "badAttributes" property provides the path to these attributes and attribute fields.

Examples:
In this example the MnS Consumer requests to replace the current value of "attrB" with "def".

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-merge-patch+json
{

 "id": "XYZF1",

 "attributes": {

 "attrA": {

 "attrB": "def"

 }

 }

}

When "attrB" is invariant the MnS Producer might respond as follows.

	HTTP/1.1 403 Forbidden
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",
 "title": "The attribute field, whose value is requested to be replaced, is invariant.",

 "badAttributes": ["#/attributes/attrA/attrB"]

}

6.6.5.4
Error reasons for object manipulations

The following reasons are defined for errors that may occur when attempting to create objects with PUT, POST. 3GPP JSON Merge Patch and 3GPP JSON Patch, or when attempting to delete objects with DELETE, 3GPP JSON Merge Patch and 3GPP JSON Patch:
· OBJECT_CREATION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more objects cannot be created as requested because objects of this class cannot be created by MnS Consumers.

· OBJECT_DELETION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more objects cannot be deleted as requested, because objects of this class cannot be deleted by MnS Consumers.

· NEW_OBJECT_CLASS_NAME_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more objects cannot be created as requested, because the receive object class name is unknown to the MnS Producer.

· NEW_OBJECT_REPRESENTATION_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more objects cannot be created as requested, because the received object representation does not validate.

· NEW_OBJECT_CONTAINMENT_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more objects cannot be created under the specified parent as requested, because this containment is not allowed.

· NEW_OBJECTS_ID_EXISTS (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects cannot be created as requested, because the received "id" exists already under the specified parent.

· NEW_OBJECTS_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects cannot be created as requested, because their specified parents do not exist.

· NEW_OBJECT_ATTRIBUTE_VALUE_MISSING (related type: VALIDATION_ERROR, 400 Bad Request): One or more objects cannot be created as requested, because attribute or attribute field values, that shall be provided in the creation request, are not provided.

· OBJECTS_CARDINALITY_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects cannot be created or deleted as requested, because this would result in violating cardinality constraints.

· OBJECT_NOT_A_LEAF (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects cannot be deleted as requested, because they are not leaf objects.

· OBJECT_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): One or more objects cannot be deleted as requested, because they do not exist.

· OP_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The patch operation specified by the "op" property is not known by the MnS Producer. This situation may occur, for example, when a patch operation is not supported or wrongly spelled.

The error reason "NEW_OBJECT_REPRESENTATION_INVALID" provides no information on why the representation of the resource requested to be created is invalid. A MnS Producer may decide to provide more details by specifying the error reasons related to attributes defined in clause X.4.3.2 instead of the general reason "NEW_OBJECT_REPRESENTATION_INVALID". The attributes or attribute fields with problems are specified by the "badAttributes" property.

PUT example:

In this example a MnS Producer requests the creation of a resource using PUT.

	PUT /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3 HTTP/1.1

Host: example.org

Content-Type: application/json
{

 "id": "XYZF3",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "ghi",

 "attrB": 553

 }

}

When the resource representation provided in the request is invalid the MnS Producer may send the following error response.

	HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "VALIDATION_ERROR",

 "reason": "NEW_OBJECT_REPRESENTATION_INVALID",

 "title": "The object cannot be created because its representation is invalid."
}

The MnS Producer may also choose to provide more details on why the resource representation is invalid. For example, when the attribute name "attrB" is invalid, the MnS Producer may return the following error response.

	HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "VALIDATION_ERROR",

 "reason": "NEW_ATTRIBUTE_NAME_INVALID",
 "title": "The object representation is invalid because an attribute name is invalid.",
 "badAttributes": ["#/attributes/attrB"]

}

It is possible that the request fails for multiple reasons. For example, the object representation might be invalid, and the "id" of the resource requested to be created does already exist.
	HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "status": 400,

 "type": "VALIDATION_ERROR",

 "reason": "NEW_OBJECT_REPRESENTATION_INVALID",

 "title": "The object cannot be created because its representation is invalid.",
 "otherProblems": [

 {

 "status": 422,

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "NEW_OBJECTS_ID_EXISTS",

 "title": "The object cannot be created because the object id exists already."
 }
]
}

DELETE example:

In this example a MnS Producer requests the deletion of a resource using DELETE.

	DELETE /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3 HTTP/1.1

Host: example.org

When the object to be deleted does not exist the MnS Producer may send
	HTTP/1.1 404 Not Found
Date: Tue, 06 Aug 2019 16:50:26 GMT

When the object does exist but cannot be deleted, because it is not a leaf, the arror response may be as follows.

	HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "OBJECT_NOT_A_LEAF",

 "title": "The object cannot be deleted because it is not a leaf.",

}

The MnS Producer can also return multiple reasons why a request fails. For example, when the object requested to be deleted is not a leaf, and could not be deleted even if it were a leaf due to cardinality constraints, the MnS Producer may return the following.
	HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "status": 422,

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "OBJECT_NOT_A_LEAF",

 "title": "The object cannot be deleted because it is not a leaf.",

 "otherProblems": [

 {

 "status": 422,

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "OBJECTS_CARDINALITY_INVALID",

 "title": "The object cannot be created because of cardinality constraints."
 }
]

}

In the previous example all problems have the same error code. For that reason the error codes can be omitted in the response body.
	HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "OBJECT_NOT_A_LEAF",

 "title": "The object cannot be deleted because it is not a leaf.",

 "otherProblems": [

 {

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "OBJECTS_CARDINALITY_INVALID",

 "title": "The object cannot be created because of cardinality constraints."
 }
]

}

3GPP JSON Patch example:

Assume the following patch is applied to an object tree, that has one "SubNetwork" instance only. The first operation requests to create a "ManagedElement". This operation is successful. The second operation requests to create a "HuhuFunction" object under the new object. The "HuhuFunction" is not known to the MnS Producer. This operation fails. The third operation fails as well, since it requests to create a new object under an object that does not exist.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "add",

 "path": "/ManagedElement=ME1",

 "value": {

 "id": "ME3",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME1/HuhuFunction=HUHUF1",

 "value": {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",

 "value": {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772

 }

 }

 }

]

The error response may look like:
	HTTP/1.1 207 Multi-Status

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "status": 400,

 "type": "VALIDATION_ERROR",

 "reason": "NEW_OBJECT_CLASS_NAME_INVALID",

 "title": "The class of the new object to be created is invalid.",
 "badOp": "/1",

 "otherProblems": [

 {

 "status": 422,

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "NEW_OBJECTS_PARENT_NOT_FOUND",

 "title": "The parent object of the new object to be created does not exist."

 "badOp": "/2"

 }

]
}

3GPP JSON Merge Patch example:

Assume the "ManagedElement" with the identifier "ME3" does not exist. Then the following message requests to create two new objects under a non-existent object. This request cannot be satisfied.
Qustion: Is ME3 not simply merged into the MIB, e.g. created?
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-merge-patch+json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME3",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772

 }

 }

]

 }

]

}

The error message may look like:

	HTTP/1.1 422 Unprocessable Content

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "NEW_OBJECT_PARENT_NOT_FOUND",

 "title": "The object, below which new objects are requested to be created, does not exist.",

 "badObjects": [
 "/ManagedElement=ME3/XyzFunction=XYZF1",
 "/ManagedElement=ME3/XyzFunction=XYZF2"
]

}

6.6.6
Error reasons for application layer errors

Error reasons for the error type "APPLICATION_LAYER_ERROR" are very dependent on the specific application. Therefore, it is almost impossible to define application layer error reasons that are applicable to more than one application.

This specification defines the following values for the "reason" property:

· RESOURCE_LOCKED (related type: RETRIEVAL_NOT_ALLOWED ,403 Forbidden): The resource was locked by administrative action and cannot be accessed.

· SERVICE_LOCKED (HTTP error code: 503 Service Unavailable): The MnS Producer has been locked by administrative action and is currently unable to handle the request. This condition may occur, for example, due to scheduled maintenance. The "reason" property shall be absent.

Examples:
In the following example a MnS Consumer requests the creation of a "PerfMetricJob" instance indicating that "metric1" and "metric2" shall be collected for "obj1" and "obj2" with a granularity period if 5min.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "add",

 "path": "/PerfMetricJob=PMJ1",

 "value": {

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "objectClass": "PerfMetricJob",

 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "metric1",

 "metric2"

],

 "objectInstances": [

 "obj1",

 "obj2"

]

 }

 }

]

 }

 }

]

When the requested granularity period is not supported, the "PerfMetricJob" instance is not created. The MnS Producer might answer with the following error response.
	HTTP/1.1 400 Bad Request

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.error+json
{

 "type": "APPLICATION_LAYER_ERROR",

 "reason": "GRANULARITY_PERIOD_NOT_SUPPORTED",

 "title": "The requested granularity period for metric collection is not supported."

}

6.6.7
Security considerations

When the MnS Consumer is not trustworthy or the MnS Producer does not want to disclose error details, just the "type" property may be included in the error response. The response body may be omitted also completely, and just the error status code be returned in the response status line.
	End of modifications

