

	
3GPP TSG-SA5 Meeting #149	S5-234070
Berlin, Germany, 22nd May 2023 - 26th May 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	28.623
	CR
	0249
	rev
	-
	Current version:
	17.5.1
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	YANG Corrections

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	TEI17
	
	Date:
	2023-05-11

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	YANG updates to
· correct stage 2 to stage 3 mismatch or
· add missing YANG mappings or
· correct YANG code not following the TS 32.160 YANG mapping rules.

	
	

	Summary of change:
	Updates to the YANG code only, no stage 2 changes

	
	

	Consequences if not approved:
	YANG code that is faulty and/or does not match exiting stage 2.

	
	

	Clauses affected:
	D.2.8, D.2.9, D.2.11

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Forge link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/594 at commit 70bcaec5837ce23add202748add7e166c9c1d4ed

	
	

	This CR's revision history:
	

[bookmark: _Ref305596378][bookmark: _Ref305671447][bookmark: _Ref308537250][bookmark: _Ref308537279][bookmark: _Ref310868142][bookmark: _Toc516495114][bookmark: _Hlk117416929]
First change
[bookmark: _Toc27489935][bookmark: _Toc36033518][bookmark: _Toc36475780][bookmark: _Toc44581541][bookmark: _Toc51769157][bookmark: _Toc130312476]D.2.8	module _3gpp-common-yang-types.yang
<CODE BEGINS>
module _3gpp-common-yang-types {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-yang-types";
 prefix "types3gpp";

 import ietf-inet-types { prefix inet; }
 import ietf-yang-types { prefix yang; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";
 description "The model defines a YANG mapping of the top level
 information classes used for management of 5G networks and
 network slicing.";
 reference "3GPP TS 28.623";

 revision 2023-05-09 { reference CR-0249; }
 revision 2022-11-03 { reference "CR-0193"; }
 revision 2022-10-31 { reference CR-0195; }
 revision 2022-07-26 { reference CR-0180 ; }
 revision 2022-02-09 { reference "CR-0144"; }
 revision 2021-11-01 { reference "CR-0141"; }

 revision 2021-09-30 {
 description "Added Longitude, Latitude, TenthOfDegrees, OnOff.";
 reference "CR-0138";
 }

 revision 2020-11-06 {
 description "Removed incorrect S-NSSAI definitions.";
 reference "CR-0118";
 }

 revision 2020-03-10 {
 description "Removed faulty when statements.";
 reference "SP-200229";
 }

 revision 2019-10-25 {
 description "Added ManagedNFProfile.";
 reference "S5-194457";
 }

 revision 2019-10-16 {
 description "Added SAP and usageState.";
 reference "S5-193518";
 }

 revision 2019-06-23 {
 reference "Initial version.";
 }

 typedef EnabledDisabled {
 type enumeration {
 enum DISABLED ;
 enum ENABLED ;
 }
 }

 grouping nameValuePair {
 leaf name { type string; }
 leaf value { type string; }
 }

 grouping ProcessMonitor {
 description "Provides attributes to monitor the progress of processes
 with specific purpose and limited lifetime running on MnS producers.
 It may be used as data type for dedicated progress monitor attributes
 when specifying the management representation of these processes.
 The attributes in this clause are defined in a generic way.
 For some attributes specialisations may be provided when specifying a
 concrete process representation.

 If a management operation on some IOCs triggers an associated
 asynchronous process (whose progress shall be monitored), this should
 also result in creating an attribute named 'processMonitor' (of type
 'ProcessMonitor') in these IOC(s). The processMonitor attribute may be
 accompanied by use-case specific additional data items.

 The progress of the process is described by the 'status' and
 'progressPercentage' attributes. Additional textual qualifications for
 the 'status' attribute may be provided by the 'progressStateInfo' and
 'resultStateInfo' attributes.

 When the process is instantiated, the 'status' is set to 'NOT_RUNNING'
 and the 'progressPercentage' to '0'. The MnS producer decides when to
 start executing the process and to transition into the 'RUNNING' state.
 This time is captured in the 'startTime' attribute. Alternatively, the
 process may start to execute directly upon its instantiation. One
 alternative must be selected when using this data type.

 During the 'RUNNING' state the 'progressPercentage' attribute may be
 repeatedly updated. The exact semantic of this attribute is subject to
 further specialisation. The 'progressInfo' attribute may be used to
 provide additional textual information in the 'NOT_RUNNING', 'CANCELLING'
 and 'RUNNING' states. Further specialisation of
 'progressStateInfo' may be provided where this data type is
 used.

 Upon successful completion of the process, the 'status' attribute is set
 to 'FINISHED', the 'progressPercentage' to 100%. The time is captured in
 the 'endTime' attribute. Additional textual information may be provided
 in the 'resultStateInfo' attribute. The type of
 'resultStateInfo' in this data type definition is 'String'.
 Further specialisation of 'resultStateInfo' may be provided
 where this data type is used.

 In case the process fails to complete successfully, the 'status'
 attribute is set to 'FAILED' or 'PARTIALLY_FAILED', the current value of
 'progressPercentage' is frozen, and the time captured in 'endTime'. The
 'resultStateInfo' specifies the reason for the failure.
 Specific failure reasons may be specified where the data type defined in
 this clause is used. The exact semantic of failure may be subject for
 further specialisation as well.

 In case the process is cancelled, the 'status' attribute is first set to
 'CANCELLING' and when the process is really cancelled then to 'CANCELLED'.
 The transition to 'CANCELLED' is captured in the 'endTime' attribute.
 The value of 'progressPercentage' is frozen. Additional textual
 information may be provided in the 'resultStateInfo' attribute.

 The 'resultStateInfo' attribute is provided only for additional textual
 qualification of the states 'FINISHED', 'FAILED', 'PARTIALLY_FAILED' or
 'CANCELLED'. It shall not be used for making the outcome, that the
 process may produce in case of success, available.

 The process may have to be completed within a certain time after its
 creation, for example because required data may not be available any
 more after a certain time, or the process outcome is needed until a
 certain time and when not provided by this time is not needed any more.
 The time until the MnS producer automatically cancels the process is
 indicated by the 'timer' attribute.";

 leaf id {
 type string;
 mandatory true;
 description "Id of the process. It is unique within a single
 multivalue attribute of type ProcessMonitor.";
 }

 leaf status {
 type enumeration {
 enum NOT_STARTED ;
 enum RUNNING ;
 enum CANCELLING ;
 enum FINISHED ;
 enum FAILED ;
 enum PARTIALLY_FAILED ;
 enum CANCELLED ;
 }
 config false;
 default RUNNING;
 description "Represents the status of the associated process,
 whether it fails, succeeds etc.
 It does not represent the returned values of a successfully finished
 process. ";
 }

 leaf progressPercentage {
 type uint8 {
 range 0..100;
 }
 config false;
 description "Progress of the associated process as percentage";
 }

 leaf-list progressStateInfo {
 type string;
 config false;
 description "Additional textual qualification of the states
 'NOT_STARTED', 'CANCELLING' and 'RUNNING'.

 For specific processes, specific well-defined strings (e.g. string
 patterns or enums) may be defined as a specialisation.";
 }

 leaf resultStateInfo {
 type string;
 config false;
 description "Additional textual qualification of the states
 'FINISHED', 'FAILED', 'PARTIALLY_FAILED and 'CANCELLED'.
 For example, in the 'FAILED' or 'PARTIALLY_FAILED' state this
 attribute may be used to provide error reasons.

 This attribute shall not be used to make the outcome of the process
 available for retrieval, if any. For this purpose, dedicated
 attributes shall be specified when specifying the representation of
 a specific process.

 For specific processes, specific well-defined strings (e.g. string
 patterns or enums) may be defined as a specialisation.";
 }

 leaf startTime {
 type yang:date-and-time;
 config false;
 description "Start time of the associated process, i.e. the time when the
 status changed from 'NOT_STARTED' to 'RUNNING'.";
 }

 leaf endTime {
 type yang:date-and-time;
 config false;
 description "Date and time when status changed to 'SUCCESS', 'CANCELLED',
 'FAILED' or 'PARTIALLY_FAILED'.

 If the time is in the future, it is the estimated time
 the process will end.";
 }

 leaf timer {
 type uint32;
 units minutes;
 description "Time until the associated process is automatically cancelled.
 If set, the system decreases the timer with time. When it reaches zero
 the cancellation of the associated process is initiated by the
 MnS_Producer.
 If not set, there is no time limit for the process.

 Once the timer is set, the consumer can not change it anymore.
 If the consumer has not set the timer the MnS Producer may set it.";
 yext3gpp:notNotifyable;
 }
 }

 typedef TenthOfDegrees {
 type uint16 {
 range 0..3600;
 }
 units "0.1 degrees";
 description "A single integral value corresponding to an angle in degrees
 between 0 and 360 with a resolution of 0.1 degrees.";
 }

 typedef Latitude {
 type decimal64 {
 fraction-digits 4;
 range "-90.0000..+90.0000";
 }
 description "Latitude values";
 }

 typedef Longitude {
 type decimal64 {
 fraction-digits 4;
 range "-180.0000..+180.0000";
 }
 description "Longitude values";
 }

 typedef OnOff {
 type enumeration {
 enum ON;
 enum OFF;
 }
 }

 // grouping ManagedNFProfile will be removed as it is
 // being moved to _3gpp-5gc-nrm-nfprofile
 grouping ManagedNFProfile {
 description "Defines profile for managed NF";
 reference "3GPP TS 23.501";

 leaf idx { type uint32 ; }

 leaf nfInstanceID {
 config false;
 mandatory true;
 type yang:uuid ;
 description "This parameter defines profile for managed NF.
 The format of the NF Instance ID shall be a
 Universally Unique Identifier (UUID) version 4,
 as described in IETF RFC 4122 " ;
 }

 leaf-list nfType {
 config false;
 min-elements 1;
 type NfType;
 description "Type of the Network Function" ;
 }

 leaf hostAddr {
 mandatory true;
 type inet:host ;
 description "Host address of a NF";
 }

 leaf authzInfo {
 type string ;
 description "This parameter defines NF Specific Service authorization
 information. It shall include the NF type (s) and NF realms/origins
 allowed to consume NF Service(s) of NF Service Producer.";
 reference "See TS 23.501" ;
 }

 leaf location {
 type string ;
 description "Information about the location of the NF instance
 (e.g. geographic location, data center) defined by operator";
 reference "TS 29.510" ;
 }

 leaf capacity {
 mandatory true;
 type uint16 ;
 description "This parameter defines static capacity information
 in the range of 0-65535, expressed as a weight relative to other
 NF instances of the same type; if capacity is also present in the
 nfServiceList parameters, those will have precedence over this value.";
 reference "TS 29.510" ;
 }

 leaf nFSrvGroupId {
 type string ;
 description "This parameter defines identity of the group that is
 served by the NF instance.
 May be config false or true depending on the ManagedFunction.
 Config=true for Udrinfo. Config=false for UdmInfo and AusfInfo.
 Shall be present if ../nfType = UDM or AUSF or UDR. ";
 reference "TS 29.510" ;
 }

 leaf-list supportedDataSetIds {
 type enumeration {
 enum SUBSCRIPTION;
 enum POLICY;
 enum EXPOSURE;
 enum APPLICATION;
 }
 description "List of supported data sets in the UDR instance.
 May be present if ../nfType = UDR";
 reference "TS 29.510" ;
 }

 leaf-list smfServingAreas {
 type string ;
 description "Defines the SMF service area(s) the UPF can serve.
 Shall be present if ../nfType = UPF";
 reference "TS 29.510" ;
 }

 leaf priority {
 type uint16;
 description "This parameter defines Priority (relative to other NFs
 of the same type) in the range of 0-65535, to be used for NF selection;
 lower values indicate a higher priority. If priority is also present
 in the nfServiceList parameters, those will have precedence over
 this value. Shall be present if ../nfType = AMF ";
 reference "TS 29.510" ;
 }
 }

 typedef usageState {
 type enumeration {
 enum IDLE;
 enum ACTIVE;
 enum BUSY;
 }
 description "It describes whether or not the resource is actively in
 use at a specific instant, and if so, whether or not it has spare
 capacity for additional users at that instant. The value is READ-ONLY.";
 reference "ITU T Recommendation X.731";
 }

 grouping SAP {
 leaf host {
 type inet:host;
 mandatory true;
 }
 leaf port {
 type inet:port-number;
 mandatory true;
 }
 description "Service access point.";
 reference "TS 28.622";
 }

 typedef Mcc {
 description "The mobile country code consists of three decimal digits,
 The first digit of the mobile country code identifies the geographic
 region (the digits 1 and 8 are not used):";
 type string {
 pattern '[02-79][0-9][0-9]';
 }
 reference "3GPP TS 23.003 subclause 2.2 and 12.1";
 }

 typedef Mnc {
 description "The mobile network code consists of two or three
 decimal digits (for example: MNC of 001 is not the same as MNC of 01)";
 type string {
 pattern '[0-9][0-9][0-9]|[0-9][0-9]';
 }
 reference "3GPP TS 23.003 subclause 2.2 and 12.1";
 }

 grouping PLMNId {
 leaf mcc {
 mandatory true;
 type Mcc;
 }
 leaf mnc {
 mandatory true;
 type Mnc;
 }
 reference "TS 23.658";
 }

 typedef Nci {
 description "NR Cell Identity. The NCI shall be of fixed length of 36 bits
 and shall be coded using full hexadecimal representation.
 The exact coding of the NCI is the responsibility of each PLMN operator";
 reference "TS 23.003";
 type union {
 type string {
 length 36;
 pattern '[01]+';
 }
 type string {
 length 9;
 pattern '[a-fA-F0-9]*';
 }
 }
 }

 typedef OperationalState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum DISABLED {
 value 0;
 description "The resource is totally inoperable.";
 }

 enum ENABLED {
 value 1;
 description "The resource is partially or fully operable.";
 }

 }
 }

 typedef BasicAdministrativeState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum LOCKED {
 value 0;
 description "The resource is administratively prohibited from performing
 services for its users.";
 }

 enum UNLOCKED {
 value 1;
 description "The resource is administratively permitted to perform
 services for its users. This is independent of its inherent
 operability.";
 }
 }
 }

 typedef AdministrativeState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum LOCKED {
 value 0;
 description "The resource is administratively prohibited from performing
 services for its users.";
 }

 enum UNLOCKED {
 value 1;
 description "The resource is administratively permitted to perform
 services for its users. This is independent of its inherent
 operability.";
 }

 enum SHUTTINGDOWN {
 value 2;
 description "Use of the resource is administratively permitted to
 existing instances of use only. While the system remains in
 the shutting down state the manager or the managed element
 may at any time cause the resource to transition to the
 locked state.";
 }
 }
 }

 typedef AvailabilityStatus {
 type enumeration {
 enum IN_TEST;
 enum FAILED;
 enum POWER_OFF;
 enum OFF_LINE;
 enum OFF_DUTY;
 enum DEPENDENCY;
 enum DEGRADED;
 enum NOT_INSTALLED;
 enum LOG_FULL;
 }
 }

 typedef CellState {
 type enumeration {
 enum IDLE;
 enum INACTIVE;
 enum ACTIVE;
 }
 }

 typedef Nrpci {
 type uint32;
 description "Physical Cell Identity (PCI) of the NR cell.";
 reference "TS 36.211 subclause 6.11";
 }

 typedef Tac {
 type int32 {
 range 0..16777215 ;
 }
 description "Tracking Area Code";
 reference "TS 23.003 clause 19.4.2.3";
 }

 typedef AmfRegionId {
 type union {
 type uint8 ;
 type string {
 length 8;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 typedef AmfSetId {
 type union {
 type uint16 {
 range '0..1023';
 }
 type string {
 length 8;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 typedef AmfPointer {
 type union {
 type uint8 {
 range '0..63';
 }
 type string {
 length 6;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 grouping AmfIdentifier {
 leaf amfRegionId {
 type AmfRegionId;
 }
 leaf amfSetId {
 type AmfSetId;
 }
 leaf amfPointer {
 type AmfPointer;
 }
 description "The AMFI is constructed from an AMF Region ID,
 an AMF Set ID and an AMF Pointer.
 The AMF Region ID identifies the region,
 the AMF Set ID uniquely identifies the AMF Set within the AMF Region, and
 the AMF Pointer uniquely identifies the AMF within the AMF Set. ";
 }

// type definitions especially for core NFs

 typedef NfType {
 type enumeration {
 enum NRF;
 enum UDM;
 enum AMF;
 enum SMF;
 enum AUSF;
 enum NEF;
 enum PCF;
 enum SMSF;
 enum NSSF;
 enum UDR;
 enum LMF;
 enum GMLC;
 enum 5G_EIR;
 enum SEPP;
 enum UPF;
 enum N3IWF;
 enum AF;
 enum UDSF;
 enum BSF;
 enum CHF;
 }
 }

 typedef NotificationType {
 type enumeration {
 enum N1_MESSAGES;
 enum N2_INFORMATION;
 enum LOCATION_NOTIFICATION;
 }
 }

 typedef Load {
 description "Latest known load information of the NF, percentage ";
 type uint8 {
 range 0..100;
 }
 }

 typedef N1MessageClass {
 type enumeration {
 enum 5GMM;
 enum SM;
 enum LPP;
 enum SMS;
 }
 }

 typedef N2InformationClass {
 type enumeration {
 enum SM;
 enum NRPPA;
 enum PWS;
 enum PWS_BCAL;
 enum PWS_RF;
 }
 }

 grouping DefaultNotificationSubscription {

 leaf notificationType {
 type NotificationType;
 }

 leaf callbackUri {
 type inet:uri;
 }

 leaf n1MessageClass {
 type N1MessageClass;
 }

 leaf n2InformationClass {
 type N2InformationClass;
 }
 }

 grouping Ipv4AddressRange {
 leaf start {
 type inet:ipv4-address;
 }
 leaf end {
 type inet:ipv4-address;
 }
 }

 grouping Ipv6PrefixRange {
 leaf start {
 type inet:ipv6-prefix;
 }
 leaf end {
 type inet:ipv6-prefix;
 }
 }

 typedef NsiId {
 type string;
 }

 typedef UeMobilityLevel {
 type enumeration {
 enum STATIONARY;
 enum NOMADIC;
 enum RESTRICTED_MOBILITY;
 enum FULLY_MOBILITY;
 }
 }

 typedef ResourceSharingLevel {
 type enumeration {
 enum SHARED;
 enum NOT_SHARED;
 }
 }

 typedef TxDirection {
 type enumeration {
 enum DL;
 enum UL;
 enum DL_AND_UL;
 }
 }

 grouping AddressWithVlan {
 leaf ipAddress {
 type inet:ip-address;
 }
 leaf vlanId {
 type uint16;
 }
 }

 typedef DistinguishedName { // TODO is this equivalent to TS 32.300 ?
 type string {
 pattern '([a-zA-Z][a-zA-Z0-9-]*=(\\(|#|\\|>|<|;|"|\+|,|[a-fA-F0-9]{2})|[^\\><;"+,#])'
 + '((\\(|#|\\|>|<|;|"|\+|,|[a-fA-F0-9]{2})|[^\\><;"+,])*'
 + '(\\(|#|\\|>|<|;|"|\+|,|[a-fA-F0-9]{2})|[^\\><;"+,]))?'
 + '[,\+])*[a-zA-Z][a-zA-Z0-9-]*=(\\(|#|\\|>|<|;|"|\+|,|[a-fA-F0-9]{2})|[^\\><;"+,#])'
 + '((\\(|#|\\|>|<|;|"|\+|,|[a-fA-F0-9]{2})'
 + '|[^\\><;"+,])*(\\(|#|\\|>|<|;|"|\+|,|[a-fA-F0-9]{2})|[^\\><;"+,]))?';
 }
 description "Represents the international standard for the representation
 of Distinguished Name (RFC 4512).
 The format of the DistinguishedName REGEX is:
 {AttributeType = AttributeValue}

 AttributeType consists of alphanumeric and hyphen (OIDs not allowed).
 All other characters are restricted.
 The Attribute value cannot contain control characters or the
 following characters : \\ > < ; \" + , (Comma) and White space
 The Attribute value can contain the following characters if they
 are excaped : \\ > < ; \" + , (Comma) and White space
 The Attribute value can contain control characters if its an escaped
 double digit hex number.
 Examples could be
 UID=nobody@example.com,DC=example,DC=com
 CN=John Smith,OU=Sales,O=ACME Limited,L=Moab,ST=Utah,C=US";
 reference "RFC 4512 Lightweight Directory Access Protocol (LDAP):
 Directory Information Models";
 } // recheck regexp it doesn't handle posix [:cntrl:]

 typedef QOffsetRange {
 type int8 {
 range "-24 | -22 | -20 | -18 | -16 | -14 | -12 | -10 | -8 | -6 | " +
 " -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | " +
 " 12 | 14 | 16 | 18 | 20 | 22 | 24";
 }
 units dB;
 }

 grouping ReportingCtrl {
 choice reportingCtrl {
 mandatory true;
 description "
 This choice defines the method for reporting collected performance
 metrics to MnS consumers as well as the parameters for configuring the
 reporting function. It is a choice between the control parameter
 required for the reporting methods, whose presence selects the
 reporting method as follows:

 - When only the fileReportingPeriod attribute is present, the MnS
 producer shall store files on the MnS producer at a location selected
 by the MnS producer and, on condition that an appropriate subscription
 is in place, inform the MnS consumer about the availability of new
 files and the file location using the notifyFileReady notification.
 In case the preparation of a file fails, 'notifyFilePreparationError'
 shall be sent instead.

 - When the 'fileReportingPeriod' and 'notificationRecipientAddress'
 attributes are present, then the MnS producer shall behave like
 described for the case that only the 'fileReportingPeriod' is present.
 In addition, the MnS producer shall create on behalf of the MnS
 consumer a subscription, using 'NtfSubscriptionControl', for the
 notification types 'notifyMOICreation' and 'notifyMOIDeletion' related
 to the 'File' instances that will be produced later. In case an existing
 subscription does already include the 'File' instances to be produced,
 no new subscription shall be created. The
 'notificationRecipientAddress' attribute in the created
 'NtfSubscriptionControl' instance shall be set to the value of the
 'notificationRecipientAddress' in the related 'PerfMetricJob'. This
 feature is called implicit notification subscription, as opposed to the
 case where the MnS consumer creates the subscription (explicit
 notification subscription). When the related 'PerfMetricJob' is
 deleted, the 'NtfSubscriptionControl' instance created due to the
 request for implicit subscription shall be deleted as well.

 - When only the fileReportingPeriod and fileLocation attributes are
 present, the MnS producer shall store the files on a MnS consumer, that
 can be any entity such as a file server, at the location specified by
 fileLocation. No notification is emitted by the MnS producer.

 - When only the streamTarget attribute is present, the MnS producer
 shall stream the data to the location specified by streamTarget.

 For the file-based reporting methods the fileReportingPeriod attribute
 specifies the time window during which collected measurements are
 stored into the same file before the file is closed and a new file is
 opened.";

 case file-based-reporting {
 leaf fileReportingPeriod {
 type uint32 {
 range 1..max;
 }
 units minutes;
 mandatory true;
 description "For the file-based reporting method this is the time
 window during which collected measurements are stored into the same
 file before the file is closed and a new file is opened.
 The time-period must be a multiple of the granularityPeriod.

 Applicable when the file-based reporting method is supported.";
 }
 choice reporting-target {
 case file-target {
 leaf fileLocation {
 type string ;
 description "Applicable and must be present when the file-based
 reporting method is supported, and the files are stored on the MnS
 consumer.";
 }
 }
 case notification-target {
 leaf notificationRecipientAddress {
 type string;
 description "Must be present when the notification-based reporting
 method is supported, and the the files are available as
 notifications for the MnS consumer to subscribe to.";
 }
 }
 description "When netiher fileLocation or notificationRecipientAddress
 are present, the files are stored and available to the MnS consumer
 if the MnS subscribes to the notifyFileReady notification.";
 }
 }

 case stream-based-reporting {
 leaf streamTarget {
 type string;
 mandatory true;
 description "Applicable when stream-based reporting method is
 supported.";
 }
 }

 }
 }
}
<CODE ENDS>

[bookmark: _Toc36033519][bookmark: _Toc36475781][bookmark: _Toc44581542][bookmark: _Toc51769158][bookmark: _Toc130312477]D.2.9	module _3gpp-common-fm.yang
<CODE BEGINS>
module _3gpp-common-fm {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-fm";
 prefix "fm3gpp";

 import ietf-yang-types { prefix yang; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines a Fault Management model";

 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2023-05-09 { reference CR-0249; }
 revision 2022-10-31 { reference CR-0195; }
 revision 2021-08-08 { reference "CR-0132"; }
 revision 2021-06-02 { reference "CR-0130"; }
 revision 2020-06-03 { reference "CR-0091"; }
 revision 2020-02-24 { reference "S5-201365"; }

 feature AcknowledgeByConsumer {
 description "Indicates whether alarm acknowledgement by the consumer is
 supported.";
 revision 2020-02-24 {
 reference "S5-201365";
 }

 typedef eventType {
 type enumeration {
 enum COMMUNICATIONS_ALARM {
 value 2;
 }

 enum QUALITY_OF_SERVICE_ALARM {
 value 3;
 }

 enum PROCESSING_ERROR_ALARM {
 value 4;
 }

 enum EQUIPMENT_ALARM {
 value 5;
 }

 enum ENVIRONMENTAL_ALARM {
 value 6;
 }

 enum INTEGRITY_VIOLATION {
 value 7;
 }

 enum OPERATIONAL_VIOLATION {
 value 8;
 }

 enum PHYSICAL_VIOLATION {
 enum PHYSICAL_VIOLATIONu {
 value 9;
 }

 enum SECURITY_SERVICE_OR_MECHANISM_VIOLATION {
 value 10;
 }

 enum TIME_DOMAIN_VIOLATION {
 value 11;
 }
 }

 description "General category for the alarm.";
 }

 typedef severity-level {
 type enumeration {
 enum CRITICAL { value 3; }
 enum MAJOR { value 4; }
 enum MINOR { value 5; }
 enum WARNING { value 6; }
 enum INDETERMINATE { value 7; }
 enum CLEARED { value 8; }
 }

 description "The possible alarm severities";
 description "The possible alarm serverities.
 Aligned with ERICSSON-ALARM-MIB.";
 }

 grouping AlarmRecordGrp {
 description "Contains alarm information of an alarmed object instance.
 A new record is created in the alarm list when an alarmed object
 instance generates an alarm and no alarm record exists with the same
 values for objectInstance, alarmType, probableCause and specificProblem.
 When a new record is created the MnS producer creates an alarmId, that
 unambiguously identifies an alarm record in the AlarmList.

 Alarm records are maintained only for active alarms. Inactive alarms are
 automatically deleted by the MnS producer from the AlarmList.
 Active alarms are alarms whose
 a) perceivedSeverity is not CLEARED, or whose
 b) perceivedSeverity is CLEARED and its ackState is not ACKNOWLEDED.";

 leaf alarmId {
 type string;
 mandatory true;
 description "Identifies the alarmRecord";
 yext3gpp:notNotifyable;
 }

 leaf objectInstance {
 type types3gpp:DistinguishedName;
 type string;
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf notificationId {
 type int32;
 config false ;
 mandatory true;
 description "The Id of the last notification updating the AlarmRecord.";
 yext3gpp:notNotifyable;
 }

 leaf alarmRaisedTime {
 type yang:date-and-time ;
 mandatory true;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf alarmChangedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm has not changed";
 yext3gpp:notNotifyable;
 }

 leaf alarmClearedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm was not cleared";
 yext3gpp:notNotifyable;
 }

 leaf alarmType {
 type eventType;
 config false ;
 mandatory true;
 description "General category for the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf probableCause {
 type union {
 type int32;
 type string;
 }
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf specificProblem {
 type union {
 type int32;
 type string;
 }
 config false ;
 reference "ITU-T Recommendation X.733 clause 8.1.2.2.";
 yext3gpp:notNotifyable;
 }

 leaf perceivedSeverity {
 type severity-level;
 mandatory true;
 description "This is Writable only if producer supports consumer
 to set perceivedSeverity to CLEARED";
 yext3gpp:notNotifyable;
 }

 leaf backedUpStatus {
 type boolean;
 type string;
 config false ;
 description "Indicates if an object (the MonitoredEntity) has a back
 up. See definition in ITU-T Recommendation X.733 clause 8.1.2.4.";
 yext3gpp:notNotifyable;
 }

 leaf backUpObject {
 type types3gpp:DistinguishedName;
 type string;
 config false ;
 description "Backup object of the alarmed object as defined in
 ITU-T Rec. X. 733";
 yext3gpp:notNotifyable;
 }

 leaf trendIndication {
 type enumeration {
 enum MORE_SEVERE;
 enum NO_CHANGE;
 enum LESS_SEVERE;
 }
 type string;
 config false ;
 description "Indicates if some observed condition is getting better,
 worse, or not changing. ";
 reference "ITU-T Recommendation X.733 clause 8.1.2.6.";
 yext3gpp:notNotifyable;
 }

 grouping ThresholdPackGrp {
 leaf thresholdLevel {
 type string;
 }
 leaf thresholdValue {
 type string;
 }
 leaf hysteresis {
 type string;
 description "The hysteresis has a threshold high and a threshold
 low value that are different from the threshold value.
 A hysteresis, therefore, defines the threshold-high and
 threshold-low levels within which the measurementType value is
 allowed to oscillate without triggering the threshold crossing
 notification.";
 }
 }

 grouping ThresholdInfoGrp {
 leaf measurementType {
 type string;
 mandatory true;
 }

 leaf direction {
 type enumeration {
 enum INCREASING;
 enum DECREASING;
 }
 mandatory true;
 description "
 If it is 'Increasing', the threshold crossing notification is
 triggered when the measurement value equals or exceeds a
 thresholdValue.

 If it is 'Decreasing', the threshold crossing notification is
 triggered when the measurement value equals or below a
 thresholdValue.";
 }

 leaf thresholdLevel {
 type string;
 }

 leaf thresholdValue {
 type string;
 }

 leaf hysteresis {
 type string;
 description "The hysteresis has a threshold high and a threshold
 low value that are different from the threshold value.
 A hysteresis, therefore, defines the threshold-high and
 threshold-low levels within which the measurementType value is
 allowed to oscillate without triggering the threshold crossing
 notification.";
 }
 uses ThresholdPackGrp;
 }

 list thresholdInfo {
 config false ;
 uses ThresholdInfoGrp;
 yext3gpp:notNotifyable;
 description "Indicates the crossed threshold";
 uses ThresholdInfoGrp;
 }

 list stateChangeDefinition {
 key attributeName;
 leaf stateChangeDefinition {
 type string;
 config false ;
 description "Indicates MO attribute value changes associated with the
 alarm for state attributes of the monitored entity (state transitions).
 The change is reported with the name of the state attribute, the new
 value and an optional old value.
 See definition in ITU-T Recommendation X.733 [4] clause 8.1.2.10.";
 description "Indicates MO attribute value changes. See definition
 in ITU-T Recommendation X.733 clause 8.1.2.11.";
 yext3gpp:notNotifyable;

 leaf attributeName {
 type string;
 }

 anydata newValue {
 mandatory true;
 description "The new value of the attribute. The content of this data
 node shall be in accordance with the data model for the attribute.";
 }

 anydata oldValue{
 description "The old value of the attribute. The content of this data
 node shall be in accordance with the data model for the attribute.";
 }
 }

 list monitoredAttributes {
 key attributeName;
 config false ;
 yext3gpp:notNotifyable;
 description "Attributes of the monitored entity and their
 values at the time the alarm occurred that are of interest for the
 alarm report.";
 reference "ITU-T Recommendation X.733 clause 8.1.2.11.";

 leaf attributeName {
 leaf monitoredAttributes {
 type string;
 }

 anydata value {
 mandatory true;
 description "The value of the attribute. The content of this data
 node shall be in accordance with the data model for the attribute.";
 }
 config false ;
 description "Indicates MO attributes whose value changes are being
 monitored.";
 reference "ITU-T Recommendation X.733 clause 8.1.2.11.";
 yext3gpp:notNotifyable;
 }

 leaf proposedRepairActions {
 type string;
 config false ;
 description "Indicates proposed repair actions. See definition in
 ITU-T Recommendation X.733 clause 8.1.2.12.";
 yext3gpp:notNotifyable;
 }

 leaf additionalText {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 list additionalInformation {
 key name;
 anydata additionalInformation {
 config false ;
 yext3gpp:notNotifyable;
 description "Vendor specific alarm information in the alarm.";
 uses types3gpp:nameValuePair;
 }

 leaf rootCauseIndicator {
 type boolean;
 default false;
 type enumeration {
 enum YES;
 enum NO;
 }
 config false ;
 description "It indicates that this AlarmInformation is the root cause
 of the events captured by the notifications whose identifiers are in
 the related CorrelatedNotification instances.";
 yext3gpp:notNotifyable;
 }

 leaf ackTime {
 if-feature AcknowledgeByConsumer;
 type yang:date-and-time ;
 config false ;
 description "It identifies the time when the alarm has been
 acknowledged or unacknowledged the last time, i.e. it registers the
 time when ackState changes.";
 yext3gpp:notNotifyable;
 }

 leaf ackUserId {
 if-feature AcknowledgeByConsumer;
 type string;
 description "It identifies the last user who has changed the
 Acknowledgement State.";
 yext3gpp:notNotifyable;
 }

 leaf ackSystemId {
 if-feature AcknowledgeByConsumer;
 type string;
 description "It identifies the system (Management System) that last
 changed the ackState of an alarm, i.e. acknowledged or unacknowledged
 the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf ackState {
 if-feature AcknowledgeByConsumer;
 type enumeration {
 enum ACKNOWLEDGED {
 description "The alarm has been acknowledged.";
 }
 enum UNACKNOWLEDGED {
 description "The alarm has unacknowledged or the alarm has never
 been acknowledged.";
 }
 }
 yext3gpp:notNotifyable;
 }

 leaf clearUserId {
 type string;
 description "Carries the identity of the user who invokes the
 clearAlarms operation.";
 yext3gpp:notNotifyable;
 }

 leaf clearSystemId {
 type string;
 yext3gpp:notNotifyable;
 }

 leaf serviceUser {
 type string;
 config false ;
 description "It identifies the service-user whose request for service
 provided by the serviceProvider led to the generation of the
 security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf serviceProvider {
 type string;
 config false ;
 description "It identifies the service-provider whose service is
 requested by the serviceUser and the service request provokes the
 generation of the security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf securityAlarmDetector {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 list correlatedNotifications {
 key sourceObjectInstance;
 description "List of correlated notifications";

 leaf sourceObjectInstance {
 type types3gpp:DistinguishedName;
 }

 leaf-list notificationId {
 type int32;
 min-elements 1;
 }
 }
 }

 grouping AlarmListGrp {
 description "Represents the AlarmList IOC.";

 leaf administrativeState {
 type types3gpp:AdministrativeState ;
 default LOCKED;
 description "When set to UNLOCKED, the alarm list is updated.
 When the set to LOCKED, the existing alarm records are not
 updated, and new alarm records are not added to the alarm list.";
 }

 leaf operationalState {
 type types3gpp:OperationalState ;
 default DISABLED;
 config false;
 description "The producer sets this attribute to ENABLED, indicating
 that it has the resource and ability to record alarm in AlarmList
 else, it sets the attribute to DISABLED.";
 }

 leaf numOfAlarmRecords {
 type uint32 ;
 config false;
 mandatory true;
 description "The number of alarm records in the AlarmList";
 yext3gpp:notNotifyable;
 }

 leaf lastModification {
 type yang:date-and-time ;
 config false;
 description "The last time when an alarm record was modified";
 yext3gpp:notNotifyable;
 }

 list alarmRecords {
 key alarmId;
 description "List of alarmRecords";
 uses AlarmRecordGrp;
 yext3gpp:notNotifyable;
 uses AlarmRecordGrp;
 }
 }

 grouping FmSubtree {
 description "Contains FM related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list AlarmList {
 key id;
 max-elements 1;
 description "The AlarmList represents the capability to store and manage
 alarm records. The management scope of an AlarmList is defined by all
 descendant objects of the base managed object, which is the object
 name-containing the AlarmList, and the base object itself.

 AlarmList instances are created by the system or are pre-installed.
 They cannot be created nor deleted by MnS consumers.

 When the alarm list is locked or disabled, the existing alarm records
 are not updated, and new alarm records are not added to the alarm list";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses AlarmListGrp ;
 }
 }
 }

}
<CODE ENDS>

Next change
[bookmark: _Toc59183363][bookmark: _Toc59184829][bookmark: _Toc59195764][bookmark: _Toc59440193][bookmark: _Toc67990642][bookmark: _Toc130312479]D.2.11	module _3gpp-common-mnsregistry.yang
<CODE BEGINS>
module _3gpp-common-mnsregistry {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-mnsregistry";
 prefix "mnsregist3gpp";

 import _3gpp-common-subnetwork { prefix subnet3gpp; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";
 description "Defines the YANG mapping of the MNSRegistry Information Object
 Class (IOC) that is part of the Generic Network Resource Model (NRM).";
 reference "3GPP TS 28.623 Generic Network Resource Model (NRM)";

 revision 2023-05-09 { reference "S5-216090"; }
 revision 2021-11-23 { reference "S5-216090"; }
 revision 2021-10-18 { reference "S5-215263"; }
 revision 2021-08-29 { reference "Initial revision, S5-214388"; }

 grouping MnsInfoGrp {
 description "Represents the MnsInfo IOC.";
 leaf mnsLabel {
 description "Human-readable name of management service.";
 mandatory true;
 type string;
 }

 leaf mnsType {
 description "Type of management service.";
 type enumeration {
 enum ProvMnS;
 enum FaultSupervisionMnS;
 enum StreamingDataReportingMnS;
 enum FileDataReportingMnS;
 }
 }

 leaf mnsVersion {
 description "Version of management service.";
 type string;
 }

 leaf mnsAddress {
 description "Addressing information for Management Service operations.";
 mandatory true;
 type string;
 }

 leaf-list mnsScope {
 description "List of the managed object instances that can be accessed
 using the MnS. If a complete SubNetwork can be accessed using the MnS,
 this attribute may contain the DN of the SubNetwork instead of the
 DNs of the individual managed entities within the SubNetwork.";
 min-elements 1;
 type types3gpp:DistinguishedName;
 }
 }

 augment "/subnet3gpp:SubNetwork" {
 list MNSRegistry {
 description "Represents the MNSRegistry IOC.
 The IOC is instantiated by the system.";
 uses top3gpp:Top_Grp;
 key id;
 max-elements 1;

 list MNSInfo {
 description "This IOC represents an available Management Service (MnS)
 and provides the data required to support its discovery.
 It is name-contained by MnsRegistry.

 This information is used by the consumer to discover the producers
 of specific Management Services and to derive the addresses of the
 Management Service.

 Attributes mnsLabel, mnsType, and mnsVersion are used to describe
 the Management Service.

 Attribute mnsAddress is used to provide addressing information for
 the Management Service operations.

 Attribute mnsScope is used to provide information about the
 management scope of the Management Service. The management scope is
 defined as the set of managed object instances that can be accessed
 using the Management Service.";

 uses top3gpp:Top_Grp;
 key id;
 key "mnsType mnsVersion mnsAddress";
 uses MnsInfoGrp;
 }
 }
 }	
}
<CODE ENDS>

End of changes

