

	
3GPP TSG-SA5 Meeting #149	S5-234035
Berlin, Germany, 22nd May 2023 - 26th May 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	28.623
	CR
	0247
	rev
	-
	Current version:
	17.5.1
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Clarify AlarmList locking YANG

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	TEI17
	
	Date:
	2023-05-11

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	Currently when the AlarmList is in a locked state it is forced to maintain the last set of alarmRecords valid before locking the service. This last set of alarmRecords may be tottally unreliable, as alarms may have been cleared or changed and new ones might have been raised.
Maintaining this set of unreliable alarmRecords does not provide any useful information, but it puts an unnecesarry burden on implementations.
If a service is LOCKED - it is not working - we should not put requirements on the data it provides.

We should specify that during the time the alarm list is locked its attributes (except the administrativeState) may contain any unreliable data, that the consumer should not utilize.

	
	

	Summary of change:
	Specify that during the time the alarm list is locked its attributes (except the administrativeState) may contain any unreliable data, that the consumer should not utilize.

	
	

	Consequences if not approved:
	Unnecesary costly implementation. Presentation of unreliable data in the AlarmList.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	X
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Stage3 for 28.622 CR-0265 originally published as S5-234033
Forge link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/587 at commit 91022f586cb1a04814584b8fc96d7b6648b46354

	
	

	This CR's revision history:
	

[bookmark: _Hlk117416929][bookmark: _Hlk134728963]	
First change
[bookmark: _Toc36033519][bookmark: _Toc36475781][bookmark: _Toc44581542][bookmark: _Toc51769158][bookmark: _Toc130312477]D.2.9	module _3gpp-common-fm.yang	
<CODE BEGINS>
module _3gpp-common-fm {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-fm";
 prefix "fm3gpp";

 import ietf-yang-types { prefix yang; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines a Fault Management model";

 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2023-05-09 { reference CR-0247; }
 revision 2022-10-31 { reference CR-0195; }
 revision 2021-08-08 { reference "CR-0132"; }
 revision 2021-06-02 { reference "CR-0130"; }
 revision 2020-06-03 { reference "CR-0091"; }
 revision 2020-02-24 {
 reference "S5-201365";
 }

 typedef eventType {
 type enumeration {
 enum COMMUNICATIONS_ALARM {
 value 2;
 }

 enum QUALITY_OF_SERVICE_ALARM {
 value 3;
 }

 enum PROCESSING_ERROR_ALARM {
 value 4;
 }

 enum EQUIPMENT_ALARM {
 value 5;
 }

 enum ENVIRONMENTAL_ALARM {
 value 6;
 }

 enum INTEGRITY_VIOLATION {
 value 7;
 }

 enum OPERATIONAL_VIOLATION {
 value 8;
 }

 enum PHYSICAL_VIOLATIONu {
 value 9;
 }

 enum SECURITY_SERVICE_OR_MECHANISM_VIOLATION {
 value 10;
 }

 enum TIME_DOMAIN_VIOLATION {
 value 11;
 }
 }

 description "General category for the alarm.";
 }

 typedef severity-level {
 type enumeration {
 enum CRITICAL { value 3; }
 enum MAJOR { value 4; }
 enum MINOR { value 5; }
 enum WARNING { value 6; }
 enum INDETERMINATE { value 7; }
 enum CLEARED { value 8; }
 }

 description "The possible alarm serverities.
 Aligned with ERICSSON-ALARM-MIB.";
 }

 grouping AlarmRecordGrp {
 description "Contains alarm information of an alarmed object instance.
 A new record is created in the alarm list when an alarmed object
 instance generates an alarm and no alarm record exists with the same
 values for objectInstance, alarmType, probableCause and specificProblem.
 When a new record is created the MnS producer creates an alarmId, that
 unambiguously identifies an alarm record in the AlarmList.

 Alarm records are maintained only for active alarms. Inactive alarms are
 automatically deleted by the MnS producer from the AlarmList.
 Active alarms are alarms whose
 a) perceivedSeverity is not CLEARED, or whose
 b) perceivedSeverity is CLEARED and its ackState is not ACKNOWLEDED.";

 leaf alarmId {
 type string;
 mandatory true;
 description "Identifies the alarmRecord";
 yext3gpp:notNotifyable;
 }

 leaf objectInstance {
 type string;
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf notificationId {
 type int32;
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf alarmRaisedTime {
 type yang:date-and-time ;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf alarmChangedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm has not changed";
 yext3gpp:notNotifyable;
 }

 leaf alarmClearedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm was not cleared";
 yext3gpp:notNotifyable;
 }

 leaf alarmType {
 type eventType;
 config false ;
 description "General category for the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf probableCause {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf specificProblem {
 type string;
 config false ;
 reference "ITU-T Recommendation X.733 clause 8.1.2.2.";
 yext3gpp:notNotifyable;
 }

 leaf perceivedSeverity {
 type severity-level;
 description "This is Writable only if producer supports consumer
 to set perceivedSeverity to CLEARED";
 yext3gpp:notNotifyable;
 }

 leaf backedUpStatus {
 type string;
 config false ;
 description "Indicates if an object (the MonitoredEntity) has a back
 up. See definition in ITU-T Recommendation X.733 clause 8.1.2.4.";
 yext3gpp:notNotifyable;
 }

 leaf backUpObject {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf trendIndication {
 type string;
 config false ;
 description "Indicates if some observed condition is getting better,
 worse, or not changing. ";
 reference "ITU-T Recommendation X.733 clause 8.1.2.6.";
 yext3gpp:notNotifyable;
 }

 grouping ThresholdPackGrp {
 leaf thresholdLevel {
 type string;
 }
 leaf thresholdValue {
 type string;
 }
 leaf hysteresis {
 type string;
 description "The hysteresis has a threshold high and a threshold
 low value that are different from the threshold value.
 A hysteresis, therefore, defines the threshold-high and
 threshold-low levels within which the measurementType value is
 allowed to oscillate without triggering the threshold crossing
 notification.";
 }
 }

 grouping ThresholdInfoGrp {
 leaf measurementType {
 type string;
 mandatory true;
 }

 leaf direction {
 type enumeration {
 enum INCREASING;
 enum DECREASING;
 }
 mandatory true;
 description "
 If it is 'Increasing', the threshold crossing notification is
 triggered when the measurement value equals or exceeds a
 thresholdValue.

 If it is 'Decreasing', the threshold crossing notification is
 triggered when the measurement value equals or below a
 thresholdValue.";
 }

 uses ThresholdPackGrp;
 }

 list thresholdInfo {
 config false ;
 uses ThresholdInfoGrp;
 yext3gpp:notNotifyable;
 }

 leaf stateChangeDefinition {
 type string;
 config false ;
 description "Indicates MO attribute value changes. See definition
 in ITU-T Recommendation X.733 clause 8.1.2.11.";
 yext3gpp:notNotifyable;
 }

 leaf monitoredAttributes {
 type string;
 config false ;
 description "Indicates MO attributes whose value changes are being
 monitored.";
 reference "ITU-T Recommendation X.733 clause 8.1.2.11.";
 yext3gpp:notNotifyable;
 }

 leaf proposedRepairActions {
 type string;
 config false ;
 description "Indicates proposed repair actions. See definition in
 ITU-T Recommendation X.733 clause 8.1.2.12.";
 yext3gpp:notNotifyable;
 }

 leaf additionalText {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 anydata additionalInformation {
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf rootCauseIndicator {
 type enumeration {
 enum YES;
 enum NO;
 }
 config false ;
 description "It indicates that this AlarmInformation is the root cause
 of the events captured by the notifications whose identifiers are in
 the related CorrelatedNotification instances.";
 yext3gpp:notNotifyable;
 }

 leaf ackTime {
 type yang:date-and-time ;
 config false ;
 description "It identifies the time when the alarm has been
 acknowledged or unacknowledged the last time, i.e. it registers the
 time when ackState changes.";
 yext3gpp:notNotifyable;
 }

 leaf ackUserId {
 type string;
 description "It identifies the last user who has changed the
 Acknowledgement State.";
 yext3gpp:notNotifyable;
 }

 leaf ackSystemId {
 type string;
 description "It identifies the system (Management System) that last
 changed the ackState of an alarm, i.e. acknowledged or unacknowledged
 the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf ackState {
 type enumeration {
 enum ACKNOWLEDGED {
 description "The alarm has been acknowledged.";
 }
 enum UNACKNOWLEDGED {
 description "The alarm has unacknowledged or the alarm has never
 been acknowledged.";
 }
 }
 yext3gpp:notNotifyable;
 }

 leaf clearUserId {
 type string;
 description "Carries the identity of the user who invokes the
 clearAlarms operation.";
 yext3gpp:notNotifyable;
 }

 leaf clearSystemId {
 type string;
 yext3gpp:notNotifyable;
 }

 leaf serviceUser {
 type string;
 config false ;
 description "It identifies the service-user whose request for service
 provided by the serviceProvider led to the generation of the
 security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf serviceProvider {
 type string;
 config false ;
 description "It identifies the service-provider whose service is
 requested by the serviceUser and the service request provokes the
 generation of the security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf securityAlarmDetector {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }
 }

 grouping AlarmListGrp {
 description "Represents the AlarmList IOC.";

 leaf administrativeState {
 type types3gpp:AdministrativeState ;
 default LOCKED;
 description "When set to UNLOCKED, the alarm list is updated.
 When the set to LOCKED, the existing alarm records are not
 updated, and new alarm records are not added to the alarm list.";
 }

 leaf operationalState {
 type types3gpp:OperationalState ;
 default DISABLED;
 config false;
 description "The producer sets this attribute to ENABLED, indicating
 that it has the resource and ability to record alarm in AlarmList
 else, it sets the attribute to DISABLED.";
 }

 leaf numOfAlarmRecords {
 type uint32 ;
 config false;
 mandatory true;
 description "The number of alarm records in the AlarmList";
 yext3gpp:notNotifyable;
 }

 leaf lastModification {
 type yang:date-and-time ;
 config false;
 description "The last time when an alarm record was modified";
 yext3gpp:notNotifyable;
 }

 list alarmRecords {
 key alarmId;
 description "List of alarmRecords";
 uses AlarmRecordGrp;
 yext3gpp:notNotifyable;
 }
 }

 grouping FmSubtree {
 description "Contains FM related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list AlarmList {
 key id;
 max-elements 1;
 description "The AlarmList represents the capability to store and manage
 alarm records. The management scope of an AlarmList is defined by all
 descendant objects of the base managed object, which is the object
 name-containing the AlarmList, and the base object itself.

 AlarmList instances are created by the system or are pre-installed.
 They cannot be created nor deleted by MnS consumers.

 When the alarm list is locked or disabled, its attributes (except the
 administrativeState) may contain any unreliable data, that the consumer
 should not utilizethe existing alarm records are not updated or
 deleted, and new alarm records are not added to the alarm list.

 When the AlarmList is modified from a LOCKED administrative state to
 UNLOCKED, for a short period, the alarmRecords attribute may contain
 out-of-date elements, as the MnS provider may need time to correctly
 present its internal alarm state by adding, removing or changing
 alarmRecords.";
 When the alarm list is locked or disabled, the existing alarm records
 are not updated, and new alarm records are not added to the alarm list";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses AlarmListGrp ;
 }
 }
 }

}
<CODE ENDS>

End of changes

Page 1

