
	3GPP TR 28.831 V0.6.0 (2023-03)

	Technical Report

	3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;
Study on basic Service-Based Management Architecture
(SBMA) enabler enhancements
(Release 18)

	

	[image: image1.png]~

5G

	[image: image2.png]=

A GLOBAL INITIATIVE

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	

	3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

	Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2022, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

1
Scope
7
2
References
7
3
Definitions of terms, symbols and abbreviations
7
3.1
Terms
7
3.2
Symbols
8
3.3
Abbreviations
8
4
Issues
8
4.1
Issue #1: Schema for "notifyMOIChanges"
8
4.1.1
Issue description
8
4.1.2
Current situation
8
4.1.3
Analysis
8
4.1.4
Potential requirements
8
4.1.5
Potential solution
8
4.1.6
CR proposal
8
4.1.7
Conclusion
8
4.2
Key issue #2: Targeted notification subscriptions
8
4.2.1
Issue description
8
4.2.2
Current situation
9
4.2.2.1
Scoping objects based on object classes
9
4.2.2.2
Scoping attributes
10
4.2.2.3
Scoping objects or attributes based on conditions
11
4.2.3
Analysis
11
4.2.4
Potential requirements
11
4.2.5
Potential solutions
12
4.2.5.1
Introduction
12
4.2.5.2
XPath 1.0
13
4.2.5.2.1
General considerations
13
4.2.5.2.2
Special considerations for JSON
14
4.2.5.2.3
Special considerations for YANG
17
4.2.5.3
XPath 2.0
17
4.2.5.2.4
XPath 1.0 profiles
17
4.2.5.4
XPath 3.1
19
4.2.5.5
JSON Pointer
19
4.2.5.6
JSONPath
19
4.2.6
CR proposal
20
4.2.7
Conclusion
20
4.3
Issue #3: Definition of createMOI
20
4.3.1
Issue description
20
4.3.2
Analysis
20
4.3.3
CR proposal
20
4.4
Issue #4: Definition of modifyMOIAttributes
22
4.4.1
Issue description
22
4.4.2
Analysis
22
4.4.3
CR proposal
22
4.4.4
Conclusion
25
4.5
Issue #5: HTTP error response format
25
4.5.1
Issue description
25
4.5.2
Analysis
25
4.5.3
CR proposal
25
4.6
Issue#6: Operation for multiple MOI updates (stage 2)
40
4.6.1
Issue description
40
4.6.2
Analysis
40
4.6.3
CR proposal
40
4.6.4
Conclusion
41
4.7
Issue#7: Advertising communication options (REST SS)
41
4.7.1
Issue description
41
4.7.2
Analysis
42
4.7.3
CR proposal
42
4.7.4
Conclusion
44
4.8
Issue #8: Logging
44
4.8.1
Issue description
44
4.8.2
Analysis
44
4.8.3
Potential Requirements
44
4.8.4
Potential Solutions
45
4.8.5
CR proposal
45
5 Recommendations and conclusions
45
Annex A
45
A.1 EBNF for basic XPath profile
45
A.2 EBNF for advanced XPath profile
45
Annex <X>: Change history
48

Foreword
This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:

shall

indicates a mandatory requirement to do something

shall not
indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should

indicates a recommendation to do something

should not
indicates a recommendation not to do something

may

indicates permission to do something

need not
indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can

indicates that something is possible
cannot

indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will

indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document

will not

indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document

might
indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

might not
indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

In addition:

is
(or any other verb in the indicative mood) indicates a statement of fact

is not
(or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.
1
Scope

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
XML Path Language (XPath), Version 1.0, W3C Recommendation 16 November 1999 (Status updated October 2016), (https://www.w3.org/TR/1999/REC-xpath-19991116/)

[3]
XML Path Language (XPath) 2.0, W3C Recommendation 14 December 2010 (Link errors corrected 3 January 2011; Status updated October 2016), (https://www.w3.org/TR/xpath20/)

[4]
XML Path Language (XPath) 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-31/)

[5]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".
[6]
IETF Internet-Draft: "JSONPath: Query expressions for JSON"; draft-ietf-jsonpath-base-05; April 2022 (https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-05).

[7]
XML Information Set (Second Edition), W3C Recommendation 4 February 2004 (https://www.w3.org/TR/xml-infoset/)

[8]
XQuery and XPath Data Model 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-datamodel-31/)

[9]
IETF RFC 7950: "The YANG 1.1 Data Modeling Language"
[10]
XForms 2.0 (https://www.w3.org/community/xformsusers/wiki/XForms_2.0)

[11]
3GPP TS 32.158: "Management and orchestration; Design rules for REpresentational State Transfer (REST) Solution Sets (SS)"
[12]
IETF RFC 787: "Problem Details for HTTP APIs."
3
Definitions of terms, symbols and abbreviations
3.1
Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

<ABBREVIATION>
<Expansion>

4
Issues

4.1
Issue #1: Schema for "notifyMOIChanges"

4.1.1
Issue description

4.1.2
Current situation

4.1.3
Analysis

4.1.4
Potential requirements

4.1.5
Potential solution

4.1.6
CR proposal

4.1.7
Conclusion

4.2
Key issue #2: Targeted notification subscriptions

4.2.1
Issue description

SA5 is moving to a fully model driven approach. In this architecture all aspects that are managed are represented in the information model. It is possible to observe all changes in the network by observing the changes in the information model. Note the information model covers all fragments: configuration management, alarm management and performance management.

Many MnS consumers are not interested in all changes in the network. For that reason, it is important that MnS consumers can subscribe to specific portions of the information model only. These portions may be described in terms of object instances, attributes or attribute fields.

The currently specified "NtfScubscriptionControl" does not allow to scope subscriptions with that granularity. Some enhancements seem to be required to "NtfScubscriptionControl". This clause analyses the current situation and proposes a solution.

4.2.2
Current situation

4.2.2.1
Scoping objects based on object classes
For scoping managed objects, the attribute "scope" is provided in "NtfSubscriptionControl". It has two attribute fields: "scopeType" and "scopeLevel". This scoping mechanism works only on the hierarchical levels of the information model. For example, you can select the level below "SubNetwork".

Typically, instances of more than one object class can be located on a level. For example, below "SubNetwork" there can be instances of "ManagedElement", "PerfMetricJob", "TraceJob" and "AlarmList". It is not possible to scope only instances of one or more specific object classes with the current scoping mechanism.

To reduce the scoped set of object instances to those with a specific object class, the "notificationFilter" attribute can be used. The IS level parameters "objectClass" and "objectInstance" are typically mapped to one stage 3 parameter ("href") only. There is no dedicated parameter for the "objectClass" in stage 3. Filtering out notifications related to certain object classes involves therefore the application of string functions on "href".

The described mechanism applies to CM notifications and non-CM notifications such as alarm notifications.

Note on all examples:

The following examples are for the RESTful HTTP-based solution only. For this solution the "notificationFilter" format is XPath 1.0 in Rel-17. In addition, the JSON instance document sent over the wire is expressed in XML. A <notification> element is added as root element to produce a valid XML document, a necessary manipulation not described yet in Rel-17.

Example 1 (alarm notifications):

Assume the NRM specified in TS 28.622 is supported on a MnS producer. A subscription scoping (with "scopeType" and "scopeLevel") the level below "SubNetwork" has been created. No notification filter is specified. The subscription is for alarm notifications only. On the level below "SubNetwork" there are instances of "ManagedElement", "PerfMetricJob" and "NtfSubscriptionControl".

The described subscription forwards alarm notifications related to all manged object classes. For example, all following notifications are forwarded:

<notification>

 <href>example.com/SubNetwork=SN1/ManagedElement=ME1</href>
 ...
</notification>

<notification>

 <href>example.com/SubNetwork=SN1/ManagedElement=ME2</href>
 ...
</notification>

<notification>

 <href>example.com/SubNetwork=SN1/PerfMetricJob=PMJ1</href>
 ...
</notification>

<notification>

 <href>example.com/SubNetwork=SN1/NtfSubscriptionControl=NSC1</href>
 ...
</notification>

The following notification is not related to the set of scoped objects and hence not forwarded:

<notification>

 <href>example.com/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1</href>
 ...
</notification>

The subscription shall be modified now to include only "ManagedElement" objects. This is realized with an appropriate XPath expression as value of "notificationFilter". Possible XPath expressions include:

XPath expression 1:
The following XPath expression returns the "notification" node since the string "ManagedElement" is contained in the "href" value.

"/notification[contains(href,"ManagedElement")]"
XPath expression 2:

The following expression checks for the presence of "ManagedElement" after "example.com/SubNetwork=SN1".

"/notification[starts-with\

 (substring-after(path,"example.com/SubNetwork=SN1/"),\

 "ManagedElement")]"
Example 2 (alarm notifications):

Assume again the NRM specified in TS 28.622 is supported on a MnS producer. "PerfMetricJob" instances have been created below "SubNetwork" and below some "ManagedElement" instances. A MnS consumer wishes to create a subscription related to all "PerfMetricJob" instances.

The notification scope needs to include the complete object tree starting at "SubNetwork". In case a "PerfMetricJob" instance is always a leaf object, then checking for the presence of the sub-string "PerfMetricJob" in "href" does the job. In case a "PerfMetricJob" instance is not always a leaf object, then it is necessary to check, if the last path segment of "href" identifies a "PerfMetricJob". A simple test on if the "href" value includes the sub-string "PerfMetricJob" is not sufficient. There is no obvious Xpath expression to solve this problem, at least not with XPath1.0.

Example 3 ("notifyMOICreation", "notifyMOIDeletion", "notifyMOIAttributeValueChanges")
The created, dfeleted or updated objerct is specified with the "href" parameter of the notification header. For that reason the same considerations as for alarm notifications apply.

Example 3 ("notifyMOIChanges")
The objects are identifierd with both the "href" and "path" parameter. Filtering on these parameters to reduce the scoped set of objects to the sub-set of interest is not a feasible solution.

4.2.2.2
Scoping attributes
The scoping mechanism allows to select a set of objects. This is good enough for notification types related to the complete object, such as alarm notifications, or when a MnS consumer is interested in receiving attribute value change notifications for all attributes of an object. It is not possible to target specific attributes of an object only using the scoping mechanism. When a MnS consumer is interested only in value changes of one or more specific attributes of an object, then the MnS consumer needs to configure into the subscription an appropriate notification filter.

Note the following examples are for the RESTful HTTP-based solution only.

Example 1 ("notifyMOIAttributeValueChanges"):
Assume a subscription for "notifyMOIAttributeValueChanges" includes the instance of "XyzFunction" identified by "XYZF1". A notification reporting the value change of "attrA" and "attrB" looks like
<notification>
 <href>example.com/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1</href>
 ...
 <attributeListValueChanges>

 <attrA>123</attrA>
 <attrB>abc</attrA>
 </attributeListValueChanges>

 <attributeListValueChanges>

 <attrA>456</attrA>
 <attrB>def</attrA>
 </attributeListValueChanges>

</notification>

If a MnS consumer is interested only in value changes of "attrA", then he needs to specify a notification filter testing on the presence of "attrA", for example:

"/notification/attributeListValueChanges[attrA]"

Note that the complete notification including also "attrB" is forwarded in case the test evaluates to true. The "attrB" cannot be removed from the notification. With filtering either the complete notification is forwarded, or the complete notification is not forwarded.
Note also that for "notifyMOIChanges" the situation is more complicated. Changes of multiple managed object instances can be reported using a single "notifyMOIChanges" notification. Even worse, the object instance in the notification header may not even be an instance that has changed, but only a common ancestor of the instances that have changed. This means that not only the "href" property of the notification header needs to be checked but also the "path" properties of the notification body.

4.2.2.3
Scoping objects or attributes based on conditions

It is currently not possible to specify a conditional scope. A conditional scope could be based for example on the presence of an attribute or on an attribute with a specific value. Note that scoping based on object classes can be considered as conditional scope.

For example, a MnS consumer might be interested only in changes of "AlarmInformation" instances (reported with alarm notifications) with a perceived severity equal to "CRITICAL".

4.2.3
Analysis

Scoping capabilities are currently limited.
4.2.4
Potential requirements

Potential requirements to address the issues identified above are
[Req-1] A subscription shall enable to select a single object instance.

[Req-2] A subscription should enable to select a complete subtree of objects starting at a specified base object.

[Reg-3] A subscription shouldenable to select the objects on a specified level below a specified base object.

[Req-4] A subscription shouldenable to select the objects starting at a specified base object down to and including a specified level below the base object.

[Req-5] A subscription shouldenable to select multiple object instances based on object instance identifiers.

[Req-6] A subscription shouldenable to select multiple object instances based on object classes.

[Req-7] A subscription shouldenable to select multiple object instances based on filter conditions.

The following potential additional requirements apply for subscriptions to CM notifications:

[Req-8] A subscription shouldenable to select attributes within selected object instances.

[Req-9] A subscription shouldenable to select attribute fields within selected object instances.

[Req-10] A subscription shouldenable to select attribute elements within selected object instances.

[Req-11] A subscription shouldenable to select attributes, attribute fields and attribute elements based on filter conditions.

Note only [Req-1] is mandatory. All other requirements are optional. This allows for implementations of different complexity that are tailored for different deployment needs.

The MnS consumer should be able to get the information which exact subscription capabilities are supported by a MnS producer, or more specifically by "NtfSubscriptionControl". This may require the introduction of capability identifiers that can be retrieved by MnS consumers.

4.2.5
Potential solutions

4.2.5.1
Introduction

Solutions to the potential requirements in clause 4.2.4 need to be able to conditionally select nodes in node trees.

Note: The NRM is a node tree. Node types are objects and attributes. The tree is defined by the name-containment relationships.
The target is to use an existing notation as solution, ideally without any modifications. The following notations are analyzed for use with JSON defined NRMs:

· XPath 1.0 [2]

· XPath 2.0 [3]

· XPath 3.1 [4]

· JSON Pointer [5]

· JSONPath [6]

The following notations are analyzed for use with YANG defined NRMs:

· XPath 1.0 [2]

· XPath 2.0 [3]

· XPath 3.1 [4]

All notations listed above are quite powerful. Only a subset is required to support the potential requirements documented in clause 4.2.4. This subset is identified in the following clauses.

Editor's note: It is ffs if a stage 2 definition is required, that is more detailed than the requirements, and from which the subset can be identified in a direct mapping.

Editor's note: XPath does not work on XML. Instead, it works on an own data model defined in XPath 1.0 [2], clause 5. This clause also describes the mapping of an XML document to the XPath model. The mapping of a JSON document to the XPath model is ffs. Alternatively, some mapping between a JSON document to a XML document needs to be looked at.

4.2.5.2
XPath 1.0

4.2.5.2.1
General considerations
XPath 1.0 [2] has been designed primarily to select one or more nodes of an XML document. However, XPath is a notatition that is not tied to XML and "operates on the abstract, logical structure of an XML document or JSON object, rather than its surface syntax.", as clarified in XML Path Language (XPath) 3.1 [4], clause 1. This is because an XPath expression operates on documents with an own XPath specific data model, and not on the XML or JSON surface syntax. This data model is specified in XPath 1.0 [2], clause 5. Note the data model for XPath 2.0 [3] and XPath 3.1 [4] is described in XQuery and XPath Data Model 3.1 [8].

Since an XPath expression works on an own data model, it is necessary to translate XML of JSON input documents into that data model.

For XML this translation is clearly defined by W3C. It is a two-step process. The mapping from the information in an XML document to the XML Information Set is described in XML Information Set [7]. The mapping from the XML Information Set to the XPath data model is described in XPath 1.0 [2], annex B. The mapping from YANG to XML is defined in RFC 7950 [9].

However, W3C did not define a clear mapping of a JSON document into the XPath data model, see the following clause for more details.
XPath models an XML or JSON document as a tree of nodes. NRM objects and NRM attributes are both mapped to a specific node type of the XPath data model, the element node. XPath 1.0 does hence not distinguish between element nodes representing NRM objects and element nodes representing NRM attributes.

Furthermore, XPath 1.0 does not distinguish between child element nodes that represent NRM attributes and those child nodes (at the same level in the the tree hierarchy) that represent name contained objects.

These two observations have some important implications when using XPath 1.0 for selecting NRM objects:

The first implication is that it is not possible to select all NRM attributes of an NRM object unless some measures are taken. Assume the XPath expression "SubNetwork/*", it selects all attributes of SubNetwork, but also the name contained objects. Fortunately, the attributes are embedded in an "attributes" container in the YANG and JSON defined NRMs. Therefore, it is easy to construct an XPath expression selecting all attributes of an object. The XPath expression is "SubNetwork/attributes" (when the "attributes" element node and the attribute element nodes are selected) or "SubNetwork/attributes/*" (when only the attribute element nodes are selected).

The second implication is that when selecting the child objects of an object, for example with the XPath expression "SubNetwork/ManagedElement", which selects all "ManagedElement" childs of "SubNetwork", then also the objects name contained by the "ManagedElement" childs are selected, and so forth. In other words, the child axis works based on element nodes and not on NRM objects as desired. XPath 1.0 does not offer any solution for this problem. Only the attributes container may be used again to select only the attributes of the "ManagedElement" childs, the XPath expression to select the "ManagedElement" childs is hence "SubNetwork/ManagedElement/attributes".

Note XPath 1.0 is verbose and does not allow for compact expressions in many cases. For example, to select a subset of all attributes of an object, each attribute needs to be selected individually with the complete location path:

/SubNetwork/attributes/attrA | /SubNetwork/attributes/attrB
And when multiple objects shall be selected based on object instance names, then the complete location path and predicate needs to be repeated for each instance

//*[objectInstance="DN1"]/attributes | //*[objectInstance= "DN2"]/attributes
An XPath expression is evaluated within a context. The context consists of:

· a node (the context node)

· a pair of non-zero positive integers (the context position and the context size)

· a set of variable bindings

· a function library

· the set of namespace declarations in scope for the expression

The context needs to be clearly defined.

XPath expression examples (assuming the presence of an "attributes" container in the info model):

Select the specified base object

/*/attributes
Select all objects in the tree starting at the specified base object:

//attributes
Select all objects on a specific level below a specified base object, in this case the second level below the base object:

/*/*/*/attributes

Select the objects starting from a specified base object down to and including the objects on a specific level below the base object:

/*/attributes | /*/*/attributes | /*/*/*/attributes

Select objects based on their object instance identifiers in the tree starting at the base object:

//*[objectInstance="DN1"]/attributes | //*[objectInstance= "DN2"]/attributes
Select objects based on their object class

/SubNetwork/attributes

/SubNetwork[id="SN1"]/ManagedElement/attributes

//*[objectClass="NtfSubscriptionControl"]/attributes

Select specific attributes and attribute fields:

<objectSelector>/attrA | <objectSelector>/attrB/subAttrB1
<objectSelector>/attributes/attrA | <objectSelector>attributes/attrB/subAttrB1
Select objects and attributes based on predicates (conditions):

<objectSelector>[<predicate>]
<objectSelector>/attributes<attributesSelector>[<predicate>]
4.2.5.2.2
Special considerations for JSON
As stated in the previous clause W3C did not provide a real mapping from JSON to the XPath data model. It is possible though to use a mapping from JSON to XML defined in XForms2.0 [10], clause 5.2.2. The resulting XML document can then be mapped to the XPath data model.

Note, XForms2.0 is a W3C draft from 2010 and not a W3C standard. The produced XML document contains in XML attributes information about the original JSON data taypes. JSON arrays are mapped in a very specific way to XML (see example below). These mapping rules preserve all information for mapping the XML document again back to the original JSON document.

For example, the JSON snippet

"load": [0.31, 0.33, 0.32]

is mapped according to XForms2.0 to

<load type="array">

 <_ type="number">0.31</_>

 <_ type="number">0.33</_>

 <_ type="number">0.32</_>

</load>

Other best practices propose to map the JSON snippet as follows:

<load>0.31</load>

<load>0.33</load>

<load>0.32</load>

There is hence not one and only one standard specifying the mapping from a JSON document to an XML document. One could argue that the XML document is anyway a conceptual document only that is not visible on the wire and used only internally in the MnS producer helping to apply the XPath expression to a JSON document. However, the exact way how JSON is mapped to XML has implications on the XPath expression to select nodes.

For example, when the first mapping method is used, the XPath expression snippet to select the first array item is

/load/_[1]

When the second mapping method is used, the XPath expression snippet is

/load/[1]

For a really interoperable solution, the MnS consumer needs to know the exact way the MnS producer maps JSON to XML. This means in turn, that the mapping method needs to be standardized by SA5.

A second option is to provide a mapping from the information elements in a JSON document to the XPath data model directly without an XML mapping in-between. Such a mapping is not provided at all by W3C.

The XPath data model has seven types of nodes: root nodes, element nodes, text nodes, attribute nodes, namespace nodes, processing instruction nodes, comment nodes. Each node has multiple properties.
Here after, a proposal to directly map a JSON document to the XPath data model:

· The JSON document is mapped to the root node.
· The name of a name/value pair is mapped to an element node. The element node coming from the name is a child of the root node. Vice versa, the root node is the parent of the element node coming from the name.
· The value of a name/value pair is mapped to a text node if the value is a string, a number, or one of the tree literal names: false, true, null. The element node coming from the name is the parent of the text node coming from the value. Vice versa, the text node coming from the value is the child of the element node coming from the name.
· The value of a name/value pair is mapped to one or more element nodes if the value is an object. There is one element node for each name/value pair contained in the object. The names of the element nodes are equal to the names of the name/value pairs the element nodes are coming from. The element node coming from the name is the parent of the element nodes coming from the value. Vice versa, the element nodes coming from the value are the children of the element node coming from the name.
· The value of a name/value pair is mapped to one or more element nodes if the value is an array. There is one element node for each array item contained in the array. The names of the element nodes are all identical and equal to the name of the name/value pair they are coming from. The element node coming from the name is the parent of the element nodes coming from the value. Vice versa, the element nodes coming from the value are the children of the element node coming from the name.
We can conclude that only root nodes, element nodes and text nodes are used. Attribute nodes, namespace nodes, processing instruction nodes, and comment nodes are not used.
As to node properties, only name, children and parent are used.
In case XPath is chosen as node selection language, then it is necessary to specify in normative fashion either the JSON to XML mapping, or the JSON to XPath data model mapping.

Now we will look at if due to some inherent properties of JSON all XPath concepts are applicable, when the original document from which nodes are selected, is a JSON document.

A JSON object is an unordered collection of zero or more name/value pairs. This is why the concept of document order (clause 5 of XPath 1.0 [2]) is not applicable when an XPath expression is applied to an XPath data model that was generated from a JSON document. This has the following implications:
· The following axes cannot be used: following, following-sibling, preceding, preceding-sibling.

· The following functions cannot be used: position, local-name, namespace-uri, name.

JSON does not have a namespace concept. This is why XPath concepts related to name spaces are not applicable. This has the following implications:

· The following axes cannot be used: namespace

· The following functions cannot be used: local-name, namespace-uri, name

JSON does not have a concept similar to XML attributes. This is why XPath concepts related to attributes are not applicable. This has the following implications:

· The following axes cannot be used: attribute

Out of the seven node types specified in XPath 1.0 [2] only the root node, element node and text node are used. The attribute nodes, namespace nodes, processing instruction nodes and comment nodes are not used.

The name of the root element node is the class name of the base object. The base object is the node that contains the "NtfSubscriptionControl" instance (that in turn has an attribute whose value is the XPath expression).

Note that the root element node (document element) is not the same as the root node. The root element node is the mapping of the top-level name/value pair in the JSON document, whereas the root node is the (conceptual) parent of that object. The root node is the mapping of the JSON document.

When the value of the top-level name/value pair is an array, which is always the case for JSON defined NRMs in SA5, this array can contain only one item, which is the base object, in the special context of notification subscription. Considerations on how to handle the case where a top-level array can contain multiple items are hence not required.

For example, assume the information model is described by annex A.1 in TS 32.158 [11]. Further assume that the "ManagedElement" with the id "ME1" contains a "NtfSubscriptionControl" instance for which a node selection XPath expression shall be constructed. The base object is the "ManagedElement" with the id "ME1". The JSON document, to which the XPath expression is applied to, is as follows:

	{

 "ManagedElement": [

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

or

	{

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

}

Since a well formed XML document has one and only one root elemet the first alternative is preferred. It contains the key "ManagedElement" that maps to the name of the XML root element. The XPath expression to identify the base object only is then

/MangedElement/attributes

or

/*/attributes

4.2.5.2.3
Special considerations for YANG
The mapping from YANG to XML is defined in RFC 7950 [9]. No special considerations are required.
4.2.5.3
XPath 2.0

XPath 2.0 [3] introduces sequence expressions which help to render Xpath expressions more compact. For example, multiple attributes of an object can be selected by

/SubNetwork/(attrA, attrB)
and multiple objects based on instance names with

//*[objectInstance=("DN1", "DN2")]/attributes
Other concepts added in XPath 2.0 like quantified expressiuons provide no obvious value for the use cases analysed.
4.2.5.2.4
XPath 1.0 profiles
Editor's note: The content of this clause is work in progress and subject to change.

An XPath expression matches the production "Expr" defined in XPath 1.0 [2], clause 3.1. However, the general expression is much too generic for selecting nodes of an input document. For example, it allows also expressions like

(5, 256)[2]

which selects the second item in the sequence (5, 256), hence 256. This expression does not work at all on an input document. Even if "5" and "256" is replaced by some XPath expression evaluating to numbers, the expression cannot be used for selecting nodes.

This is why only one or more XPath profiles are needed.

Two XPath profiles are proposed:

· Basic profile: Supporting limited features allowing XPath to browse the document from one element node to another. The XPath EBNF is detailed in annex A.1. In this profile a location path is defined as an absolute location path. An absolute location path consists of a sequence of one or more location steps separated by / and preceded by /. The location steps in an absolute location path are composed together from left to right. Each step-in turn selects a set of nodes relative to a context node. Note that a / by itself selects the root node of the document. The basic profile supports a predicate that filters on the "id".
Example: /SubNetwork[id="SN1"]/ManagedElement[id="ME2"]/attributes

A location step is composed of

· an axis specifier, which specifies the tree relationship between the nodes selected by the step and the context node

· a node name which specifies the node name of the node selected by the location step. The node name can be a wildcard "*".

The axis specifier includes two axes:

· Child: axis containing the children of the context node

Example (unabbreviated syntax): /child::SubNetwork/child::*

Example (abbreviated syntax): /SubNetwork/*

· Descendant: axis containing the descendants of the context node; a descendant is a child or a child of a child and so on

Example: /SubNetwork/descendant::*

The predicate

· is an equality expression with the "=" operator, the relative location path "id" on the left side and a literal string on the right side.

Note that the axis specifier "child::" can be omitted from a location step, because child is the default axis. For example, a location path /SubNetwork/ManagedElement is short for /child::SubNetwork/child::ManagedElement.

Regarding the asterisk character "*", it is reserved to denote a wildcard when used in the location path. It selects all element children of the context node. In the the EBNF notation, the character "*" mentions repetition symbol (it can be also represented inside curly brackets followed by the "*").

· Advanced profile: supporting more advanced features like the usage of the predicates. The XPath EBNF is detailed in annex A.2. In this profile, a relative location path is added as a second option to the location path. A relative location path consists of a sequence of one or more location steps separated by / and it does not need to start from the root node as the absolute path.
Example: / / attributes

In this profile, in addition to the axis specifier and Node Name (same as the basic profile), a more sophisticated predicate option is added to the location step. The predicate uses arbitrary expressions to further refine the set of nodes selected by the step. Predicates are defined by an expression (PredicateExpr) always embedded in square brackets. A PredicateExpr can be as follows:

· An EqualityExpr: expression evaluated by comparing the objects that result from evaluating the two operands. On the right side, the operand is a literal string object and on the left side a PathExpr is introduced as an operand. The PathExpr might be a location path returning an object having one of the following types: node-set, boolean, number or string.

If the PathExpr object is a node-set, then each node in the node-set is compared to the literal string defined in the right side. Note that a node in the node-set might have one/many descendants nodes. And in such a case the comparison expression is evaluated to "false". This kind of comparison is accepted by Xpath (correct syntax); and it returns an empty result. Unfortunately, in the EBNF the PathExpr can not be constrained to avoid such a comparison (See more details on handling comparison based on the node-set in clause 3.4 [2]).

Examples: /SubNetwork/ManagedElement[id="ME1"]
· InEqualityExpr: expression defining a comparison of a PathExpr object to a given number. Here again, the same problem related to node-set comparison as discussed above is true. Note that here object to be compared is converted to a number as if by applying the number function (more details in clause 3.5 [2]).

Example: //attributes/ThresholdLevels[level>1]
· A functionCall: evaluated by using the Function Name to identify a function in XPath function librairy. Each function in the function library is specified using a function prototype, which gives the return type, the name of the function, and the type of the arguments (more details in Clause 4[2]).

Examples:

/SubNetwork/ManagedElement[starts-with(id,"ME2")]

/SubNetwork/ManagedElement[contains(id,"ME")]
The rest of the grammar introduced in the EBNF defines additional rules for the lexical structure (Literal, Number and Name structure). Note also that some functions are excluded since they are not useful for this profile.
4.2.5.4
XPath 3.1

Concepts added in XPath 3.1 [4] provide no obvious value for the use cases analysed.

Editor's note: Functions to deal with JSON arrays and maps may need further analysis.
4.2.5.5
JSON Pointer

JSON Pointer [5] defines a string syntax for identifying a specific value within a JSON document. A JSON Pointer expression points to one and only one value. Items of an array are identified based on their index and not key.

These properties do not make JSON Pointer a good candidate for selecting multiple nodes.
4.2.5.6
JSONPath

JSONPath [6] is still a draft RFC. Its intention is to be a powerful JSON Pointer.

Example JSONPath expressions

Select a subtree starting from the base object

$
Select all objects with a specific class

$..*[?(@.objectClass=="ManagedElement")]

Select all objects based on their DN

$..*[?(@.objectInstance=="DN1" || @.objectInstance== "DN2")]

Select specified attributes and attribute fields:

$.SubNetwork[?(@.id=="SN1")].attributes.userLabel

$.SubNetwork[?(@.id=="SN1")].attributes.plmnId.mcc
$.SubNetwork[?(@.id=="SN1")].attributes[userLabel,userDefinedNetworkType]

$.SubNetwork[?(@.id=="SN1")].attributes[userLabel,plmnId.mcc], does not work
Select an array element

$.SubNetwork[?(@.id=="SN1")].ThresholdMonitor[?(@.id=="TM1")].attributes.thresholdLevels[?(@.level==1)]

Conditional read: return attributes container only when a condition is met,

in this case "userLabel" is equal to "Berlin NW"

$.SubNetwork[?(@.id=="SN1")][?(@.userLabel=="Berlin NW")]
in this case we walk down one level for a test

$.SubNetwork[?(@.id=="SN1")][?(@.plmnId.mcc==456)], does not work
in this case an absolute path is used, that is outside of the current object

$.SubNetwork[?(@.id=="SN1")].attributes[?($.SubNetwork[?(@.id=="SN1")].ThresholdMonitor[?(@.id=="TM1")].attributes.metric=="Metric1")], does not work
Test on the presence of an attribute

$.SubNetwork[?(@.id=="SN1")][?(@.userLabel)]

4.2.6
CR proposal

The concrete CR is left for normative work.
4.2.7
Conclusion

It is recommended to define a mapping from a JSON document to the XPath data model and to identify a basic and advanced subset of XPath expressions working on that model.

This allows to apply a certain subset of XPath expressions safely to JSON documents.

It is also recommended to use the mechanism not only for targeted notification subscriptions, but also whenever it is required to identify, when being located on some object or attribute, other attributes in other objects.

4.3
Issue #3: Definition of createMOI

4.3.1
Issue description

The operation "createMOI" in TS 28.532 is underspecified and needs to be improved in many aspects.

4.3.2
Analysis

The following points need to be clarified in the definition of "createMOI":

· Clarify that the name of the new object is assigned by the MnS consumer.

· Clarify that the MnS consumer does not need to provide in the creation request values for all attributes defined for the object class.

· Clarify that depending on the object class some attribute values have to be provided in the creation request.

· Clarify the MnS producer may provide values for attributes, for which no value is provided in the request.

· Clarify the operation is synchronous.

4.3.3
CR proposal
The existing clause 11.1.1.1 in TS 28.532 shall be replaced as follows:
****** BEGIN ***

11.1.1.1
createMOI operation

11.1.1.1.1
Description

This operation is invoked by MnS consumers to request a MnS producer to create a (single) managed object instance on the MnS producer.
The "managedObjectClass" parameter in the request specifies the class name and the "managedObjectInstance" parameter the instance name of the object to be created. Both parameters shall be included in the request.

The MnS consumer shall generate the instance name by first assigning a value to the naming attribute of the new instance, and then constructing a DN according to TS 32.300 [25].

The MnS consumer shall provide in "attributeListIn" none, some or all values for the attributes specified by the managed object class definition of the class to be created. The MnS producer shall not update attribute values or remove attribute values, that are provided in the request, before creating the object and returning the "createMOI" response.

The properties of an attribute determine if attribute values shall, shall not or may be provided in the "createMOI" request. If no value is provided and a default value is specified for the attribute, the MnS producer shall set the attribute value to the default value. For further information on attribute properties and their impact on the presence or absence of attribute values in object creation requests and MnS producer behaviour, see TS 32.156 [x], clause 5.2.1 and annex B.

When the MnS producer assigns a default value to one or more attributes, the MnS producer shall include "attributeListOut" in the "createMOI" response, otherwise "attributeListOut" may be omitted.

In case of a successful operation, the object shall be created immediately upon reception of the "createMOI" request, and the "createMOI" response shall be returned immediately after the creation of the object. The MnS producer shall not wait with the creation of the object or returning the response until some other potentially long-lasting process or activity, that might be triggered by the reception of the request or the creation of the object, has completed.

Only objects, whose parent exists, can be created (directly under that parent). The MnS producer shall consider an attempt to create an object whose parent object does not exist as an error.

Note, stage 3 protocols represent missing values for attributes, that are defined by the object class, in the "createMOI" request in different ways. For some protocols just the attribute name may be present, without an attribute value. For other protocols, the complete attribute name/value pair may be absent.

Some stage 3 protocols do not support returning "attributeListOut". In this case, the MnS producer shall not modify the attribute list provided in the request before creating the object. If required by TS 32.156 [x], clause 5.2.1 and annex B, the MnS producer shall assign default values to attributes only after returning the "createMOI" response. Attribute value change notifications may be used to notify MnS consumers about the changes. Only default values, that have a specific definitive value may be assigned upon object creation. This is because the MnS consumer knows the MnS producer will assign this value when required according to TS 32.156 [x], clause 5.2.1 and annex B. Default values that are determined by the MnS producer based on standardized or proprietary selection methods are typically not known to MnS consumers.

11.1.1.1.2
Input parameters

	Parameter Name
	S
	Information Type / Legal Values
	Comment

	managedObjectClass
	M
	string
	Class name of the managed object to be created.

	managedObjectInstance
	M
	DN
	Instance name of the managed object to be created.

	attributeListIn
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	List of attribute name/value pairs of the managed object to be created.

11.1.1.1.3
Output parameters

	Parameter name
	S
	Matching Information / Legal Values
	Comment

	attributeListOut
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	List of attribute name/value pairs of the created object.

The parameter shall be present when attributes provided in "attributeListIn" have been modified by the MnS producer before object creation, otherwise it may be absent.

	Status
	M
	ENUM (OperationSucceeded, OperationSucceededAttributesModified, Failed)
	

****** END ***
4.4
Issue #4: Definition of modifyMOIAttributes

4.4.1
Issue description

The operation "modifyMOIAttributes" in TS 28.532 is underspecified and needs to be improved in many aspects.

4.4.2
Analysis

4.4.3
CR proposal
As a solution for the issue, the existing clause 11.1.1.3 in TS 28.532 could be replaced as follows:

****** BEGIN ***

11.1.1.3
modifyMOIAttributes operation

11.1.1.3.1
Definition

This operation is invoked by MnS consumers to request a MnS producer to modify one or more attributes of one or more manged objects on that MnS producer.
The type of modifications, that can be performed, depend on the attribute multiplicity.

With the "multiplicity: 1", the following modifications are possible:

· Replacement of an attribute value or attribute field value.

With the "multiplicity: 0..1", the following modifications are possible:

· Replacement of an attribute value or attribute field value, applicable to attributes or attribute fields that do have a value when performing the operation.

· Addition of an attribute value or attribute field value, applicable to attributes or attribute fields that do not have a value when performing the operation.

· Removal of an attribute value or attribute field value, applicable to attributes or attribute fields that do have a value when performing the operation.

With the "multiplicity: 1..n", the following modifications are possible:

· Replacement of an existing attribute element or existing attribute field element.

· Addition of a new attribute element or attribute field element.

· Removal of an attribute element or attribute field element, applicable to attribute or attribute fields that do have at least two elements.

With the "multiplicity: 0..n", the following modifications are possible:

· Replacement of an existing attribute element or existing attribute field element.

· Addition of an attribute element or attribute field element.

· Removal of an attribute element or attribute field element, applicable to attribute or attribute fields that do have at least one element.

The selection of the objects to be modified is achieved with the parameters "baseObjectInstance", "scopeType", "scopeLevel" and "filter". If no "scopeType" is specified, the value defaults to "BASE_ONLY". Also, when no scoping is supported by the MnS producer, the value in "baseObjectInstance" identifies the object to be modified.

A protocol may choose to split the selection of objects with scoping and filtering and the modification of the attributes of the selected objects into different operations.

The modifications to be applied to the selected objects are described in the "modifications" parameter. This is a multi-valued parameter. Each value is a structure composed of the "modifyOperator", the "nodeIdentifier" and the "nodeValue". The values of "modificationList" are ordered and shall be applied in the sequence as they occur in the list.

The parameter "nodeIdentifier" is used to identify the attributes or attribute fields to which modifications shall be applied. For simple attributes this can be just the attribute name. For structured attributes, however, attribute fields need to be identified. Different attribute fields pertaining to the same attribute may have the same name. For that reason, unambiguous identification of attribute fields is not possible with their names only. The identification needs to be based e.g. on global or local identifiers, or on the specification of a path allowing to navigate to the attribute field. Details are protocol specific.

For the modification of multi-valued attributes or multi-valued attribute fields two cases are distinguished:

· All values (elements) are considered as a single value. Elements cannot be addressed individually. If replaced, all existing elements are replaced with the new elements received in the modification request. If deleted, all existing elements are deleted. Addition of new elements to existing elements is not possible.

· Each element can be addressed individually. Single elements can be added, replaced, and deleted.
The first case does not need any further considerations. The second case requires the identification of attribute elements and attribute field elements in the modification request, when replacing and deleting elements in ordered and unordered lists, and when adding elements to ordered lists. Details are not defined at stage 2. They are protocol specific and include identification by the element value, identification by a positional index or identification by an auxiliary key added at stage 3. Note that the concept of element keys is not defined at stage 2. Identification of elements may be provided also by the "nodeIdentifier" parameter.
The "modifyOperator" parameter specifies the modification to be applied to the value of the attribute or attribute field, or the attribute element or attribute field element identified by the "nodeIdentifier". The parameter can have the values "replace", "add", "remove" or "setToDefault":

· For "replace", the "nodeValue" specifies the attribute value, attribute field value, attribute element or attribute field element that shall replace the existing value.
· For "add", the "nodeValue" specifies the attribute value or attribute field value to be added to an attribute or attribute field without value, or the new attribute element or attribute field element to be added to a multi-valued attribute.

· For "remove", the "nodeValue" is absent when an attribute value or attribute field value is removed. When an attribute element or attribute field element is removed, "nodeValue" may carry the element to be removed, depending on how on protocol level attribute elements and attribute field elements are identified.

· For "setToDefault", the "nodeValue" is absent.
Attributes and attribute fields without value can be represented in different protocol specific ways, for example by an attribute name without attribute value, by an absent attribute name/value pair, or by a specific attribute value (such as "null" or "nil").

The "modifyMOIAttributes" operation allows to modify one or more attributes in one or more objects. When not all attribute modifications can be applied successfully, the MnS producer has different options how to proceed. He may not perform any of the modifications and roll back to the state at the reception of the modification request. He may apply the changes that can be applied, so that some of the requested modifications are applied and some are not applied. He may stop processing the modification request when the first error occurs. The stage 2 definition of this operation does not include any provisions on how to proceed in case an error occurs. These provisions are left to stage 3.

When attribute properties as defined in clause 5.2.1 of TS 32.156 [?] are used, then a MnS consumer should take into account the properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", "isNullable" and "passedById" when constructing the attribute modification request. If ignored, the MnS producer shall reject the request and generate an error response.
Furthermore, when attribute properties are used, then a MnS consumer can modify an attribute with "modifyMOIAttributes" only if "isInvariant: False" and "isWritble: True". Any permission to modify attributes as determined by these attribute properties may be overridden by access control.
11.1.1.3.2
Input parameters

	Parameter Name
	S
	Matching Information / Legal Values
	Comment

	baseObjectInstance
	M
	ManagedEntity.objectInstance
	Base object used for scoping the target objects of the operation. If no scoping is applied, the base object is the only target object.

	scopeType
	O
	See corresponding parameter in "getMOIAttributes".
	See corresponding parameter in "getMOIAttributes".

	scopeLevel
	O
	See corresponding parameter in "getMOIAttributes".
	See corresponding parameter in "getMOIAttributes".

	filter
	O
	See corresponding parameter in "getMOIAttributes".
	See corresponding parameter in "getMOIAttributes".

	modificationsIn
	M
	LIST OF SEQUENCE <

 nodeIdentifier

 modifyOperator,

 nodeValue
>
	Set of sub-operations to be applied to attributes and attribute fields of the target objects

The "nodeIdentifier" specifies the target attribute or target attribute field of the sub-operation.
The "modifyOperator" specifies the operation to be applied to the target attribute or target attribute field . The parameter can have the values "replace", "add", "remove" or "setToDefault".

The "nodeValue" specifies the value used by the sub-operation. This parameter is absent for "remove" operations.

11.1.1.3.3
Output parameters

	Parameter name
	S
	Matching Information / Legal Values
	Comment

	modificationsOut
	M
	LIST OF SEQUENCE <
 objectInstance DN,
 objectClass string,
 LIST OF SEQUENCE<
 attribute name,
 attribute value >
 >
	Provides for each object, that is selected by the request, the object name, the object class, and a list of name/value pairs with the values of all attributes after modification.
If all requested modifications are applied, the parameter may be absent.

If no requested modification is applied and an error response is returned, the parameter may be absent, too..

	status
	M
	ENUM (
 SUCCEEDED,
 PARTIALLY_FAILED,

 FAILED

)
	Indicates if all, some or none of the requested modifications were applied. Details on the error, such as which modification could not be applied and the corresponding reason, may be returned as well.

****** END ***
4.4.4
Conclusion

It is recommended to update the definition of the operation "modifyMOIAttributes" in clause 11.1.1.3 of TS 28.532 as defined in clause 4.4.3 of the present document.
4.5
Issue #5: HTTP error response format

4.5.1
Issue description

When a MnS producer cannot fulfil a HTTP request, the MnS producer should provide in the error response detailed information about what exactly failed and for what reason. Ideally the error response body returned is standardized.
4.5.2
Analysis

The error response of CRUD operations is currently defined as

 ErrorResponse:

 description: >-

 Default schema for the response message body in case the request

 is not successful.

 type: object

 properties:

 error:

 type: object

 properties:

 errorInfo:

 type: string

The error response is a JSON object with a single property "errorInfo" that is of type string. Vendors can provide error information in "errorInfo" and extend the object with addition properties. The standard provides hence just a container for vendor specific error information. Error details cannot be provided in a standardized way. An error response format should be standardized.

IETF RFC 7807 [12] provides an example how the issue has been approached in the industry.

4.5.3
CR proposal
The following clause shall be added to TS 32.158.

****** BEGIN ***

X

Error responses

Editor's note: The current text focuses on protocol layer errors. Considerations on application layer errors need to be added. Note that application layer errors are specific to a specific application. For that reason, only general considerations can be added to the present document. Specific application layer errors need to be added to NRM definitions. The NRM specification methodology may have to be updated for that purpose.
Editor's note: Interaction with access control is to be studied.
X.1
HTTP error codes

The following 4xx error response codes shall be supported:
400 Bad Request (IETF RFC 7231)

402 Payment Required (IETF RFC 7231)

403 Forbidden (IETF RFC 7231)
404 Not Found (IETF RFC 7231)

405 Method Not Allowed (IETF RFC 7231)

406 Not Acceptable (IETF RFC 7231)
408 Request Timeout (IETF RFC 7231)

422 Unprocessable Content (IETF RFC 7231)
410 Gone (IETF RFC 7231)

411 Length Required (IETF RFC 7231)
413 Payload Too Large
(IETF RFC 7231)

414 URI Too Long (IETF RFC 7231)

415 Unsupported Media Type (IETF RFC 7231)

417 Expectation Failed (IETF RFC 7231)
426 Upgrade Required (IETF RFC 7231)

422 Unprocessable Content(IETF RFC 4918)

429 Too Many Requests (IETF RFC 6585)

The following 5xx error response codes shall be supported:

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

A MnS Producer may use other HTTP error codes as well if deemed more appropriate for a specific error.

Editor's note: A short descriptions of the error codes needs to be added.
X.2
Error response body

The error response body specified in the present document is derived from IETF RFC 7807 [??], clause 3.1. The following definitions are re-used and shall be supported:
· The "status" (number) property contains the HTTP error code for that sub-problem.

· The "type" (string) property provides high level error information.
· The "title" (string) provides a short, human-readable summary of the problem type. It shall not change from occurrence to occurrence of the problem.

The "details" and "instance" properties defined in IETF RFC 7807 [??] are not re-used. Potential support is outside of the provisions of the present document.

The three re-used properties are extended with the following property that shall be supported.

· The "reason" (string) property" provides more details on the error conditions than "type".

The properties above shall or should be included in each error response. The concrete format of the error response body depends on the request and includes request specific properties as well. The following list provides the details:

HTTP GET with a query component in the target URI:

JSON object with "status" (O), "type" (M), "title" (O), "reason" (O), "queryParams" (O) properties.

Media type: application/vnd.get-error+json

HTTP PUT, HTTP POST and HTTP DELETE:

JSON object with "status" (O), "type" (M), "title" (O), "reason" (O) properties.
Media type: application/vnd.object-manipulation-error+json

HTTP PATCH with JSON Patch body:

JSON array of JSON objects with patch properties (M), and "status" (CM), "type" (M), "title" (O), "reason" (O) properties.
Media type: application/vnd.json-patch-error+json

HTTP PATCH with 3GPP JSON Patch body:

JSON array of JSON objects with patch properties (M), and "status" (CM), "type"(M), "title" (O), "reason" (O) properties.
Media type: application/vnd.3gpp.json-patch-error+json

HTTP PATCH with JSON Merge Patch body:

JSON array of JSON objects with "status" (CM), "type" (M), "title" (O), "reason" (O), "badAttributes" (O) properties.

Media type: application/vnd.json-merge-patch-error+json

HTTP PATCH with 3GPP JSON Merge Patch body:

JSON array of JSON objects with "status" (CM), "type" (M), "title" (O), "reason" (O), "badAttributes" (O), "badObjects" (O) properties.

Media type: application/vnd.3gpp-json-merge-patch-error+json
Editor's note: It is tbc if really one media type is required for each case above. Note that IETF RFC 7807 [??] specifies the media type "application/problem+json".

The error response for HTTP PATCH is a JSON array of JSON objects, like the HTTP PATCH request is a JSON array of JSON objects. Each patch operation in the PATCH request is described by a JSON object. The patch operations that cannot be satisfied shall be included in the response and annotated with error information. Successful patch operations are not included in the response. The order in the response shall be the same as in the request.

If the unsuccessful patch operations have the same HTTP error code, that error code shall be used in the HTTP error response status line. The "status" property of each sub-error may repeat that error code. However, if the errors reported for the patch operations have different HTTP error codes, the "207 Multi-Status" (IETF RFC4918 [???]) code shall be used in the status line. The "status" property related to each patch operation shall contain the specific status code.

Editor's note: It is an open question, if the MnS Producer shall return error information for each patch operation that fails, or only for one even if multiple fail. In the latter case there is no need for the support of the "207 Multi-Status" response code.
The association between a JSON object containing a patch operation and the corresponding JSON object with the error information is accomplished by repeating the complete patch operation in the error response.

Editor's note: It is ffs if there are better solutions to link the JSON object with the error information to the JSON object with the patch operation than the one described in the previous paragraph..
X.3
The "type" property

The "type" property provides high level error information complementing some HTTP 4xx and 5xx error codes. It provides more details on the nature of the problem than the HTTP error codes. Problem types are specified for the following error response codes.

· 400 Bad Request

· 403 Forbidden

· 404 Not Found

· 422 Unprocessable Content
· 500 Internal Server Error

· 503 Service Unavailable

The "type" property is an enumeration of string values. A MnS Producer should use the following values in all error situations. Other values may be used as well if deemed more appropriate for specific errors.
· UNSPECIFIED_CLIENT_ERROR (HTTP error code: 400 BAD REQUEST): The request is not correct and cannot be processed by the MnS Producer. The MnS Producer cannot or is not willing to convey any details on why the request is not satisfied to the MnS Consumer. The "reason" property shall be absent.

· TARGET_OBJECT_NOT_FOUND (HTTP error code: 404 Not Found): The resource identified by the target URI does not exist. The "reason" property shall be absent.

· VALIDATION_ERROR (HTTP error code: 400 Bad Request): The request message is malformed and cannot be processed. The "reason" property may specify more detailed error information. The present document specifies the reasons that shall be used. Note that validation refers to two aspects: Validation of the request message against the definition of its format, for example the validation of the message body against the definition (schema) describing the body. And validation of the modifications requested to be applied to the information model against the definition (schema) of the information model, for example if a new instance of a certain object class is allowed to be contained under the class of the specified parent object. The "reason" property shay be present.

· REQUEST_OBJECT_TREE_MISMATCH (HTTP error code: 422 Unprocessable Content): The request message is well formed and understood but cannot be completed due to the current state of the object tree on the MnS Producer. For example, this reason is used when an object is requested to be created below a parent object that does not exist. The "reason" property may be present and specify more detailed error information.

· IE_NOT_FOUND (related error code: 400 Bad Request): The information element (object, attribute, attribute field, attribute element) requested to be modified does not exist. The "reason" property may specify more detailed error information. The "reason" property may be present and specify more detailed error information.

· MODIFICATION_NOT_ALLOWED (HTTP error code: 403 Forbidden): The requested modification is not allowed. The "reason" property may specify more detailed error information. The "reason" property may be present.

· RETRIEVAL_NOT_ALLOWED (HTTP error code: 403 Forbidden): The retrieval of the specified information is not allowed. The "reason" property may be present and specify more detailed error information.

· UNSPECIFIED_SERVER_ERROR (HTTP error code: 500 Internal Server Error): The request is correct and understood by the MnS Producer, but the MnS Producer cannot or is not willing to satisfy the request. Furthermore, the MnS Producer cannot or is not willing to convey any details on why the request is not satisfied to the MnS Consumer. The "reason" property shall be absent.

· SERVER_LIMITATION (HTTP error code: 500 Internal Server Error): The request is correct and understood by the MnS Producer, but the MnS Producer cannot satisfy the request due to server limitations. The "reason" property may be present and specify more detailed error information.

· SERVICE_DISABLED (HTTP error code: 503 Service Unavailable): The MnS Producer has disabled itself and is currently unable to handle the request. This condition may occur, for example, in overload situations. The "reason" property shall be absent.

· SERVICE_LOCKED (HTTP error code: 503 Service Unavailable): The MnS Producer has been locked by administrative action and is currently unable to handle the request. This condition may occur, for example, due to scheduled maintenance. The "reason" property shall be absent.

X.4
The "reason" property

X.4.1
Overview

The "reason" property provides more details on the error conditions than the "type" property. For client-side errors, these reasons may provide hints to the MnS Consumer on how to generate a request without errors. For server-side errors, they may help the MnS Consumer to generate requests that may be satisfied by the MnS Producer.

When multiple reasons apply, the most fundamental reason shall be put in the "reasons" property. For example, when a MnS Consumer attempts to replace an invariant attribute, and - in addition - the attribute value is invalid, then only the information that the attribute is invariant shall be contained in the "reason" property.

The "reason" property may be omitted when the MnS Producer does not want to disclose details on the error to the MnS Consumer.

Detailed error reasons are specified by the "reason" property for

· 400 Bad Request

· 403 Forbidden

· 422 Unprocessable Content

· 500 Internal Server Error
Error reasons are different for different HTTP methods. The following clauses specify the details.

X.4.2
Error reasons for GET (without query parameters)

Valid values for the "reason" property for an error response related to HTTP GET are:

· ALL_ATTRIBUTES_NOT_READABLE (related type: RETRIEVAL_NOT_ALLOWED ,403 Forbidden): All attributes of the resource are not readable, according to the attribute property "isReadable".

The list of valid values is not exhaustive. Other values may be used as well.

X.4.2
Error reasons for GET (with query parameters)

Valid values for the "reason" property for an error response related to HTTP GET are:

· QUERY_MALFORMED (related type: VALIDATION_ERROR, 400 Bad Request): The syntax of the query component is malformed. The "queryParams" property shall be absent.

· QUERY_PARAMS_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): One or more query parameters are not supported by the selected resources. The "queryParams" property shall indicate the names of the parameters not supported.

· QUERY_PARAMS_MISSING (related type: VALIDATION_ERROR, 400 Bad Request): One or more query parameters, that shall be present in the request or that shall be present in case another parameter is present, are not contained in the query component. The "queryParams" property shall indicate the names of the missing parameters.

· QUERY_PARAMS_INCONSISTENT (related type: VALIDATION_ERROR, 400 Bad Request): Query parameters with mutual dependency constraints do not respect these constraints. The "queryParams" property shall indicate the names of the parameters not respecting the dependency.

· QUERY_PARAM_VALUES_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more query parameters have an invalid value. The "queryParams" property shall indicate the names of the parameters with invalid values.

· ATTRIBUTES_NOT_READABLE (related type: RETRIEVAL_NOT_ALLOWED ,403 Forbidden): One or more attributes or attribute fields identified by the query parameters are not readable, according to the attribute property "isReadable". The "queryParams" property shall indicate the names of the parameters identifying attributes that are not readable. Editor's note: Shall we return which attributes are not readable?
· QUERY_PARAMS_TOO_COMPLEX (related type: SERVER_LIMITATION, 500 Internal Server Error): The query parameters are well formed but one or more of them cannot be processed as requested because complexity limits of the MnS Producer are reached, for example, a filter expression is syntactically correct but cannot be evaluated and yields no results since the expression is longer or more complex than the MnS producer can or is willing to interpret. The "queryParams" property shall indicate the names of the parameters that cannot be processed.

· RESPONSE_TOO_LARGE (related type: SERVER_LIMITATION, 500 Internal Server Error): The content requested to be returned exceeds the response body size limit of the MnS Producer.

· NO_DATA_ACCESS (related type: SERVER_LIMITATION, 500 Internal Server Error):

The list of valid values is not exhaustive. Other values may be used as well.

Note that is not an error when query parameters do not identify any resource or attribute to be returned.

Note that the following query parameters are currently specified in the present document: "scopeType", "scopeLevel", "filter", "attributes", and "fields".

For the following request

	GET /SubNetwork=SN1?scopeType=COMPLETE_SUBTREE&scopeLevel=highest&attributeFields=userLabel HTTP/1.1

Host: example.org

Accept: application/json

the error response may look like

	HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAM_VALUES_INVALID"
 "title": "The value of one or more query parameters is invalid.",

 "queryParams": ["scopeType", "scopeLevel"]

 },

 {

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAMS_NOT_KNOWN",
 "title": "The name of one or more query parameters is unknown.",

 "queryParams": ["attributeFields"]

 }
]

When the sub-errors have a different HTTP error code, "207 Multi-Status" is used in the response status line. The "status" property is present for each sub-error and specifies the status code for this sub-error.

	HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "status": 404,

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The value of one or more query parameters is invalid.",

 "queryParams": ["attributes", "fields"]

 },

 {

 "status": 404,

 "type": "VALIDATION_ERROR",

 "reason": "QUERY_PARAMS_NOT_KNOWN",
 "title": "The name of one or more query parameters is unknown.",

 "queryParams": ["attributeFields"]

 },

 {

 "status": 500,

 "type": "APPLICATION_LAYER_ERROR",

 "reason": "QUERY_PARAMS_TOO_COMPLEX",
 "title": "The semantics of one or more query parameters is too complex to be processed.",

 "queryParams": ["fields"]

 }
]

X.4.3
Error reasons for JSON Patch and PUT (resource update)

Valid values of the "reason" property for an error response related to a JSON Patch or a PUT request updating an existing object are:

· OP_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The patch operation specified by the "op" property is not known by the MnS producer. This situation may occur, for example, when a patch operation is not supported or wrongly spelled. Not valid for PUT.

· NEW_ATTRIBUTE_NAME_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The attribute or attribute field to be added and specified in the "path" property is not known to the MnS Producer. This reason is applicable to the patch operation "add".

· NEW_ATTRIBUTE_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The parent of the attribute field to be added does not exist. Note, that the "path" property identifies the location of the attribute field requested to be added, not its parent. This reason is applicable to the patch operation "add". Not valid for PUT.
· NEW_ATTRIBUTE_VALUE_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The value specified in the "value" property is invalid. Valid values are determined by the attribute properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", and "isNullable". This reason is applicable to the patch operations "add" and "replace".

· FINAL_ATTRIBUTE_VALUE_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The value specified in the "value" property is valid. However, the final value of the attribute or attribute field after applying the patch operation becomes invalid. Valid values are determined by the attribute properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", and "isNullable". This reason is applicable to the patch operations "add" and "replace". Not valid for PUT.

· ATTRIBUTE_NOT_WRITABLE (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): The attribute or attribute field identified by the "path" or "from" property is not writable by MnS consumers, according to the attribute property "isWritable". This reason is applicable to the patch operations "add", "replace", "remove", and "move", but not to "copy".

· ATTRIBUTE_INVARIANT (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): The attribute or attribute field identified by the "path" or "from" property cannot be modified, according to the attribute property "isInvariant". This reason is applicable to the patch operations "add", "replace", "remove", and "move", but not to "copy".

· ATTRIBUTE_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): The attribute or attribute field identified by the "path" or "from" property does not exist. This reason is applicable to the patch operations "replace", "remove", "move", and "copy". Not valid for PUT.

The list of valid values is not exhaustive. Other values may be used as well.

Consider the following Patch request.

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "add",
 "path": "/attributes/attrA/attrB",
 "value": "def"
 }
]

The error response might look like.

	HTTP/1.1 403 Forbidden
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "op": "add",

 "path": "/attributes/attrA/attrB",

 "value": "def",

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute field, whose value is requested to be replaced, is invariant."

 }
]

Note that the patch operation included in the request is repeated in the error response with "op", "path" and "value".

Other responses may look as below. Note that information not essential for illustrating the examples is left out (referred to as "...")

	...

[

 {

 ...

 "status": 404,

 "type": "TARGET_OBJECT_NOT_FOUND",

 "title": "The target URI does not exist."

 }

]

when "example.org /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1" does not exist.
	...

[

 {

 ...

 "status": 400,

 "type": "VALIDATION_ERROR",
 "reason": "OP_UNKNOWN",

 "title": "The patch operation add is not supported."

 }

]

when "add" is not supported.
	...

[

 {

 ...

 "status": 400,

 "type": "VALIDATION_ERROR",
 "reason": "NEW_ATTRIBUTE_NAME_UNKNOWN",

 "title": "The name of the attribute, that is requested to be added, is not known."

 }

]

when "attrB" is not known or supported.

	...

[

 {

 ...

"status": 400,

"type": "REQUST_OBJECTS_MISMATCH"
"reason": "NEW_ATTRIBUTE_PARENT_NOT_FOUND",

"title": "The parent of the attribute field, that is requested to be added, does not exist."

 }

]

when "attrA" does not exist.

	...

[

 {

 ...

 "status": 400,

 "type": "VALIDATION_ERROR",
 "reason": "NEW_ATTRIBUTE_VALUE_INVALID",

 "title": "The value of the attribute, that is requested to be added, is invalid."

 }

]

when the value "def" for "attrB" is invalid, for example when "attrB" is of type "number".

"reason": ["FINAL_ATTRIBUTE_VALUE_INVALID"],
not applicable

	...

[

 {

 ...

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",
 "reason": "ATTRIBUTE_NOT_WRITABLE",

 "title": "The attribute, that is requested to be added, is not writable."

 }

]

when "attrB" is not writable by MnS Consumers.

	...

[

 {

 ...

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",
 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute, that is requested to be added, is invariant."

 }

]

when "attrB" is invariant and cannot be added after object creation time any more.

"reason": ["ATTRIBUTE_NOT_FOUND"],
not applicable
In the next example an attribute field is requested to be removed.

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "remove",
 "path": "/attributes/attrA/attrB",
 "value": "def"
 }
]

Error responses may look like:

	...

[

 {

 "status": 404,

 "type": "TARGET_OBJECT_NOT_FOUND",

 "title": "The target URI does not exist."

 }

]

when "example.org /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1" does not exist.
	...

[

 {

 "status": 400,

 "type": "VALIDATION_ERROR",
 "reason": "OP_UNKNOWN",

 "title": "The patch operation remove is not supported."

 }

]

when "remove" is not supported.
	...

[

 {

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",
 "reason": "ATTRIBUTE_NOT_WRITABLE"
 "title": "The attribute, that is requested to be removed, is not writable."

 }

]

when "attrB" is not writable by MnS Consumers.
	...

[

 {

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",
 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute, that is requested to be removed, is invariant."

 }

]

when "attrB" is invariant and cannot be removed after object creation time.
	...

[

 {

 "status": 400,

 "type": "IE_NOT_FOUND",
 "reason": "ATTRIBUTE_NOT_FOUND",

 "title": "The attribute, that is requested to be removed, does not exist."

 }

]

when "attrA/attrB" does not exist.
In the next example the current value of an attribute field is requested to be replaced by a new value.

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "replace",
 "path": "/attributes/attrA/attrB",
 "value": "def"
 }
]

Error responses may look like:

	...

[

 {

 "status": 404,

 "type": "TARGET_OBJECT_NOT_FOUND",

 "title": "The resource identified by the target URI does not exist."

 }

]

when "example.org /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1" does not exist.
	...

[

 {

 "status": 400,

 "type": "VALIDATION_ERROR",
 "reason": "OP_UNKNOWN",

 "title": "The patch operation replace is not supported."

 }

]

when "replace" is not supported.
"reason": "NEW_ATTRIBUTE_NAME_UNKNOWN"
not applicable.
"reason": "NEW_ATTRIBUTE_PARENT_NOT_FOUND "
not applicable.
	...

[

 {

status": 400,

"type": "VALIDATION_ERROR",

"reason": "ATTRIBUTE_VALUE_INVALID",

"title": "The value, that is requested to replace an existing attribute value, is invalid."
 }

]

when the value "def" for "attrB" is invalid, for example when "attrB" is of type "number".
"reason": ["FINAL_ATTRIBUTE_VALUE_INVALID"],
not applicable.
	...

[

 {

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_NOT_WRITABLE",

 "title": "The attribute, whose value is requested to be replaced, is not writable."
 }

]

when "attrB" is not writable by MnS Consumers.
	...

[

 {

 "status": 403,

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute, whose value is requested to be replaced, is invariant."
 }

]

when "attrB" is invariant, and its value cannot be replaced after object creation time.
	...

[

 {

 "status": 400,

 "type": "IE_NOT_FOUND",

 "reason": "ATTRIBUTE_NOT_FOUND",
 "title": "The attribute, whose value is requested to be replaced, does not exist."
 }

]

when "attrA/attrB" does not exist.
X.4.4
Error reasons for PUT, POST and DELETE and 3GPP JSON Patch

Valid values for the "reason" property related to a HTTP PUT, HTTP POST, HTTP DELETE and 3GPP JSON Patch request, when objects are to be manipulated, are:

· OBJECT_CREATION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): Objects of this class cannot be created by MnS Consumers. This reason is applicable to HTTP PUT, HTTP POST and the patch operation "add".
· OBJECT_DELETION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): Objects of this class cannot be deleted by MnS Consumers. This reason is applicable to HTTP DELETE and the patch operation "remove".

· OP_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The patch operation specified by the "op" property is not known by the MnS producer. This situation may occur, for example, when a patch operation is not supported or wrongly spelled.
· NEW_OBJECT_CLASS_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The object class of the object to be created is not known to the MnS Producer. This reason is applicable to HTTP PUT, HTTP POST and the patch operation "add".

· NEW_OBJECT_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The parent of the object to be created does not exist. This reason is applicable to the patch operation "add", "move" and "copy".

· NEW_OBJECT_CONTAINMENT_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The object cannot be created, moved or copied under the specified parent as requested, because this containment is not allowed. This reason is applicable to HTTP PUT; HTTP POST and the patch operations "add", "move" and "copy".

· NEW_OBJECT_ID_EXISTS (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The object to be created, moved or copied has an "id" that exists already under the specified parent. This reason is applicable to HTTP PUT, HTTP POST and the patch operations "add", "move" and "copy".

· NEW_OBJECT_REPRESENTATION_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The object representation of the object to be created does not comply to its class definition. This reason is applicable to HTTP PUT, HTTP POST and the patch operation "add".

· NEW_OBJECT_ATTRIBUTE_VALUE_MISSING (related type: VALIDATION_ERROR, 400 Bad Request): The object cannot be created as requested, because one or more attribute or attribute field values, that shall be provided in the creation request, are not provided. This reason is applicable to HTTP PUT, HTTP POST and the patch operation "add".

· OBJECT_CARDINALITY_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The object cannot be added, removed or moved as requested, because this would result in violating the cardinality constraints. This reason is applicable to HTTP PUT, HTTP POST, HTTP DELETE, and the patch operations "add", "remove" and "move".

· OBJECT_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): The object to be removed, moved or copied does not exist. This reason is applicable to the patch operation "remove", "move" and "copy".

· OBJECT_NO_LEAF (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The object to be removed or moved is not a leaf. This reason is applicable to HTTP DELETE and the patch operation "remove" and "move".
The list of valid values is not exhaustive. Other values may be used as well.

Assume the following patch is applied to an object tree, that has one "SubNetwork" instance only. The first operation requests to create a "ManagedElement". This operation is successful. The second operation requests to create a "HuhuFunction" object under the new object. The "HuhuFunction" is not known to the MnS Producer. The operation fails. The third operation fails as well, since it requests to create a new object under an object, that does not exist.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "add",
 "path": "/ManagedElement=ME1",
 "value": {

 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME1/HuhuFunction=HUHUF1",

 "value": {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",

 "value": {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772
 }

 }

 }
]

	HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "op": "add",

 "path": "/ManagedElement=ME1/HuhuFunction=HUHUF1",

 "value": {

 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {

 "attrA": "xyz",

 "attrB": 771
 }

 },

 "status": 400,
 "type": "VALIDATION_ERROR",

 "reason": "NEW_OBJECT_CLASS_UNKNOWN",

 "title": "The class of the new object to be created is not known."

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",

 "value": {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",
 "attrB": 772

 }

 },

 "status": 422,
 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "NEW_OBJECT_PARENT_NOT_FOUND",

 "title": "The parent object of the new object to be created does not exist."

 }
]

X.4.5
Error reasons for JSON Merge Patch

Error responses related to JSON Merge Patch, case attribute modifications, atomic, a patch modifies multiple attributes of a single object

Valid values of the "reason" property are:

· NEW_ATTRIBUTE_NAME_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): One or more attribute or attribute fields to be added are not known to the MnS Producer. The "badAttributes" property provides the names of these attributes and attribute fields.

· NEW_ATTRIBUTE_VALUE_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more attributes or attribute fields to be updated or added have an invalid value. Valid values are determined by the attribute properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", and "isNullable". The "badAttributes" property provides the path to these attributes and attribute fields.

· ATTRIBUTE_NOT_WRITABLE (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more attributes or attribute fields to be added, updated or removed are not writable by MnS consumers, according to the attribute property "isWritable". The "invalidAttr" property provides the names of these attributes. The "badAttributes" property provides the path to these attributes and attribute fields.

· ATTRIBUTE_INVARIANT (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more attributes or attribute fields to be added, updated or removed are invariant, according to the attribute property "isInvariant". The "badAttributes" property provides the path to these attributes and attribute fields.

· ATTRIBUTE_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): One or more attribute or attribute fields to be removed do not exist. The "badAttributes" property provides the path to these attributes and attribute fields.

The list of valid values is not exhaustive. Other values may be used as well.

Assume a resource where the attributes "attrA" and "attrB" exist. The following message requests to replace the current value of "attrB" with "def".

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-merge-patch+json
{

 "id": "XYZF1",

 "attributes": {

 "attrA": {

 "attrB": "def"

 }

 }

}

When "attrB" is invariant the MnS Producer might respond as follows.

	HTTP/1.1 403 Forbidden
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",
 "title": "The attribute field, whose value is requested to be replaced, is invariant.",

 "badAttributes": ["/attributes/attrA/attrB"]

 }
]

X.4.6
Error reasons for 3GPP JSON Merge Patch (object manipulations)

Valid values for the "reason" property related to 3GPP JSON Merge Patch request are:

· OBJECT_CREATION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): Objects of this class cannot be created by MnS Consumers. The "badObjects" property specifies the Distinguished Names of these objects.
· OBJECT_DELETION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): Objects of this class cannot be deleted by MnS Consumers. The "badObjects" property specifies the Distinguished Names of these objects.
· NEW_OBJECT_CLASS_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The object class of one or more objects to be created is unknown to the MnS Producer. The "badObjects" property specifies the Distinguished Names of these objects.

· NEW_OBJECT_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): The parents of one or more objects to be created do not exist. The "badObjects" property specifies the Distinguished Names of the on-existent parent objects.

· NEW_OBJECT_CONTAINMENT_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more objects cannot be created under the specified parent as requested, because this containment is not allowed. The "badObjects" property specifies the Distinguished Names of these objects.

· NEW_OBJECT_ID_EXISTS (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects to be created or moved have an "id" that exists already under the specified parent. The "badObjects" property specifies the Distinguished Names of these objects.

· NEW_OBJECT_REPRESENTATION_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The object representation of the object to be created does not comply to its class definition. The "badObjects" property specifies the Distinguished Names of these objects.

· OBJECT_CARDINALITY_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects cannot be added or removed as requested, because this would result in violating the cardinality constraints. The "badObjects" property specifies the Distinguished Names of these objects.

· OBJECT_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): One or more objects to be removed do not exist. The "badObjects" property specifies the Distinguished Names of these objects.

· OBJECT_NO_LEAF (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content): One or more objects to be removed are not a leaf. The "badObjects" property specifies the Distinguished Names of these objects.

Editor's note: Should the objects in "badObjects" be specified with a DN, LDN, or URI?

The list of valid values is not exhaustive. Other values may be used as well.

Assume the "ManagedElement" with the identifier "ME3" does not exist. Then the following message requests to create two new objects under a non-existent object. This request cannot be satisfied.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-merge-patch+json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME3",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772
 }

 }

]

 }

]

}

	HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "type": "IE_NOT_FOUND",

 "reason": "NEW_OBJECT_PARENT_NOT_FOUND",
 "title": "The object, below which new objects are requested to be created, does not exist.",

 "badObjects": ["example.org/Subnetwork=SN1/ManagedElement=ME3"]

 }
]

X.4.7
Security considerations

When the MnS Consumer is not trustworthy or the MnS Producer does not want to disclose error details, just the "type" property may be included in the error response. The response body may be omitted also completely, and just the error status code be returned in the response status line.
****** END ***

4.6
Issue#6: Operation for multiple MOI updates (stage 2)

4.6.1
Issue description

The stage 2 definitions of the Provisioning MnS contain only specific operations for creation of new objects, and the deletion or manipulation of (existing) objects:

· The operation "createMOI" for requesting the creation of one object.

· The operation "deleteMOI" for requesting the deletion of one object, or of multiple objects identified by scoping and filtering.

· The operation "modifyMOIAttributes" for requesting the replacement of attribute values of one object, or of multiple objects identified by scoping and filtering.

Stage 2 does not include an operation allowing to create, delete and manipulate multiple objects using a single request. Note that stage 3 includes capabilities to create, delete and manipulate multiple objects using a single request for both HTTP/JSON and NETCONF/YANG solutions already.
4.6.2
Analysis

The definitions at stage 2 do not reflect the situation at stage 3. This is misleading to readers not concerned with stage 3. They may be left with the impression that the Provisioning MnS offers only limited capabilities. At stage 2 there should be an operation for creating, deleting, and manipulating multiple objects using a single request, too.

Note that no stage 3 changes are targeted by the issue in this clause.

4.6.3
CR proposal

As a solution for the issue, the following clause could be added to TS 28.532.

****** BEGIN ***

11.1.1.4a
changeMOIs operation

11.1.1.4a.1
Definition

This operation is invoked by MnS consumers to request a MnS producer to create, delete, and update multiple objects using a single request. The request contains an ordered set of sub-operations. Each sub-operation creates an object, deletes an object, or updates attribute or attribute field values. Sub-operations should be executed in the order they appear in the request.

The "baseObjectInstance" parameter is common for all sub-operations and identifies the root of the object tree where changes can be made. Each sub-operation is defined by the "path", "modifyOperator" and "nodeValue" parameters. The "path" parameter specifies the offset from the root object to the target object, the target attribute or the target attribute field of the sub-operation. The "modifyOperator" specifies the operation to be applied. Valid values are "replace", "add", remove, and for attributes and attributes fields also the value "setToDefault". The "replace" operator is not applicable when "path" identifies an object.

The "nodeValue" provides the value for the sub-operation. The parameter shall be absent for "remove" operations.
For operations on attribute values or attribute field values the same provisions as in clause 11.1.1.3 apply.

When adding (creating) objects, the "nodeValue" contains the object representation.

Note that the parameters introduced and used in this clause just serve the purpose of explaining the functionality. Specific stage 3 solutions may implement the functionality in very different ways.
11.1.1.4a.2

Input parameters

	Parameter Name
	S
	Matching Information / Legal Values
	Comment

	baseObjectInstance
	M
	ManagedEntity.objectInstance
	Identifies the base object, that together with the "pat" identify the

	modificationsIn
	M
	LIST OF SEQUENCE <

 path,

 modifyOperator,

 nodeValue
>
	Set of sub-operations to be applied to the target node.

The "nodeIdentifier" specifies the target node.

The "modifyOperator" specifies the operation to be applied to the target attribute node. The parameter can have the values "replace", "add", "remove" or "setToDefault". The value "replace" is not applicable, when the target node is an object. The value "SetToDefault" is applicable only to attributes and attribute fields.

The "nodeValue" specifies the value for the sub-operation. This parameter is absent for "remove" operations.

11.1.1.4a.3

Output parameters

	Parameter name
	S
	Matching Information / Legal Values
	Comment

	modificationsOut
	M
	LIST OF SEQUENCE <
 objectInstance DN,
 objectClass string,
 LIST OF SEQUENCE<
 attribute name,
 attribute value >
 >
	Provides for each object, that is modified, the object name, the object class, and a list of name/value pairs with the values of all attributes after modification.
If all requested modifications are applied, the parameter may be absent.

If no requested modification is applied and an error response is returned, the parameter may be absent, too.

	status
	M
	ENUM (
 SUCCEEDED,
 PARTIALLY_FAILED,

 FAILED

)
	Indicates if all, some or none of the requested modifications were applied. Details on the error, such as which modification could not be applied and the corresponding reason, may be returned as well.

****** END ***

4.6.4
Conclusion

It is recommended to add the operation "changeMOIs" as defined in clause 4.6.3 of the present document to clause 11.1.1 of TS 28.532. This requires as well the update of some mapping tables in clause 12.1 of TS 28.532, but no change of the real stage 3 functionality.
4.7
Issue#7: Advertising communication options (REST SS)

4.7.1
Issue description

TS 32.158 describes no mechanism allowing to advertise the communication options a resource supports. Communication options include supported HTTP methods, supported patch formats, and supported query parameters.

This issue applies only the HTTP/JSON solution.
4.7.2
Analysis

The OPTIONS method defined in IETF RFC 7231, and the "Accept-Patch" header defined in IETF RFC 5789 can be used to advertise the supported HTTP methods and the supported patch formats.

For advertising supported query parameters there is no method standardized yet, nor in 3GPP or other standard bodies. It is proposed to introduce the new header "Accept-Get" for that purpose.
4.7.3
CR proposal

The following clause shall be added to TS 32.158.

****** BEGIN ***

6.6
Advertising communication options

6.6.1
The HTTP OPTIONS method

The OPTIONS method is used to request communication options that are supported for the target resource identified in the OPTIONS request. A MnS Consumer can specify the target resource with a URI to refer to a specific resource on a MnS Producer, or with an asterisk ("*") to refer to a MnS Producer in general.
The target resource must exist for an OPTIONS request to be successful, otherwise a "404 Not Found" error response shall be returned. The target URI in the OPTIONS request shall identify the URI subsequently used for sending requests. Note that this is normally not the canonical URI, as described in clause 4.4.4.

The OPTIONS method shall be supported for all resources.
Editor's note: What is returned when the target resource is "*" is ffs.
6.6.2
Advertising supported HTTP request methods

The "Allow" response header (IETF RFC 7231 [2], clause 7.4.1) allows a MnS Producer to specify a comma-separated list of HTTP request methods supported for a resource.

The MnS Producer shall include an "Allow" response header (IETF RFC 7231 [2], clause 7.4.1) in the response to an OPTIONS request.

Note that, according to IETF RFC 7231 [2], clause 7.4.1, the "Allow" header shall be included as well in a "405 Method Not Allowed" response.
For example, to find out which request methods are supported by a specific "SubNetwork" instance a MnS Consumer may send the following request.

	OPTIONS ProvMnS/v1600/SubNetwork=SN1 HTTP/1.1

Host: example.org

The "Allow" header in the answer indicates the supported request methods.

	HTTP/1.1 204 No Content
Allow: GET,PUT,DELETE,HEAD,OPTIONS

6.6.3
Advertising supported patch request formats

The "Accept-Patch" response header (IETF RFC 5789 [11], clause 3.1) allows a MnS Producer to specify patch document formats accepted for a resource supporting the PATCH request method. The accepted patch formats are identified using their media types, followed by one or more optional parameters. Media types are separated by a comma.

Resources that support PATCH shall include the "Accept-Patch" header in the OPTIONS response.

A server receiving a PATCH request with an unsupported media type in the message body shall reply with a "415 Unsupported Media Type" response and include an "Accept-Patch" header referencing one or more supported patch document formats. Note that when the PATCH method is not supported, a "405 Method Not Allowed" error response shall be returned.

The patch formats that may be supported according to this specification are listed in Table 6.6.3-1.

Table 6.6.3-1: Media types for patch document formats
	Media type
	Definition

	application/merge-patch+json
	clause 6.3.2

	application/json-patch+json
	clause 6.3.3

	application/vnd.3gpp.merge-patch+json
	clause 6.4.2

	application/vnd.3gpp.json-patch+json
	clause 6.4.3

The following example demonstrates the use of the "Accept-Patch" header in an OPTIONS response. Assume that the target resource supports, besides other methods, the PATCH method.

	OPTIONS ProvMnS/v1600/SubNetwork=SN1 HTTP/1.1

Host: example.org

The "Allow" header in the answer indicates the supported request methods. The "Accept-Patch" header lists the patch formats supported for the target resource.

	HTTP/1.1 204 No Content
Allow: GET,PUT,PATCH, DELETE,HEAD,OPTIONS
Accept-Patch: application/json-patch+json, application/vnd.3gpp.json-patch+json

In the next example the MnS Consumer sends a patch format, that is not accepted by the MnS Producer.

	PATCH ProvMnS/v1600/SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json

[patch document]

The error response indicates that the media type in the request is not supported and suggests to use another one.

	HTTP/1.1 415 Unsupported Media Type
Accept-Patch: application/json-patch+json

6.6.4
Advertising supported query parameters

This specification introduces the new "Accept-Get"response header. It is used by MnS Producers to specify the query parameters supported by the GET method on a specific resource. It is a comma-separated list of query parameter names.

Resources that support GET shall include the "Accept-Get" header in the OPTIONS response.

A server receiving a GET request with unsupported query parameters in the query component of the URI shall reply with a "400 Bad Request" response and include an "Accept-Get" header referencing all supported query parameters. Note that when the GET method is not supported, a "405 Method Not Allowed" error response shall be returned.

This specification defines the query parameters listed in Table 6.6.4-1.

Table 6.6.4-1: Query parameter names
	Query parmeter name
	Definition

	scopeType
	clause 6.1.2

	scopeLevel
	clause 6.1.2

	filter
	clause 6.1.3

	attributes
	clause 6.2.2.

	fields
	clause 6.2.2.

The following example demonstrates the use of the "Accept-Get" header in an OPTIONS response.
	OPTIONS ProvMnS/v1600/SubNetwork=SN1 HTTP/1.1

Host: example.org

The response includes an "Accept-Get" header with the supported query parameter names.

	HTTP/1.1 204 No Content
Allow: GET,PUT,PATCH, DELETE,HEAD,OPTIONS
Accept-Patch: application/json-patch+json, application/vnd.3gpp.json-patch+json
Accept-Get: attributes, fields, scopeType, scopeLevel

****** END ***

4.7.4
Conclusion

It is recommended to add to TS 32.158 the methods for advertising supported communication options, that are described in the CR proposal in clause 4.7.3 of the present document.
4.8
Issue #8: Logging

4.8.1
Issue description

Logging is a crucial functionality of the OAM systems. It assists in several functionalities e.g troubleshooting. The functionality of logging is available in IRP framework in TS 32.332. However, the SBMA lacks the ability of Logging.
The SBMA (service based management architecture) principle call for a management system where the MnS (management services) are defined for all management tasks e.g provisioning, performance assurance. The authorized consumer can access the MnSes as per their requirements. The current SBMA framework do not provide any mechanism to control and produce the logs for consumed management services.
The logging in IRP framework is restricted to only to logging of notifications. However, logging of Management Service require logging of all Component A, B and C i.e what operation and notifications were accessed, what were the related MIBs and what PM/KPI data was collected.

The MnS can be accessed from within the management system and from outside the management system. The logging may support both the scenarios.
4.8.2
Analysis

The logging mechanism for SBMA framework need to be defined.

4.8.3
Potential Requirements

· The 3GPP Management System shall have the capability to enable logging including recording of the operations invoked.

· The 3GPP Management System shall have the capability to enable logging including recording of the notifications produced.

· The 3GPP Management System shall have the capability to enable logging including recording of the MIBs accessed.

· The 3GPP Management System shall have the capability to enable logging including recording of the performance measurements reporting. This implies logging the measurement job contents, but excludes logging the individual measurement results.

· The 3GPP Management System shall have the capability to enable logging including recording of the KPIs produced. This implies logging the KPI generated, but excludes logging the individual KPI results.

· The 3GPP Management System shall provide a way for the consumer to retrieve the logs.

· The 3GPP Management System shall have the capability to manage log overflow situation.

· The 3GPP Management System shall include a timestamp for each log record.

· The 3GPP Management System shall include the user/consumer identity for each log record.

4.8.4
Potential Solutions

TBD
4.8.5
CR proposal

TBD
5 Recommendations and conclusions

Annex A

Editor's note: The content of this clause is work in progress and subject to change.

A.1 EBNF for basic XPath profile

LocationPath

::= AbsoluteLocationPath

AbsoluteLocationPath
::= Step

| AbsoluteLocationPath '/' Step

Step

::= AxisSpecifier NodeName Predicate*
AxisSpecifier

::= AxisName '::'

|

AxisName

::= 'descendant'
| 'child'NodeName

::= '*'
| Name

Predicate

::= '[' 'id' '=' Literal ']'
Literal

::= '"' [^"]* '"'
| "'" [^']* "'"Name

::= NameStartChar (NameChar)*

NameChar

::= NameStartChar | "-" | "." | [0-9]

NameStartChar

::= [A-Z] | "_" | [a-z]
A.2 EBNF for advanced XPath profile

LocationPath

::= RelativeLocationPath
| AbsoluteLocationPath

AbsoluteLocationPath
::= '/' RelativeLocationPath?
| '//' RelativeLocationPath
RelativeLocationPath
::= Step
| RelativeLocationPath '/' Step
| RelativeLocationPath '//' Step
Step

::= AxisSpecifier NodeName Predicate*
AxisSpecifier

::= AxisName '::'

|
AxisName

::= | 'descendant'
| 'child'

NodeName

::= '*'
| Name
Predicate

::= '[' PredicateExpr ']'

PredicateExpr

::= EqualityExpr

| InEqualityExpr

| PathExpr
EqualityExpr

::= PathExpr '=' Literal
InEqualityExpr

::= PathExpr '<' Number

| PathExpr '>' Number
| PathExpr '<=' Number
| PathExpr '>=' Number
PathExpr

::= LocationPath
| FunctionCall
FunctionCall

::= FunctionName '(' (Argument (',' Argument)*)? ')'

Argument

::= EqualityExpr

| InEqualityExpr

| PathExpr

| Number

| Literal
Literal

::= '"' [^"]* '"'

| "'" [^']* "'"

Number

::= Digits ('.' Digits?)?
| '.' Digits

Digits

::= [0-9]+

FunctionExcluded

::= 'position()'

| 'last()'

| 'comment'

| 'processing-instruction'
| 'node'
FunctionName

::= Name - FunctionExcluded
Name

::= NameStartChar (NameChar)*

NameChar

::= NameStartChar | "-" | "." | [0-9]

NameStartChar

::= [A-Z] | "_" | [a-z]
Annex <X>:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-04
	SA5#142e
	S5-222520
	-
	-
	-
	Initial skeleton
	0.0.0

	2022-04
	SA5#142e
	S5-222173
	
	
	
	Rel-18 pCR 28.831 Add skeleton
	0.1.0

	2022-04
	SA5#142e
	S5-222174
	
	
	
	Rel-18 pCR 28.831 Add key issue 1 Schema for notifyMOIChanges
	0.1.0

	2022-04
	SA5#142e
	S5-222175
	
	
	
	Rel-18 pCR 28.831 Add key issue 2 Targeted notification subscriptions
	0.1.0

	2022-04
	SA5#142e
	S5-222176
	
	
	
	Rel-18 pCR 28.831 Add description of current situation for key issue 2 Targeted notification subscriptions
	0.1.0

	2022-05
	SA5#143
	S5-223582
	
	
	
	Rel-18 pCR 28.831 Improve description of current situation for key issue 2 (Targeted notification subscription)
	0.2.0

	2022-07
	SA5#144
	S5-224424
	
	
	
	pCR 28.831 Add potential requirements for key issue Targeted notification subscription
	0.3.0

	2022-07
	SA5#144
	S5-224425
	
	
	
	pCR 28.831 Add potential solutions for key issue Targeted notification subscription
	0.3.0

	2022-07
	SA5#144
	S5-224426
	
	
	
	pCR 28.831 Add analysis of JSONPointer as potential solution
	0.3.0

	2022-07
	SA5#144
	S5-224427
	
	
	
	pCR 28.831 Add analysis of JSONPath as potential solution
	0.3.0

	2022-08
	SA5#145
	S5-225806
	
	
	
	pCR 28.831 Modify potential requirements for key issue Targeted notification subscription
	0.4.0

	2022-08
	SA5#145
	S5-225805
	
	
	
	pCR 28.831 Add XPath as potential solution
	0.4.0

	2022-08
	SA5#145
	S5-225804
	
	
	
	pCR 28.831 Add special XPath considerations for JSON and YANG
	0.4.0

	2022-08
	SA5#145
	S5-225803
	
	
	
	pCR 28.831 Add simple XPath profiles
	0.4.0

	2022-08
	SA5#145
	S5-225801
	
	
	
	pCR 28.831 Add key issue Definition of createMOI
	0.4.0

	2022-11
	SA5#146
	S5-226556
	
	
	
	Rel-18 pCR 28.831 Add approved but not implemented Annex A on XPath profiles
	0.5.0

	2022-11
	SA5#146
	S5-226950
	
	
	
	Rel-18 pCR 28.831 Improve revised definition of creatMOI
	0.5.0

	2022-11
	SA5#146
	S5 226951
	
	
	
	Rel-18 pCR 28.831 Add issue – Definition of modifyMOIAttributes
	0.5.0

	2022-11
	SA5#146
	S5-226974
	
	
	
	Rel-18 pCR 28.831 Add issue – Definition of HTTP error responses
	0.5.0

	2023-03
	SA5#147
	S5-232353
	
	
	
	Rel-18 CR 28.831 Add issue on advertising communication options (REST SS)
	0.6.0

	2023-03
	SA5#147
	S5-232356
	
	
	
	Rel-18 CR 28.831 Add general solution for advertising communication options (REST SS)
	0.6.0

	2023-03
	SA5#147
	S5-232361
	
	
	
	Rel-18 CR 28.831 Add solution for advertising supported patch request formats (REST SS)
	0.6.0

	2023-03
	SA5#147
	S5-232362
	
	
	
	S5-232362 Rel-18 CR 28.831 Add solution for advertising supported query parameters (REST SS)
	0.6.0

	2023-03
	SA5#147
	S5-233036
	
	
	
	Rel-18 CR 28.831 Add conclusion for issue 4 Definition of modifyMOIAttributes
	0.6.0

	2023-03
	SA5#147
	S5-233037
	
	
	
	Rel-18 CR 28.831 Add issue on Bulk CM operations (stage 2)
	0.6.0

	2023-03
	SA5#147
	S5-233038
	
	
	
	Rel-18 CR 28.831 Add CR proposal and conclusion for issue on Bulk CM operations (stage 2)
	0.6.0

	2023-03
	SA5#147
	S5-233045
	
	
	
	Rel-18 CR 28.831 Add solution for advertising supported HTTP request methods (REST SS)
	0.6.0

	2023-03
	SA5#147
	S5-233047
	
	
	
	Rel-18 CR 28.831 Add conclusion for issue on advertising communication options (REST SS)
	0.6.0

	2023-03
	SA5#147
	S5-233048
	
	
	
	Rel-18 CR 28.831 Add CR proposal for error response – Supported HTTP error codes
	0.6.0

	2023-03
	SA5#147
	S5-233049
	
	
	
	Rel-18 CR 28.831 Add CR proposal for error response – Error response body format
	0.6.0

	2023-03
	SA5#147
	S5-233050
	
	
	
	Rel-18 CR 28.831 Add CR proposal for error response – Type property
	0.6.0

	2023-03
	SA5#147
	S5-233051
	
	
	
	Rel-18 CR 28.831 Add CR proposal for error response – Reason property
	0.6.0

	2023-03
	SA5#147
	S5-233052
	
	
	
	Rel-18 CR 28.831 Clarify the mapping from a JSON document into the XPath data model
	0.6.0

	2023-03
	SA5#147
	S5-233053
	
	
	
	pCR 28.831 Logging Key Issues
	0.6.0

