

	
3GPP TSG-SA5 Meeting #147	S5-233071
Athens, Greece, 27th Feb 2023 - 3rd Mar 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.156
	CR
	0052
	rev
	1 DOCPROPERTY Revision * MERGEFORMAT -
	Current version:
	17.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Clarifying multilevel attribute properties

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	adNRM
	
	Date:
	2023-02-13

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	For attributes with structured datatypes attribute properties can be defined on multiple leves. Once for the attribute itself but also for the individual attribute fields (subparts). There is confusion about how attribute properties declared on different levels affect each other. E.g., if the attribute is declared readOnly, but a subpart is declared readWrite, is it possible to modify that subpart?

It was not even described that attributes may have both a simple and a structured datatype.

	
	

	Summary of change:
	Describe that:
- attributes may have both a simple or a structured datatype
- how attribute properties declared on different levels interact
- defining terminology for attributes, subparts and individual values as copied over from 28.532 clause 11.1.1.11.1

	
	

	Consequences if not approved:
	Misunderstandings and potential interoperability problems for attributes.

	
	

	Clauses affected:
	5.2.1.1, 5.3.4, 5.3.4.1, 5.3.4.2, 5.3.4.3, 5.3.4.A

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Previously discussed and endorsed in "S5-231150 DP Clarifying multilevel attribute properties".

For properties isReadable, isWritable, isNotifyable, isInvariant the principle is that if the attribute level property is restrictive (e.g, isWritable=False or isInvariant=True) that means the full structured attribute and all its fields are restricted. If the attribute is permissive the fields property settings are effective.

The meaning of the properties isNullable and passedById is not well defined, so they are not considered.

Default value is not considered as we have never seen it defined on multiple levels. It is not even clear how a default value could be defined for a structured type.

	
	

	This CR's revision history:
	

[bookmark: _Ref305596378][bookmark: _Ref305671447][bookmark: _Ref308537250][bookmark: _Ref308537279][bookmark: _Ref310868142][bookmark: _Toc516495114][bookmark: _Hlk117416929]
First change
[bookmark: _Ref305749510][bookmark: _Toc122615026]5.2.1.1	Description
An attribute is a typed element representing a property of a class (Unified Modelling Language (OMG UML), Infrastructure [1], clause 10.2.5.). An element that is typed implies that the element can only refer to a constrained set of values. See clause 10.1.4 of [1] for more information on type.
See clauses 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type information to an attribute.
The properties of an attribute are described by a set of attribute properties categorized as follows:
-	Attribute properties defining valid attribute values: type, allowedValues, multiplicity, isOrdered, isUnique, isNullable, passedById.
-	Attribute properties defining valid interactions of managers and agents with attributes values: isInvariant, isWritable, isReadable, isNotifyable, defaultValue.
-	Other attribute properties: documentation, supportQualifier.
The following tables provide definitions for the attributes of the three categories.
Table 5.2.1.1-1: Attribute properties defining valid attribute values
	Property name
	Description
	Legal values

	type
	Refers to a predefined (subclause 5.4.3) or user defined data type (section 5.3.4). See also subclause 7.3.44 of [2], inherited from StructuralFeature.
	NA

	allowedValues
	Specifies restrictions to the data type defined by type. This property is useful when no dedicated data type, that includes the restriction, shall be defined. The property may be absent when no restrictions are defined.
	Dependent on type

	defaultValue
	Identifies a value at specification time that is used at object creation time under conditions defined in Annex B.
If there is no defined default value, the property shall be omitted from the attribute description or specified as ‘defaultValue: None.’.
	None (default) or a value that is dependent on allowedValues

	multiplicity
	Defines the number of values the attribute can simultaneously have. See subclause 7.3.44 of [2]; inherited from StructuralFeature.
	See 5.2.8 Default is 1

	isOrdered
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are sequentially ordered. See subclause 7.3.44 and its Table 7.1 of [2].
If the property is present for attributes with a multiplicity of greater than “1”, it shall be set to either “True” or “False”. It shall not be set to “N/A”.
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are unique (i.e., no duplicate attribute values). See subclause 7.3.44 and its Table 7.1 of [2].
If the property is present for attributes with a multiplicity of greater than “1”, it shall be set to either “True” or “False”. It shall not be set to “N/A”.
	True (default), False

	isNullable
	Identifies if an attribute can carry no information. The implied meaning of carrying “no information” is context sensitive and is not defined in this Model Repertoire.
Note, the property "isNullable: True" is semantically identical to adding the value "0" to the "multiplicity" specified. Usage of the "multiplicity" property is preferred to express an attribute can have no value or carry no information.
	True, False (default)

	passedById
	See Table 5.2.9.1-1: passedById property

	True, False (default)

Table 5.2.1.1-2: Attribute properties defining valid interactions with attributes
	Property name
	Description
	Legal values

	isInvariant
	If an attribute has an "isInvariant: True" property, its value can be set only upon object creation. After object creation, the initial value cannot be modified.
If an attribute has an "isInvariant: False" property, its value can be set at object creation time. After object creation, the initial value can be modified.
Details on how initial values are provided upon object creation are specified in Annex B.
	True, False (default)

	isWritable
	If an attribute has an "isWritable: True" property, a manager can set its value upon object creation. After object creation, a manager can modify the initial value if "isInvariant: False". If "isInvariant: True", a manager cannot modify the initial value. The "isInvariant" property supersedes hence the "isWritable" property.
If an attribute has an "isWritable: False" property, a manager cannot set the value upon object creation nor modify it later.
A "isWritable: True" property might be restricted by access control.
	True, False (default)

	isReadable
	Specifies if the attribute can be read by a manager.
A "isReadable: True" property might be restricted by access control.
	True , False (default)

	isNotifyable
	Identifies if a notification shall be sent in case of an attribute value change.
	True (default), False

Table 5.2.1.1-3: Attribute properties related to the specification of attributes
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
	Any

	supportQualifier
	Identifies the required support of the attribute. See also subclause 6.
	M, O (default), CM, CO, C

Upon completion of any manipulation of an attribute the attribute properties related to valid attribute values shall be respected. If an interaction results in violating at least one of these properties, the manipulation request shall be rejected.
The value N/A (Not applicable) shall not be used for attribute properties except for properties isOrdered, isUnique and allowedValues.
Next change
5.3.4	<<dataType>>
[bookmark: _Toc516495115]5.3.4.1	Description
It represents an attribute property type (see Table 5.2.1.1-1: Attribute properties).
This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in subclause 5.4.3. The latter is defined by the specifications by authors using this a <<dataType>> model element.
The names of predefined data types and user-defined data types must be chosen such that they do not clash.
User-defined data types can be simple types containing one or more values of a single simple type like integer or string or they can be structured types containing one or more named attribute fields each having properties similar to an attribute as described in table 5.2.1.1-1. The individual attribute fields may have different property values e.g., different types, multiplicity or supportQualifier. A named attribute field itself can be of a simple or a structured datatype.
Structured datatypes could be embedded in any depth; however, they should not be embedded more than 3 levels, that is attribute-structuredType-structuredType-structuredType-simpletype. Reasons for avoiding deep embedding of structured types include:
- Any construct that would be modeled by such deep structures can be modeled partly of fully by IOCs instead, thus avoiding deep structures.
- It is difficult to understand deep structured types, it is hard to follow their "type containment".
- Addressing is based on Distinguished Names which does not allow addressing individual attribute fields.
- Filtering of attribute fields becomes complex.
- Usability problems on any human interface (GUI, CLI)

The user-defined data types support the modelling of structured data types (see <<dataType>> PLMNId in 5.3.4.2).
When an attribute is of a structured datatype, attribute properties may be declared on multiple levels: declared for the attribute as a whole and also for each attribute field. As an attributed field itself may be of a structured datatype, properties may be declared on 2, 3 or more levels.
"Documentation is relevant on the attribute or attribute field level where it is declared. Properties "multiplicity", "isOrdered", "isUnique", "type" and "allowedValues" are always relevant and should be enforced on the attribute or attribute field level where they are declared.
The property "supportQualifier" always applies to the level where it is declared. However, the support for a model element is always conditional on the support of the higher level. E.g., if an attribute is optional but one of its fields is mandatory, that means the field is mandatory if the attribute itself is supported; if the attribute is not supported this results in none of its fields(subparts) being supported.
For properties isReadable, isWritable, isNotifyable the following rules apply:
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields if and only if True is also specified for all of them.
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields until a False value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a False value.

For the isInvariant property the following rules apply:
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields if and only if False is also specified for all of them.
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields until a True value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a True value.

When a user-defined or predefined data type is used to apply type (see property named type in Table 5.2.1.11: Attribute properties) information to a class attribute, the data type name is shown along with the class attribute. See Example below.
[bookmark: _Ref305670258][bookmark: _Toc516495116]5.3.4.2	Example
The following examples are two user-defined data types.
The left-most user-defined data type is named PLMNId . It has two attributes. One is the Mobile Country Code (MCC) of predefined data type String. The other is the Mobile Network Code (MNC) of predefined data type String as well.
 The right-most user-defined data type is named Xyz. It has three attributes. The attribute1 uses predefined data type String. The attribute2 uses predefined data type Integer. The attribute3 uses user-defined data type PLMNId.

[image:]
Figure 5.3.4.2-1: <<dataType>> notations
The following example shows a ZClass which has four attributes. Two attributes (i.e. attribute1, attribute4) use the user-defined data types (i.e. PLMNId, Xyz) and the other two attributes use the predefined data types.
[image:]
Figure 5.3.4.2-2: Usage example of <<dataType>>
The third column of the following shows some of the properties of an attribute attribute1 of ZClass. It shows the attribute1 attribute property type is PLMNId, a user-defined data type.
	attribute1

	It is a PLMN identifiers.
	type: PLMNId
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

[bookmark: _Toc516495117]
5.3.4.3	Name style
For <<dataType>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).
For <<dataType>> attribute, use the same style as Attribute (see 5.2.1).

5.3.4.A	Definitions
To allow referencing attributes, individual values of attributes and subparts the following terminology is defined:
simple type: A value defined by a simple type is a scalar, e.g., an integer or a string.
complex type: A value defined by a complex type is either a set of multiple (sub-)values (of the same simple or complex type), or a value containing one or more attribute fields.
attribute: An information element composed of an attribute name and an attribute value.
attribute name: The name of an attribute.
attribute value: The value of an attribute. The value is defined by a simple type or a complex type and can include zero, one or more individual value elements.
attribute field: An attribute contained inside an (top-level) attribute. Attribute fields can also contain attribute fields.
attribute field name: The name of an attribute field.
attribute field value: The value of an attribute field. The value is defined by a simple type or a complex type and can include zero, one or more individual value elements.
simple attribute: Attribute whose value is defined by a simple type.
complex attribute: Attribute whose value is defined by a complex type.
structured attribute: Special kind of complex attribute containing at least one attribute field, but usually multiple attribute fields with different data types.
multi-value attribute: Special kind of complex attribute with multiplicity greater than "1", i.e., an attribute whose value is composed of multiple (sub-)values (of the same simple or complex type).
attribute element: Single (sub-) value of the value of a multi-value attribute.
attribute field element: Single (sub-) value of the value of a multi-value attribute field.

End of changes

Page 1

image1.png

image2.png

