Page 1

3GPP TSG-SA5 Meeting #147

 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-232325
Athens, Greece, 27th Feb 2023 - 3rd Mar 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0083
	rev
	-
	Current version:
	17.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-17 CR 32.158 Align and clarify definitions for the “Accept” header

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	17-02-2023

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	The "Accept" response header is not used consistently in examples. This might lead to different implementations which in turn impairs interoperability.

	
	

	Summary of change:
	Exampleas are aligned as to the usage of the "Accept" response header.

	
	

	Consequences if not approved:
	Risk of non compatible implementations.

	
	

	Clauses affected:
	4.3.2, 6.4.3, A.3.4, A.4.4, A.6.4, A.7.2,

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

4.3.2
Response content format negotiation

The MnS Consumer shall engage in proactive content negotiation as defined in clause 3.4.1 of RFC 7231 [2] by including the "Accept" request header field in HTTP requests that expect a message body in the response. The "Accept" header field indicates to the MnS Producer the media types acceptable to the MnS Consumer.
If the MnS Producer cannot provide any of the acceptable resource representations, it shall respond either with a "406 Not Acceptable" error code or provide a representation for the resource that is not specified in the "Accept" header field.
	Next modification

6.4.3
3GPP JSON Patch

3GPP JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]).

Like 3GPP JSON Merge Patch, it allows, using a single patch document, to update the target resource (as does JSON Patch) and to update, create or delete descendant resources, which JSON Patch does not allow, at least not based on resource identifiers.

This extension is that the "path" and "from" properties of a patch operation define an offset to the target resource as specified by the request URI. This offset is relative to the target URI. It has a first component pointing to a resource below the target resource, and a second component pointing to a secondary resource within the resource identified by the first component.

The first component of "path" or "from" is built from URI path components. It follows the same syntax as the path components of the target URI. The second component is a URI fragment with a JSON pointer in the URI fragment identifier representation as defined in clause 6 of RFC 6901 [14], i.e. the second component starts with the "#" character. Both components are concatenated without a delimiter.
For example, assume the target URI is "/SubNetwork=SN1" and the "userLabel" attribute of a child of class "ManagedElement" with the id "ME1" is to be patched, then the first path component is "/ManagedElement=ME1/" and the second path component is "#attributes/userLabel". This results in the following path:

"path": "/ManagedElement=ME1/#attributes/userLabel".

The target URI shall identify a common ancestor resource of the resources to be patched, or the NRM root.

Note when one or more root resources are patched, the target URI identifies always the MnS root. When no root resources are patched, the MnS producer has a choice as to the target resource. For example, assume the resource with the URI

"http://example.com/3gpp/ProvMnS/1700/ManagedElement=ME1/XyzFunction=XYZF1"

is patched. Then the target resource is either the parent resource of the patched resource, in this case the root resource,

"example.com/3gpp/ProvMnS/1700/ManagedElement=ME1"

or the NRM root.

"example.com/3gpp/ProvMnS/1700".

Setting the target resource always to the NRM root is hence a possible implementation option for MnS Consumers.

When creating new resources ("op"="add"), the object class name of the resource to be created shall be included in the "value" property of the operation.

The media type of 3GPP JSON Merge Patch is "3gpp-patch+json". This media type is defined by 3GPP and is not registered with IANA. Patch documents using this media type need to conform to the "application/json" media type.
The procedure is as follows:

1)
The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The message body carries a 3GPP JSON Patch document describing a set of modification instructions (patch items) to be applied to the identified resources. The "Accept" header shall be included in the request and specify the media types acceptable to the MnS Consumer for "200 OK" or "204 No Content" responses.
2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated and created resources, constructed according to either the flat or hierarchical response construction method described in clause 6.1.1, in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
A single operation in a 3GPP JSON Patch document shall patch a single (primary) resource only. Different operations in a patch document can patch different resources though. The consequence of this restriction is for example that subtrees with multiple resources cannot be created or deleted with a single patch operation. Each resource needs to be created or deleted with an own patch operation in the patch document. This behaviour is aligned with those of the PUT and DELETE methods.

Note that the "replace" operation of (3GPP) JSON Patch has replace semantics like PUT and not merge semantics like JSON Merge Patch. When multiple attributes or attribute fields of a resource are patched, then a patch operation for each update is required, for example

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"

 },

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654

 }
]

To streamline partial updates of single resources, 3GPP JSON Patch introduces a new patch operation named "merge". For that operation, the JSON object contained in the "value" property shall be merged into the target resource referenced by "path" using the rules of JSON Merge Patch (RFC 7396 [12]). An MnS Producer shall verify if a "merge" operation is for a single resource by checking if the "path" property contains the string "#/attributes" and shall reject the request with "422 Unprocessable Entity" if it doesn't.
With the "merge" operation, the updates in the previous example can be expressed as follows.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "merge",

 "path": "#/attributes",

 "value": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 }

 }

]

The following example is invalid. It attempts to patch, besides the target resource, which is allowed, the contained "ManagedElement" resources, which is not allowed.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "merge",

 "path": "",

 "value": {

 "attributes": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 },

 "ManagedElement": [

 {

 ...
 }

]

 }

 }

]

In the same way as JSON Patch allows to construct conditional patch requests using the "test" operation, 3GPP JSON Patch can be used to construct condititional patch requests where the condition is expressed with the "test" operation. In contrast to JSON Patch, however, the condition may be based on attribute values outside of the patched resource.

For example, the following patch document replaces the value of "attrA", which is an attribute of a "XyzFunction" resource whereas the condition relates to an attribute in the "SubNetwork" resource.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
Accept: application/json
[

 {

 "op": "test",

 "path": "#/attributes/userLabel",
 "value": "Berlin NW"
 },
 {

 "op": "replace",

 "path": "/ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrA",
 "value": "ghi"
 }

]

	Next modification

A.3.4
Creation of multiple resources with 3GPP JSON Patch

One or more resources can be created with a single 3GPP JSON Patch request. The following example shows the creation of a complete subtree for a new network entity represented by a "ManagedElement" resource and two "XyzFunction" resources. The target URI has been chosen to identify the first common ancestor of the resources to be created. The "path" specifies the offset from the target resource to the resource to be created. The "path" has no fragment component. Parent resources are created before child resources following the order of the operations in the patch document. The class name of the object to be created is specified in each patch operation. The "Accept" header specifies responses with hierarchcal object tree are acceptable.
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {

 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",

 "value": {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF2",

 "value": {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772
 }

 }

 }
]

Note that each resource to be created shall be specified with a dedicated "add" operation. The following patch document is hence invalid as it attempts to create three resources with a single "add" operation.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "add",

 "path": "/ManagedElement=ME3",

 "value": {

 "id": "ME3",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772

 }

 }

]

 }

 }

]

It is not an error if the target location of an "add" operation as specified by the "path" property does exist. In this case the content of the target location is replaced with the content of the "value" property. For example, in the following example, the first "ManagedElement" resource already exists. The patch document is applied successfully though. The representation of the first "ManagedElement" resource is replaced and the second "ManagedElement" resource is created.

Note that the attributes "vendorName" and "location" are removed from the representation of the first "ManagedElement" resource. The "userLabel" attribute is updated.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "add",

 "path": "/ManagedElement=ME2",

 "value": {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 4"

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3",

 "value": {

 "id": "ME3",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 }

]

	Next modification

A.4.4
Deletion of multiple resources with 3GPP JSON Patch

Multiple resources are deleted with an ordered sequence of "remove" operations. The following example removes a complete subtree for a "ManagedElement".

The target URI has been chosen to identify the parent resource of the "ManagedElement" resource to be deleted. The "path" specifies the offset to the resources to be deleted. The "path" has no fragment component.

Child resources are deleted before parent resources, starting with leaf resources.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "remove",

 "path": "/ManagedElement=ME1/XyzFunction=XYZF1"

 },

 {

 "op": "remove",

 "path": "/ManagedElement=ME1/XyzFunction=XYZF2"

 },

 {

 "op": "remove",

 "path": "/ManagedElement=ME1"

 }

]

	Next modification

A.6.4
Partial update of a resource with 3GPP JSON Patch

When 3GPP JSON Patch is used to request the changes described in the first two examples in clause A.6.1 the MnS consumer may send the following

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json
Accept: application/json

[

 {

 "op": "replace",
 "path": "#/attributes/attrA",
 "value": "def"
 }
]

and

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json

[

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654
 }
]

and

	PATCH /SubNetwork=SN1/ThresholdMonitor=TM1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json

[
 {

 "op": "remove",

 "path": "#/attributes/thresholdLevels/0"

 },
 {

 "op": "replace",

 "path": "#/attributes/thresholdLevels/0/thresholdValue",

 "value": 22
 },
 {

 "op": "add",

 "path": "#/attributes/thresholdLevels/-",

 "value":
 {

 "level": "4",

 "thresholdValue": 40
 }
 }

]

When using 3GPP JSON Patch to update a single resource, the only difference compared to JSON Patch is the presence of "#" in the "path".

	Next modification

A.7.2
Manipulating multiple resources with 3GPP JSON PATCH

The same resource modifications as in the previous clause expressed using 3GPP JSON Patch are given by
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"

 },

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654

 },

 {

 "op": "replace",
 "path": "ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrB",
 "value": 1234

 },

 {

 "op": "add",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF3",
 "value": {

 "id": "XYZF3",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "ghi",

 "attrB": 553
 }

 }
 },

 {

 "op": "remove",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF2"

 },

 {

 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {

 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 }
]

The modifications of the "userLabel" attribute and the "mcc" attribute field can be expressed also by a single "merge" operation instead of two separate "replace" operations.
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "merge",
 "path": "#/attributes",
 "value": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 }

 }
]

The "copy" operation is useful when complete configurations from existing resources need to be copied to newly created resources.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

Accept: application/json
[

 {

 "op": "add",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF3",
 "value": {

 "id": "XYZF3",

 "objectClass": "XyzFunction",

 "attributes": {

 }

 }
 },

 {

 "op": "copy",
 "from": "/ManagedElement=ME1/XyzFunction=XYZF2/attributes"

 "path": "/ManagedElement=ME1/XyzFunction=XYZF3/attributes"

 }
]

	End of modifications

