
3GPP TSG-SA5 Meeting #146 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-226609
14 - 18 November 2022, Toulouse, FR
Source:
Intel, NEC, CATT
Title:
pCR 28.908 Add possible solution for AI/ML entity deployment
Document for:
Approval
Agenda Item:
6.7.5.3 - FS_AIML_MGMT_WoP#3
1
Decision/action requested

The group is asked to discuss and agree on the proposal.
2
References

[1]
3GPP TR 28.908-040 “Study on Artificial Intelligence/Machine Learning (AI/ ML) management”.
[2]
3GPP TS28.105 Artificial Intelligence / Machine Learning (AI/ML) management.

3
Rationale
In the AI/ML operational workflow described in clause 4.2.1 of TR 28.908 [1], in the deployment phase, the ML entity needs to be deployed to the target inference function.

The UC related to ML entity deployment has been described in clause 5.5 of TR 28.908 [1], this UC needs to be clarified aligning with the AI/ML operational workflow.
This pCR is to add the possible solution for ML entity deployment for the clarified UC in clause 5.5 of TR 28.908 [1].
4
Detailed proposal
	Start of modification

5.5
ML entity deployment

5.5.1
Description

ML entity deployment refers to the process of making an ML entity available in the operational environments, where it could start adding value by conducting inference (e.g., prediction). After a trained ML entity meets the performance criteria per the ML entity testing, the ML entity could be deployed in target inference function(s) in 3GPP system, e.g., via a software installation, file transfer, or a configuration management procedure and subsequently activated. The ML entity deployment may be requested by the consumer, or initiated by the producer based on the deployment policy (e.g., the threshold of the testing performance of the ML entity, threshold of the inference performance of the existing ML model, predefined time schedule, etc.) provided by the consumer.
After an ML entity is deployed in the target inference function, the data fed to the ML entity may change to the level where it is different from the data used in the initial prior training of the respective ML entity. To improve model performance with the changed data, the ML entity therein may need to be retrained and redeployed.

5.5.2
Use cases

5.5.2.1
ML entity deployment control and monitoring
This use case is appliable to the deployment scenario where the ML training function and inference function are not co-located.
After the ML entity is trained and tested, the ML entity needs to be deployed by the ML entity deployment MnS producer to the target inference function(s) per the request from the MnS consumer or initiated based on aconsumer predefined deployment policy.
NOTE: ML entity deployment MnS producer may be a separate entity or co-located with the MnS producer of the inference function.
One potential reflection of deployment policy is to enable a scheduled deployment.
ML models are typically trained and tested to meet specific requirements for inference, addressing a specific use case or task. Inference requirements could change regularly. For example, a network node supported by AI/ML capability may require employing a specifically trained/different type of ML entity at different time of day, or a specific day in the week with an already known repeated pattern. For example, a gNB providing coverage for a specific location is scheduled to accommodate different load level and/or pattern of services at different time of the day. A dedicated ML model (specifically trained and/or varying type altogether) may be required.

Once the ML entity has been deployed in the target inference function(s), some MnS consumers may need to know the available information of ML entity and to determine the next appropriate action. In this case the MnS consumer needs to be notified about the ML entity deployment or be able to retrieve the deployment information of the ML entity. This would allow the consumer to e.g., request ML entity re-training if e.g., performance fall below certain threshold or request the deployment of different ML entity altogather, etc.).
The general information used to describe a deployed ML entity may include:

-
Resource information, which describes the static parameters of the ML entity (e.g., mLEntityVersion, mLEntityId, trainingContext, see TS 28.105 [4])

-
Management information, which describes the information model that is used for ML entity lifecycle management (e.g., activation flag, status, creation time, last update time).

-
Capability information, which describes the capability information (e.g., inference type, performance metrics).

5.5.3
Potential requirements

REQ-MODEL_DPL-CON-1: The ML entity deployment MnS producer should have a capability allowing the consumer to request and retrieve deployment information of an AI/ML entity.

REQ-MODEL_DPL-CON-2: The ML entity deployment MnS producer should have a capability to notify the consumer about the deployment information of an ML entity.
REQ-MODEL_DPL-CON-3: The ML entity deployment MnS producer should have a capability allowing the consumer to request the deployment of an ML entity to the target inference function(s).
REQ-MODEL_DPL-CON-4: The ML entity deployment MnS producer should have a capability allowing the consumer to provide the deployment policy for an ML entity.
5.5.4
Possible solutions

5.5.4.1
NRM based solution
This solution uses the instances of following IOCs for interaction between ML deployment MnS producer and consumer to support the ML entity deployment, where the ML deployment MnS producer could be part or a separate entity of the inference function:
1)
The IOC representing the ML entity deployment request, named for example as MLDeploymentRequest.

This IOC is created by the ML entity deployment MnS consumer on the producer, and it contains the following attributes:

-
identifier of the ML entity to be deployed;

-
the identifier (e.g., DN) of target inference functions where the ML entity is deployed to;

2)
The IOC representing the ML entity deployment policy, for example named as MLDeploymentPolicy.

This IOC is created by the ML entity deployment MnS consumer on the producer, so that the producer can deploy the ML entity according to the policy without an explicit deployment request from the consumer, and it contains the following attributes:

-
identifier or inference type of the ML entity to be deployed;

-
trigger of ML entity deployment, including e.g., pre-defined scheduled deployment, a threshold of the testing performance of the ML entity and/or a threshold of the inference performance of the existing ML entity in the target inference function(s);
-
identifier (e.g., DN) of target inference functions where the ML entity is deployed to.
3)
The IOC representing the ML entity deployment process, for example named as MLDeploymentProcess.

This IOC is created by the ML entity deployment MnS producer and reported to the consumer, and it contains the following attributes:

-
identifier of the ML entity being deployed;

-
associated ML entity deployment request;

-
associated ML entity deployment policy;
-
identifier (e.g., DN) of the target inference function;
-
deployment progress;

-
control of the deployment process, like cancel, suspend and resume.
How to deploy the ML entity by the MnS producer is vendor specific.
4)
The IOC representing the ML entity deployed in the inference function, for example by extension of the existing IOC (MLEntity) representing the ML entity, or by a new IOC.

This IOC is created by the ML deployment MnS producer and reported to the consumer, and it contains the following attributes:

-
identifier of the deployed ML entity;

-
associated trained ML entity (e.g., DN of the MOI representing the trained ML entity), which is to be deployed to the inference function;

-
associated ML entity deployment process;

-
status (such as activated, de-activated, etc) of the deployed ML entity.
The examples of IOCs and their relations between the IOCs are depicted in the figure below.

[image: image1.emf]«InformationObjectClass»

MLEntityDeploymentRequest

«InformationObjectClass»

MLEntityDeploymentProcess

«InformationObjectClass»

MLEntity

*

«InformationObjectClass»

MLEntityDeploymentPolicy

1

1

1

{XOR}

1

1

Figure 5.5.4.1-1: Example of ML entity deployment related NRMs

NOTE: Further details including e.g., the name of the IOCs and corresponding attributes are to be decided in
normative phase.
5.5.5
Evaluation

The solution described in clause 5.5.4.1 adopts the NRM-based approach, which to a greate extent reuses the existing provisioning MnS operations and notifications. This solution is also consistent with the approach used by ML training MnS defined in TS 28.105 [4]. It does not only reuse the existing capabilities (provisioning MnS operations and notifications), but also cater for the flexibility that is needed to facilitate both co-located and separate implementation and deployment options of ML training and/or testing MnS and ML deployment MnS by using the consistent NRM-based approach.

Therefore, the solution described in clause 5.5.4.1 is considered a feasible solution.
	End of modifications

«InformationObjectClass»
MLEntityDeploymentRequest

«InformationObjectClass»
MLEntityDeploymentProcess

«InformationObjectClass»
MLEntity
*

«InformationObjectClass»
MLEntityDeploymentPolicy
M1
M2
M3
M4
1
1
1
{XOR}
1
1

