Page 1

3GPP TSG-SA5 Meeting #146

 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-226247
Toulouse, France, 14th Nov 2022 - 18th Nov 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0073
	rev
	-
	Current version:
	17.2.1
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-17 CR 32.158 Clarify construction rules for GET response message body formats

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	2022-11-03

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	Design patterns for attribute and attribute field selection are specified. However, the rule on how to construct exactly the response remains fuzzy.

	
	

	Summary of change:
	The rule on how to construct the response is clarified.

	
	

	Consequences if not approved:
	A fuzzy rule may result in different MnS producer and MnS consumer implementations which in turn impairs interoperability.

	
	

	Clauses affected:
	6.2.1, 6.2.3 (new), A.2.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

6.2
Design patterns for attribute and attribute field selection

6.2.1
Introduction

This design pattern allows to specify attributes of resources selected by the target URI.

Often attributes have no scalar values but are complex structured data types with an own hierarchy and many attribute fields. In this case it may be desirable to identify not only the complete attribute but also individual attribute fields.

The attributes or attribute fields to be returned shall be specified in the query part of the URI.

Attribute selection or attribute field selection may be supported by the HTTP GET method. It is not applicable to any other method.

6.2.2
Query parameters for attribute and attribute field selection
In case one or more attributes (with all attribute fields) are to be retrieved, the name of the query parameter shall be "attributes". The value of "attributes" shall be a list with the names of the attributes to be selected. Attribute names are separated by a comma (","). An empty "attributes" query parameter is allowed and has the special meaning that no attributes shall be returned.The naming attribute "id" shall always be returned.
In case one or more fields of one or more attributes are to be retrieved, the name of the query parameter shall be "fields". The value of "fields" shall be a comma (",") separated list of entries that follow the syntax of JSON Pointer in JSON String Representation [14]. The context resource for the construction of the JSON Pointer is the resource identified by the target URI.
6.2.3
Construction rules for the response message body
In a first step the resource identified by the target URI, or the set of resources identified by the target URI and the scope and filter parmeters, is determined. Then, in a second step, resources that do not contain at least one attribute identified by the "attributes" parameter or one attribute field identified by the "fields" parameter shall be removed from the output set of the first step. In the last step all attributes and attribute fields not identified by "attributes" and "fields" shall be removed from the remaining resource representations.
This result set is then used to construct the final response using either the hierarchical or the flat construction method, both defined in clause 6.1.4.
If no resource is identified in the retrieval request the MnS producer shall return an error response with "404 Not Found" in the status line.
	Next modification

A.2.3
Retrieval of multiple complete resources using scoping and filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The base object and all objects at scope level "1", irrespective of their object class, are included in the response. The acceptable response media type specified by the "Accept" header field has no "format" parameter, which indicates to the MnS producer to use the hierarchical response construction method:
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

The response constructed with the flat response construction method looks like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
[

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 },

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 },

 {

 "id": "PMJ1",

 "objectClass": "PerfMetricJob",

 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 },

 {

 "id": "TM1",

 "objectClass": "ThresholdMonitor",

 "objectInstance": "SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

The "objectInstance" of each returned object is present in the response, as required in clause 6.1.4.
When only objects at scope level "1" are requested to be returned, the request looks like:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1

Host: example.org

Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the two "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide the containment nodes for the "XyzFunction" objects.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only the two "XyzFunction" objects without containment nodes.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

The following example selects all objects of any class on scope level "1" that have a "location" attribute whose value is equal to "Grunewald":

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=1&\

 filter=/*/*[attributes[location="Grunewald"]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "ManagedElement" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

]

}

The input document to the XPath expression is a document whose root node is the object identified by the path component of the target URI and that includes the object representations of the scoped objects. In this example the root node is the "SubNetwork", but it is not scoped and hence included in the input document with its "id" only, i.e. without the "attributes" node. The input document includes furthermore all scoped objects on level "1" with their complete representations (without name-contained objects). These are the two "ManagedElement" objects, the "PerfMetricJob" object, and the "ThresholdMonitor" object.
	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted to a XML document Note that a valid XML document has one and only one root element. For that reason the "SubNetwork" element needs to be added as root element..
	<SubNetwork>

 <id>SN1</id>

 <ManagedElement>

 <id>ME1</id>

 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

	<ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=2&\

 filter=/*/*/*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "XyzFunction" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

An identical response is returned when using the following requests:

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL&\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_SUBTREE&scopeLevel=2&\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL&\

 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

It is possible to combine scoping and filtering with attribute and attribute field selection. The following example returns the containment tree, starting with the "SubNetwork" identified by the target URI.
	GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org

Accept: application/json

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

}

The next example scopes the same subtree as in the previous example and requests to return only "vendorName" attributes instead of no attributes at all.
	GET /ProvMnS/1700?\

 scopeType=BASE_ALL&\

 attributes=vendorName HTTP/1.1

Host: example.org

Accept: application/json

This results, according to clause 6.2.3, in removing from the response all scoped resources that do not have a "vendorName" attribute.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "vendorName": "Company XY"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "vendorName": "Company XY"

 }

 }

]

}

If the retrieval request identifies resources that do not exist, such as in

	GET /ProvMnS/1700?scopeType=BASE_NTH_LEVEL&scopeLevel=3 HTTP/1.1

Host: example.org

Accept: application/json

then the MnS producer returns "404 Not Found" in the response status line. More error information may be provided in the response body.
	HTTP/1.1 204 Not Found
Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "error": {

 "errorInfo": "No resources at scope level specified in the request."

 }

}

When the MnS Consumer does not know the root object of the containment tree and wants to retrieve the complete tree starting with the root, the target URI needs to identify the NRM root, i.e. the resource above the root object. According to clause 4.4.2, this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example "/ProvMnS/1700". In the following example, the "attributes" query parameter is empty and only the name-containment hierarchy (without attributes) is returned.
	GET /ProvMnS/1700?scopeType=BASE_ALL&attributes= HTTP/1.1

Host: example.org

Accept: application/json

The response is illustrated below. Properties of the MnS may be returned as siblings of "SubNetwork", as indicated in the example below by the placeholder "…".

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 ...,

 "SubNetwork": [
 {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

 }

]

}

Multiple root resources can be returned as well. For example, assume a NRM with three "SubNetwork" root resources, then the response may look like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{
 ...,
 "SubNetwork": [

 {

 "id": "SN1",

 ...
 },

 {

 "id": "SN2",

 ...
 },

 {

 "id": "SN3",

 ...
 }

]

}

Note that when the target URI identifies the NRM root, then the name of the document (root) element, to which an XPath expression is applied, is "nrmRoot". The first step of the location path of an XPath expression is hence "/nrmRoot". For example, the following HTTP GET request returns the "SubNetwork" with the identifier "SN1".

	GET /ProvMnS/1700?\

 scopeType=BASE_ALL&\

 filter=/nrmRoot/SubNetwork[id="SN1"] HTTP/1.1

Host: example.org

Accept: application/json

	End of modifications

