
	3GPP TR 28.831 V0.4.0 (2022-08)

	Technical Report

	3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;
Study on basic Service-Based Management Architecture
(SBMA) enabler enhancements
(Release 18)

	

	[image: image1.png]
	[image: image2.png]

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	

	3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

	Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2022, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

1
Scope
6
2
References
6
3
Definitions of terms, symbols and abbreviations
6
3.1
Terms
6
3.2
Symbols
7
3.3
Abbreviations
7
4
Issues
7
4.1
Issue #1: Schema for "notifyMOIChanges"
7
4.1.1
Issue description
7
4.1.2
Current situation
7
4.1.3
Analysis
7
4.1.4
Potential requirements
7
4.1.5
Potential solution
7
4.1.6
CR proposal
7
4.1.7
Conclusion
7
4.2
Key issue #2: Targeted notification subscriptions
7
4.2.1
Issue description
7
4.2.2
Current situation
8
4.2.2.1
Scoping objects based on object classes
8
4.2.2.2
Scoping attributes
9
4.2.2.3
Scoping objects or attributes based on conditions
10
4.2.3
Analysis
10
4.2.4
Potential requirements
10
4.2.5
Potential solutions
11
4.2.5.1
Introduction
11
4.2.5.2
XPath 1.0
12
4.2.5.2.1
General considerations
12
4.2.5.2.2
Special considerations for JSON
13
4.2.5.2.3
Special considerations for YANG
16
4.2.5.3
XPath 2.0
16
4.2.5.2.4
XPath 1.0 profiles
16
4.2.5.4
XPath 3.1
18
4.2.5.5
JSON Pointer
18
4.2.5.6
JSONPath
18
4.2.6
CR proposal
19
4.2.7
Conclusion
19
4.3
Key issue #X: Definition of createMOI
20
4.3.1
Issue description
20
4.3.2
Analysis
20
4.3.3
CR proposal
20
11.1.1.1
createMOI operation
20
11.1.1.1.1
Description
20
11.1.1.1.2
Input parameters
21
11.1.1.1.3
Output parameters
21
5 Recommendations and conclusions
21
Annex <X>: Change history
22

Foreword
This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:

shall

indicates a mandatory requirement to do something

shall not
indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should

indicates a recommendation to do something

should not
indicates a recommendation not to do something

may

indicates permission to do something

need not
indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can

indicates that something is possible
cannot

indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will

indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document

will not

indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document

might
indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

might not
indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

In addition:

is
(or any other verb in the indicative mood) indicates a statement of fact

is not
(or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.
1
Scope

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
XML Path Language (XPath), Version 1.0, W3C Recommendation 16 November 1999 (Status updated October 2016), (https://www.w3.org/TR/1999/REC-xpath-19991116/)

[3]
XML Path Language (XPath) 2.0, W3C Recommendation 14 December 2010 (Link errors corrected 3 January 2011; Status updated October 2016), (https://www.w3.org/TR/xpath20/)

[4]
XML Path Language (XPath) 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-31/)

[5]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".
[6]
IETF Internet-Draft: "JSONPath: Query expressions for JSON"; draft-ietf-jsonpath-base-05; April 2022 (https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-05).

[7]
XML Information Set (Second Edition), W3C Recommendation 4 February 2004 (https://www.w3.org/TR/xml-infoset/)

[8]
XQuery and XPath Data Model 3.1, W3C Recommendation 21 March 2017 (https://www.w3.org/TR/xpath-datamodel-31/)

[9]
RFC 7950: The YANG 1.1 Data Modeling Language
[10]
XForms 2.0 (https://www.w3.org/community/xformsusers/wiki/XForms_2.0)

[11]
3GPP TS 32.158: "Management and orchestration; Design rules for REpresentational State Transfer (REST) Solution Sets (SS)"
3
Definitions of terms, symbols and abbreviations
3.1
Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

<ABBREVIATION>
<Expansion>

4
Issues

4.1
Issue #1: Schema for "notifyMOIChanges"

4.1.1
Issue description

4.1.2
Current situation

4.1.3
Analysis

4.1.4
Potential requirements

4.1.5
Potential solution

4.1.6
CR proposal

4.1.7
Conclusion

4.2
Key issue #2: Targeted notification subscriptions

4.2.1
Issue description

SA5 is moving to a fully model driven approach. In this architecture all aspects that are managed are represented in the information model. It is possible to observe all changes in the network by observing the changes in the information model. Note the information model covers all fragments: configuration management, alarm management and performance management.

Many MnS consumers are not interested in all changes in the network. For that reason, it is important that MnS consumers can subscribe to specific portions of the information model only. These portions may be described in terms of object instances, attributes or attribute fields.

The currently specified "NtfScubscriptionControl" does not allow to scope subscriptions with that granularity. Some enhancements seem to be required to "NtfScubscriptionControl". This clause analyses the current situation and proposes a solution.

4.2.2
Current situation

4.2.2.1
Scoping objects based on object classes
For scoping managed objects, the attribute "scope" is provided in "NtfSubscriptionControl". It has two attribute fields: "scopeType" and "scopeLevel". This scoping mechanism works only on the hierarchical levels of the information model. For example, you can select the level below "SubNetwork".

Typically, instances of more than one object class can be located on a level. For example, below "SubNetwork" there can be instances of "ManagedElement", "PerfMetricJob", "TraceJob" and "AlarmList". It is not possible to scope only instances of one or more specific object classes with the current scoping mechanism.

To reduce the scoped set of object instances to those with a specific object class, the "notificationFilter" attribute can be used. The IS level parameters "objectClass" and "objectInstance" are typically mapped to one stage 3 parameter ("href") only. There is no dedicated parameter for the "objectClass" in stage 3. Filtering out notifications related to certain object classes involves therefore the application of string functions on "href".

The described mechanism applies to CM notifications and non-CM notifications such as alarm notifications.

Note on all examples:

The following examples are for the RESTful HTTP-based solution only. For this solution the "notificationFilter" format is XPath 1.0 in Rel-17. In addition, the JSON instance document sent over the wire is expressed in XML. A <notification> element is added as root element to produce a valid XML document, a necessary manipulation not described yet in Rel-17.

Example 1 (alarm notifications):

Assume the NRM specified in TS 28.622 is supported on a MnS producer. A subscription scoping (with "scopeType" and "scopeLevel") the level below "SubNetwork" has been created. No notification filter is specified. The subscription is for alarm notifications only. On the level below "SubNetwork" there are instances of "ManagedElement", "PerfMetricJob" and "NtfSubscriptionControl".

The described subscription forwards alarm notifications related to all manged object classes. For example, all following notifications are forwarded:

<notification>

 <href>example.com/SubNetwork=SN1/ManagedElement=ME1</href>
 ...
</notification>

<notification>

 <href>example.com/SubNetwork=SN1/ManagedElement=ME2</href>
 ...
</notification>

<notification>

 <href>example.com/SubNetwork=SN1/PerfMetricJob=PMJ1</href>
 ...
</notification>

<notification>

 <href>example.com/SubNetwork=SN1/NtfSubscriptionControl=NSC1</href>
 ...
</notification>

The following notification is not related to the set of scoped objects and hence not forwarded:

<notification>

 <href>example.com/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1</href>
 ...
</notification>

The subscription shall be modified now to include only "ManagedElement" objects. This is realized with an appropriate XPath expression as value of "notificationFilter". Possible XPath expressions include:

XPath expression 1:
The following XPath expression returns the "notification" node since the string "ManagedElement" is contained in the "href" value.

"/notification[contains(href,"ManagedElement")]"
XPath expression 2:

The following expression checks for the presence of "ManagedElement" after "example.com/SubNetwork=SN1".

"/notification[starts-with\

 (substring-after(path,"example.com/SubNetwork=SN1/"),\

 "ManagedElement")]"
Example 2 (alarm notifications):

Assume again the NRM specified in TS 28.622 is supported on a MnS producer. "PerfMetricJob" instances have been created below "SubNetwork" and below some "ManagedElement" instances. A MnS consumer wishes to create a subscription related to all "PerfMetricJob" instances.

The notification scope needs to include the complete object tree starting at "SubNetwork". In case a "PerfMetricJob" instance is always a leaf object, then checking for the presence of the sub-string "PerfMetricJob" in "href" does the job. In case a "PerfMetricJob" instance is not always a leaf object, then it is necessary to check, if the last path segment of "href" identifies a "PerfMetricJob". A simple test on if the "href" value includes the sub-string "PerfMetricJob" is not sufficient. There is no obvious Xpath expression to solve this problem, at least not with XPath1.0.

Example 3 ("notifyMOICreation", "notifyMOIDeletion", "notifyMOIAttributeValueChanges")
The created, dfeleted or updated objerct is specified with the "href" parameter of the notification header. For that reason the same considerations as for alarm notifications apply.

Example 3 ("notifyMOIChanges")
The objects are identifierd with both the "href" and "path" parameter. Filtering on these parameters to reduce the scoped set of objects to the sub-set of interest is not a feasible solution.

4.2.2.2
Scoping attributes
The scoping mechanism allows to select a set of objects. This is good enough for notification types related to the complete object, such as alarm notifications, or when a MnS consumer is interested in receiving attribute value change notifications for all attributes of an object. It is not possible to target specific attributes of an object only using the scoping mechanism. When a MnS consumer is interested only in value changes of one or more specific attributes of an object, then the MnS consumer needs to configure into the subscription an appropriate notification filter.

Note the following examples are for the RESTful HTTP-based solution only.

Example 1 ("notifyMOIAttributeValueChanges"):
Assume a subscription for "notifyMOIAttributeValueChanges" includes the instance of "XyzFunction" identified by "XYZF1". A notification reporting the value change of "attrA" and "attrB" looks like
<notification>
 <href>example.com/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1</href>
 ...
 <attributeListValueChanges>

 <attrA>123</attrA>
 <attrB>abc</attrA>
 </attributeListValueChanges>

 <attributeListValueChanges>

 <attrA>456</attrA>
 <attrB>def</attrA>
 </attributeListValueChanges>

</notification>

If a MnS consumer is interested only in value changes of "attrA", then he needs to specify a notification filter testing on the presence of "attrA", for example:

"/notification/attributeListValueChanges[attrA]"

Note that the complete notification including also "attrB" is forwarded in case the test evaluates to true. The "attrB" cannot be removed from the notification. With filtering either the complete notification is forwarded, or the complete notification is not forwarded.
Note also that for "notifyMOIChanges" the situation is more complicated. Changes of multiple managed object instances can be reported using a single "notifyMOIChanges" notification. Even worse, the object instance in the notification header may not even be an instance that has changed, but only a common ancestor of the instances that have changed. This means that not only the "href" property of the notification header needs to be checked but also the "path" properties of the notification body.

4.2.2.3
Scoping objects or attributes based on conditions

It is currently not possible to specify a conditional scope. A conditional scope could be based for example on the presence of an attribute or on an attribute with a specific value. Note that scoping based on object classes can be considered as conditional scope.

For example, a MnS consumer might be interested only in changes of "AlarmInformation" instances (reported with alarm notifications) with a perceived severity equal to "CRITICAL".

4.2.3
Analysis

Scoping capabilities are currently limited.
4.2.4
Potential requirements

Potential requirements to address the issues identified above are
[Req-1] A subscription shall enable to select a single object instance.

[Req-2] A subscription should enable to select a complete subtree of objects starting at a specified base object.

[Reg-3] A subscription shouldenable to select the objects on a specified level below a specified base object.

[Req-4] A subscription shouldenable to select the objects starting at a specified base object down to and including a specified level below the base object.

[Req-5] A subscription shouldenable to select multiple object instances based on object instance identifiers.

[Req-6] A subscription shouldenable to select multiple object instances based on object classes.

[Req-7] A subscription shouldenable to select multiple object instances based on filter conditions.

The following potential additional requirements apply for subscriptions to CM notifications:

[Req-8] A subscription shouldenable to select attributes within selected object instances.

[Req-9] A subscription shouldenable to select attribute fields within selected object instances.

[Req-10] A subscription shouldenable to select attribute elements within selected object instances.

[Req-11] A subscription shouldenable to select attributes, attribute fields and attribute elements based on filter conditions.

Note only [Req-1] is mandatory. All other requirements are optional. This allows for implementations of different complexity that are tailored for different deployment needs.

The MnS consumer should be able to get the information which exact subscription capabilities are supported by a MnS producer, or more specifically by "NtfSubscriptionControl". This may require the introduction of capability identifiers that can be retrieved by MnS consumers.

4.2.5
Potential solutions

4.2.5.1
Introduction

Solutions to the potential requirements in clause 4.2.4 need to be able to conditionally select nodes in node trees.

Note: The NRM is a node tree. Node types are objects and attributes. The tree is defined by the name-containment relationships.
The target is to use an existing notation as solution, ideally without any modifications. The following notations are analyzed for use with JSON defined NRMs:

· XPath 1.0 [2]

· XPath 2.0 [3]

· XPath 3.1 [4]

· JSON Pointer [5]

· JSONPath [6]

The following notations are analyzed for use with YANG defined NRMs:

· XPath 1.0 [2]

· XPath 2.0 [3]

· XPath 3.1 [4]

All notations listed above are quite powerful. Only a subset is required to support the potential requirements documented in clause 4.2.4. This subset is identified in the following clauses.

Editor's note: It is ffs if a stage 2 definition is required, that is more detailed than the requirements, and from which the subset can be identified in a direct mapping.

Editor's note: XPath does not work on XML. Instead, it works on an own data model defined in XPath 1.0 [2], clause 5. This clause also describes the mapping of an XML document to the XPath model. The mapping of a JSON document to the XPath model is ffs. Alternatively, some mapping between a JSON document to a XML document needs to be looked at.

4.2.5.2
XPath 1.0

4.2.5.2.1
General considerations
XPath 1.0 [2] has been designed primarily to select one or more nodes of an XML document. However, XPath is a notatition that is not tied to XML and "operates on the abstract, logical structure of an XML document or JSON object, rather than its surface syntax.", as clarified in XML Path Language (XPath) 3.1 [4], clause 1. This is because an XPath expression operates on documents with an own XPath specific data model, and not on the XML or JSON surface syntax. This data model is specified in XPath 1.0 [2], clause 5. Note the data model for XPath 2.0 [3] and XPath 3.1 [4] is described in XQuery and XPath Data Model 3.1 [8].

Since an XPath expression works on an own data model, it is necessary to translate XML of JSON input documents into that data model.

For XML this translation is clearly defined by W3C. It is a two-step process. The mapping from the information in an XML document to the XML Information Set is described in XML Information Set [7]. The mapping from the XML Information Set to the XPath data model is described in XPath 1.0 [2], annex B. The mapping from YANG to XML is defined in RFC 7950 [9].

However, W3C did not define a clear mapping of a JSON document into the XPath data model, see the following clause for more details.
XPath models an XML or JSON document as a tree of nodes. NRM objects and NRM attributes are both mapped to a specific node type of the XPath data model, the element node. XPath 1.0 does hence not distinguish between element nodes representing NRM objects and element nodes representing NRM attributes.

Furthermore, XPath 1.0 does not distinguish between child element nodes that represent NRM attributes and those child nodes (at the same level in the the tree hierarchy) that represent name contained objects.

These two observations have some important implications when using XPath 1.0 for selecting NRM objects:

The first implication is that it is not possible to select all NRM attributes of an NRM object unless some measures are taken. Assume the XPath expression "SubNetwork/*", it selects all attributes of SubNetwork, but also the name contained objects. Fortunately, the attributes are embedded in an "attributes" container in the YANG and JSON defined NRMs. Therefore, it is easy to construct an XPath expression selecting all attributes of an object. The XPath expression is "SubNetwork/attributes" (when the "attributes" element node and the attribute element nodes are selected) or "SubNetwork/attributes/*" (when only the attribute element nodes are selected).

The second implication is that when selecting the child objects of an object, for example with the XPath expression "SubNetwork/ManagedElement", which selects all "ManagedElement" childs of "SubNetwork", then also the objects name contained by the "ManagedElement" childs are selected, and so forth. In other words, the child axis works based on element nodes and not on NRM objects as desired. XPath 1.0 does not offer any solution for this problem. Only the attributes container may be used again to select only the attributes of the "ManagedElement" childs, the XPath expression to select the "ManagedElement" childs is hence "SubNetwork/ManagedElement/attributes".

Note XPath 1.0 is verbose and does not allow for compact expressions in many cases. For example, to select a subset of all attributes of an object, each attribute needs to be selected individually with the complete location path:

/SubNetwork/attributes/attrA | /SubNetwork/attributes/attrB
And when multiple objects shall be selected based on object instance names, then the complete location path and predicate needs to be repeated for each instance

//*[objectInstance="DN1"]/attributes | //*[objectInstance= "DN2"]/attributes
An XPath expression is evaluated within a context. The context consists of:

· a node (the context node)

· a pair of non-zero positive integers (the context position and the context size)

· a set of variable bindings

· a function library

· the set of namespace declarations in scope for the expression

The context needs to be clearly defined.

XPath expression examples (assuming the presence of an "attributes" container in the info model):

Select the specified base object

/*/attributes
Select all objects in the tree starting at the specified base object:

//attributes
Select all objects on a specific level below a specified base object, in this case the second level below the base object:

/*/*/*/attributes

Select the objects starting from a specified base object down to and including the objects on a specific level below the base object:

/*/attributes | /*/*/attributes | /*/*/*/attributes

Select objects based on their object instance identifiers in the tree starting at the base object:

//*[objectInstance="DN1"]/attributes | //*[objectInstance= "DN2"]/attributes
Select objects based on their object class

/SubNetwork/attributes

/SubNetwork[id="SN1"]/ManagedElement/attributes

//*[objectClass="NtfSubscriptionControl"]/attributes

Select specific attributes and attribute fields:

<objectSelector>/attrA | <objectSelector>/attrB/subAttrB1
<objectSelector>/attributes/attrA | <objectSelector>attributes/attrB/subAttrB1
Select objects and attributes based on predicates (conditions):

<objectSelector>[<predicate>]
<objectSelector>/attributes<attributesSelector>[<predicate>]
4.2.5.2.2
Special considerations for JSON
As stated in the previous clause W3C did not provide a real mapping from JSON to the XPath data model. It is possible though to use a mapping from JSON to XML defined in XForms2.0 [10], clause 5.2.2. The resulting XML document can then be mapped to the XPath data model.

Note, XForms2.0 is a W3C draft from 2010 and not a W3C standard. The produced XML document contains in XML attributes information about the original JSON data taypes. JSON arrays are mapped in a very specific way to XML (see example below). These mapping rules preserve all information for mapping the XML document again back to the original JSON document.

For example, the JSON snippet

"load": [0.31, 0.33, 0.32]

is mapped according to XForms2.0 to

<load type="array">

 <_type="number">0.31</_>

 <_type="number">0.33</_>

 <_type="number">0.32</_>

</load>

Other best practices propose to map the JSON snippet as follows:

<load>0.31</load>

<load>0.33</load>

<load>0.32</load>

There is hence not one and only one standard specifying the mapping from a JSON document to an XML document. One could argue that the XML document is anyway a conceptual document only that is not visible on the wire and used only internally in the MnS producer helping to apply the XPath expression to a JSON document. However, the exact way how JSON is mapped to XML has implications on the XPath expression to select nodes.

For example, when the first mapping method is used, the XPath expression snippet to select the first array item is

/load/_[1]

When the second mapping method is used, the XPath expression snippet is

/load/[1]

For a really interoprable solution, the MnS consumer needs to know the exact way the MnS producer maps JSON to XML. This means in turn, that the mapping method needs to be standardized by SA5.

A second option is to provide a mapping from the information elements in a JSON document to the XPath data model directly without an XML mapping in-between. Such a mapping is not provided at all by W3C.

Here after, a proposal to directly map a JSON document to the XPath data model:

· The JSON document is mapped to the root node.

· A JSON value, which is a string, a number, or one of the tree literals "false", "true" or "null" is mapped to a text node.

· A JSON object is mapped to one element node. The name of the element node is equal to the name of the name/value pair whose value is the JSON object. The parent of this element node is the containing element node. The child element nodes are the members (name/value pairs) of the JSON object.

· Each JSON array item is mapped to one element node. The name of the element node is equal to the name of the name/value pair whose value is a JSON array. The parent of these element nodes is the containing element node.

In case XPath is chosen as node selection language, then it is necessary to specify in normative fashion either the JSON to XML mapping, or the JSON to XPath data model mapping.

Now we will look at if due to some inhereant properties of JSON all XPath concepts are applicable, when the original document from which nodes are selected, is a JSON document.

A JSON object is an unordered collection of zero or more name/value pairs. This is why the concept of document order (clause 5 of XPath 1.0 [2]) is not applicable when an XPath expression is applied to an XPath data model that was generated from a JSON document. This has the following implications:
· The following axes cannot be used: following, following-sibling, preceding, preceding-sibling.

· The following functions cannot be used: position, local-name, namespace-uri, name.

JSON does not have a namespace concept. This is why XPath concepts related to name spaces are not applicable. This has the following implications:

· The following axes cannot be used: namespace

· The following functions cannot be used: local-name, namespace-uri, name

JSON does not have a concept similar to XML attributes. This is why XPath concepts related to attributes are not applicable. This has the following implications:

· The following axes cannot be used: attribute

Out of the seven node types specified in XPath 1.0 [2] only the root node, element node and text node are used. The attribute nodes, namespace nodes, processing instruction nodes and comment nodes are not used.

The name of the root element node is the class name of the base object. The base object is the node that contains the "NtfSubscriptionControl" instance (that in turn has an attribute whose value is the XPath expression).

Note that the root element node (document element) is not the same as the root node. The root element node is the mapping of the top-level name/value pair in the JSON document, whereas the root node is the (conceptual) parent of that object. The root node is the mapping of the JSON document.

When the value of the top-level name/value pair is an array, which is always the case for JSON defined NRMs in SA5, this array can contain only one item, which is the base object, in the special context of notification subscription. Considerations on howe to handle the case where a top-level array can contain multiple items are hence not required.

For example, assume the information model described by annex A.1 in TS 32.158 [11]. Further assume that the "ManagedElement" with the id "ME1" contains a "NtfSubscriptionControl" instance for which a node selection XPath expression shall be constructed. The base object is the "ManagedElement" with the id "ME1". The JSON document, to which the XPath expression is applied to, is as follows:

	{

 "ManagedElement": [

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

or

	{

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

}

Since a well formed XML document has one and only one root elemet the first alternative is preferred. It contains the key "ManagedElement" that maps to the name of the XML root element. The XPath expression to identify the base object only is then

/MangedElement/attributes

or

/*/attributes

4.2.5.2.3
Special considerations for YANG
The mapping from YANG to XML is defined in RFC 7950 [9]. No special considerations are required.
4.2.5.3
XPath 2.0

XPath 2.0 [3] introduces sequence expressions which help to render Xpath expressions more compact. For example, multiple attributes of an object can be selected by

/SubNetwork/(attrA, attrB)
and multiple objects based on instance names with

//*[objectInstance=("DN1", "DN2")]/attributes
Other concepts added in XPath 2.0 like quantified expressiuons provide no obvious value for the use cases analysed.
4.2.5.2.4
XPath 1.0 profiles
Editor's note: The content of this clause is work in progress and subject to change.

An XPath expression matches the production "Expr" defined in XPath 1.0 [2], clause 3.1. However, the general expression is much too generic for selecting nodes of an input document. For example, it allows also expressions like

(5, 256)[2]

which selects the second item in the sequence (5, 256), hence 256. This expression does not work at all on an input document. Even if "5" and "256" is replaced by some XPath expression evaluating to numbers, the expression cannot be used for selecting nodes.

This is why only one or more XPath profiles are needed.

Two XPath profiles are proposed:

· Basic profile: Supporting limited features allowing XPath to browse the document from one element node to another. The XPath EBNF is detailed in annex A.1. In this profile a location path is defined as an absolute location path. An absolute location path consists of a sequence of one or more location steps separated by / and preceded by /. The location steps in an absolute location path are composed together from left to right. Each step-in turn selects a set of nodes relative to a context node. Note that a / by itself selects the root node of the document. The basic profile supports a predicate that filters on the "id".
Example: /SubNetwork[id="SN1"]/ManagedElement[id="ME2"]/attributes

A location step is composed of

· an axis specifier, which specifies the tree relationship between the nodes selected by the step and the context node

· a node name which specifies the node name of the node selected by the location step. The node name can be a wildcard "*".

The axis specifier includes two axes:

· Child: axis containing the children of the context node

Example (unabbreviated syntax): /child::SubNetwork/child::*

Example (abbreviated syntax): /SubNetwork/*

· Descendant: axis containing the descendants of the context node; a descendant is a child or a child of a child and so on

Example: /SubNetwork/descendant::*

The predicate

· is an equality expression with the "=" operator, the relative location path "id" on the left side and a literal string on the right side.

Note that the axis specifier "child::" can be omitted from a location step, because child is the default axis. For example, a location path /SubNetwork/ManagedElement is short for /child::SubNetwork/child::ManagedElement.

Regarding the asterisk character "*", it is reserved to denote a wildcard when used in the location path. It selects all element children of the context node. In the the EBNF notation, the character "*" mentions repetition symbol (it can be also represented inside curly brackets followed by the "*").

· Advanced profile: supporting more advanced features like the usage of the predicates. The XPath EBNF is detailed in annex A.2. In this profile, a relative location path is added as a second option to the location path. A relative location path consists of a sequence of one or more location steps separated by / and it does not need to start from the root node as the absolute path.
Example: / / attributes

In this profile, in addition to the axis specifier and Node Name (same as the basic profile), a more sophisticated predicate option is added to the location step. The predicate uses arbitrary expressions to further refine the set of nodes selected by the step. Predicates are defined by an expression (PredicateExpr) always embedded in square brackets. A PredicateExpr can be as follows:

· An EqualityExpr: expression evaluated by comparing the objects that result from evaluating the two operands. On the right side, the operand is a literal string object and on the left side a PathExpr is introduced as an operand. The PathExpr might be a location path returning an object having one of the following types: node-set, boolean, number or string.

If the PathExpr object is a node-set, then each node in the node-set is compared to the literal string defined in the right side. Note that a node in the node-set might have one/many descendants nodes. And in such a case the comparison expression is evaluated to "false". This kind of comparison is accepted by Xpath (correct syntax); and it returns an empty result. Unfortunately, in the EBNF the PathExpr can not be constrained to avoid such a comparison (See more details on handling comparison based on the node-set in clause 3.4 [2]).

Examples: /SubNetwork/ManagedElement[id="ME1"]
· InEqualityExpr: expression defining a comparison of a PathExpr object to a given number. Here again, the same problem related to node-set comparison as discussed above is true. Note that here object to be compared is converted to a number as if by applying the number function (more details in clause 3.5 [2]).

Example: //attributes/ThresholdLevels[level>1]
· A functionCall: evaluated by using the Function Name to identify a function in XPath function librairy. Each function in the function library is specified using a function prototype, which gives the return type, the name of the function, and the type of the arguments (more details in Clause 4[2]).

Examples:

/SubNetwork/ManagedElement[starts-with(id,"ME2")]

/SubNetwork/ManagedElement[contains(id,"ME")]
The rest of the grammar introduced in the EBNF defines additional rules for the lexical structure (Literal, Number and Name structure). Note also that some functions are excluded since they are not useful for this profile. 4.2.5.4
XPath 3.1

Concepts added in XPath 3.1 [4] provide no obvious value for the use cases analysed.

Editor's note: Functions to deal with JSON arrays and maps may need further analysis.
4.2.5.5
JSON Pointer

JSON Pointer [5] defines a string syntax for identifying a specific value within a JSON document. A JSON Pointer expression points to one and only one value. Items of an array are identified based on their index and not key.

These properties do not make JSON Pointer a good candidate for selecting multiple nodes.
4.2.5.6
JSONPath

JSONPath [6] is still a draft RFC. Its intention is to be a powerful JSON Pointer.

Example JSONPath expressions

Select a subtree starting from the base object

$
Select all objects with a specific class

$..*[?(@.objectClass=="ManagedElement")]

Select all objects based on their DN

$..*[?(@.objectInstance=="DN1" || @.objectInstance== "DN2")]

Select specified attributes and attribute fields:

$.SubNetwork[?(@.id=="SN1")].attributes.userLabel

$.SubNetwork[?(@.id=="SN1")].attributes.plmnId.mcc
$.SubNetwork[?(@.id=="SN1")].attributes[userLabel,userDefinedNetworkType]

$.SubNetwork[?(@.id=="SN1")].attributes[userLabel,plmnId.mcc], does not work
Select an array element

$.SubNetwork[?(@.id=="SN1")].ThresholdMonitor[?(@.id=="TM1")].attributes.thresholdLevels[?(@.level==1)]

Conditional read: return attributes container only when a condition is met,

in this case "userLabel" is equal to "Berlin NW"

$.SubNetwork[?(@.id=="SN1")][?(@.userLabel=="Berlin NW")]
in this case we walk down one level for a test

$.SubNetwork[?(@.id=="SN1")][?(@.plmnId.mcc==456)], does not work
in this case an absolute path is used, that is outside of the current object

$.SubNetwork[?(@.id=="SN1")].attributes[?($.SubNetwork[?(@.id=="SN1")].ThresholdMonitor[?(@.id=="TM1")].attributes.metric=="Metric1")], does not work
Test on the presence of an attribute

$.SubNetwork[?(@.id=="SN1")][?(@.userLabel)]

4.2.6
CR proposal

4.2.7
Conclusion

Editor's note:

The following issuers are agreed for further work:

1) The examples are all in XML while examples in 28.532 are in YAML. The relation beween the two must be specified.

2) This needs to be updated to follow 223359, 223360, 223388

3) To use Xpath a number of things MUST to be clarified:

a. The notification must have a conceptual XML representation. Is it a single string as encoded by the solution set? Is it a set of XML elements per parameter? Or in case of notifyMOIChanges subparameters? Are XML attributes used at all?

b. Specify on stage 2 that the notificationFilter is an Xpath expression.

c. Xpath 1.0 or 2.0 ? 2.0 seems complicated? Do we force a service provider to support the full Xpath ? That's a tall order. Any limitations, options? All Xpath axes ? E.g. preceding axes ?

d. Is document order considered, used as a concept?

e. What do we do with Xpath namespaces ? How do we consider them?

f. What is the Xpath function library available ?

g. Are there any variable bindings ?

h. What is the accessible tree for Xpath? E.g. Are the Http headers included? VES headers? Are only notifyable attributes included or all attributes?

i. What is the root node of the accesible subtree ?

j. What is the context node in Xpath ? E.g. if I call the function current() which node is returned

k. Specify what is the canonical representation of the attribute values. If we have a comparision statement will should it compare to True, TRUE or true? 4 or 4.0 or +4.0 ?

l. Specify that the Xpath is evealuate against the relevant stage 3 data model. Stage 2 evaluation may be extra tricky and not consistent.

m. How do we address individual values/elements in a multivalue attribute? Indexes, keys?

n. Can Xpath work on the new value or also on the oldValue? What if oldValue is not supported? Should such a subscription be rejected ?

o. Numbers in XPath 1.0 are IEEE 754 [IEEE754-2008] double-precision floating-point values; This means that some values of int64, uint64, and decimal64 types cannot be exactly represented in XPath expressions.

4) An alternative is to define some own Xpath functions for specific use cases.

5) In YANG-Push which is a better solution for this topic, the notificationFilter for data change notification is evaluate against the conseptual datastore (the instantiated NRM) not against notification body. We propose to use that here too.

a. This avoids complex string manipulattion on href and path, but needs the SW to build up a conceptual model, which it probably already has.

b. This would mean we have to define conceptual XML representation, accessible subtree, context node for the datastore.

c. If we follow the stage 3 concepts for the XML representation this is possible. All IOCs, attribute, attribute fields are elements. The attribute container is an element. Actually the YANG mappings XML representation following RFC 7950 is nearly ready made for this.

6) In 28.622 notificationFilter is simply described as string. In the OpenAPI solution set, filter is indicated as having Xpath format, But the YANG solution set currently doesn’t make such additional statements for notificationFilter in NtfSubscriptionControl.

7) It is not clear why the scenario in example 2 in clause 4.2.2.1 cannot be supported.

Regarding scoping based on condition in clause 4.2.2.3, there is no AlarmInformation entity in the generic NRM (28.622). Additionally, alarm records are not notifyable, meaning that they are not reported using MOI change notifications. So the example appears to be incorrect.
4.3
Key issue #X: Definition of createMOI

4.3.1
Issue description

The operation "createMOI" in TS 28.532 is underspecified and needs to be improved in many aspects.

4.3.2
Analysis

The following points need to be clarified in the definition of "createMOI":

· Clarify that the name of the new object is assigned by the MnS consumer.

· Clarify that the MnS consumer does not need to provide in the creation request values for all attributes defined for the object class.

· Clarify that depending on the object class some attribute values have to be provided in the creation request.

· Clarify the MnS producer may provide values for attributes, for which no value is provided in the request.

· Clarify the operation is synchronous.

4.3.3
CR proposal
The existing clause 11.1.1.1 in TS 28.532 shall be replaced as follows:
****** BEGIN ***

11.1.1.1
createMOI operation
11.1.1.1.1
Description

This operation is invoked by MnS consumer to request the MnS producer to create a (single) Managed Object Instance (MOI) in the MIB maintained by MnS producer.
The "managedObjectClass" specifies the class name and the "managedObjectInstance" the instance name of the object to be created. Both parameters shall be included in the request.

The MnS consumer constructs the instance name by first assigning a value to the naming attribute of the new instance, and then constructing a DN according to TS 32.300 [25].

The MnS consumer provides in "attributeListIn" some or all attribute name/value pairs defined for the managed object class. The parameter "attributeListIn" may also be empty or absent. This flexibility is required because the MnS consumer may not know or may not be able to determine values for all attributes when he wants to create the object.

For some object classes, the values of some attributes may have to be specified in the "createMOI" request. These attributes need to be clearly identified where the object class is defined.

Attributes, for which a default value is defined, do not need to be included in the "createMOI" request unless the default value shall be overwritten with some other value. In the extreme case that all attributes have a default value, the parameter "attributeListIn" may be completely empty or absent.

Depending on the stage 3 protocol, instead of absent attribute name/value pairs, the name/value pairs may also be present in the "createMOI" request with a specific NULL value. The NULL value indicates that no value has been assigned to the attribute yet.

In case a default value is specified for a specific attribute and the attribute is absent in the request or has a NULL value, the MnS producer shall assign the default value to that attribute.

The MnS producer may also assign values to attributes whose values are not provided in the "createMOI" request and for which no default value is specified. The object class definition should identify the attributes for which this is allowed. When the MnS producer assigns an attribute value, the MnS producer shall include "attributeListOut" in the "createMOI" response, otherwise "attributeListOut" may be omitted.

In case the stage 3 protocol does not support returning "attributeListOut" the MnS producer shall not modify the attribute list provided in the request in any other way than assigning default values. In this case the MnS producer shall modify the attributes only after returning the "createMOI" response. Attribute vale change notifications may be used to notify MnS consumers.

Note the parameters "attributeListIn" and "attributeListOut" are to be interpreted in a way that on stage 3 this information must be present. A specific protocol may choose to use instead of a plain list of attribute name/value pairs the complete representation of the managed object to be created.

In case of a successful operation, the object shall be created immediately upon reception of the "createMOI" request, and the "createMOI" response shall be returned immediately after the creation of the object. The MnS producer shall not wait with the creation of the object or returning the response until some other potentially long-lasting process or activity, that might be triggered by the reception of the request or the creation of the object, has completed.

Only objects, whose parent exists, can be created (directly under that parent). The MnS producer shall consider an attempt to create an object whose parent object does not exist as an error.

11.1.1.1.2
Input parameters

	Parameter Name
	S
	Information Type / Legal Values
	Comment

	managedObjectClass
	M
	string
	Class name of the managed object to be created.

	managedObjectInstance
	M
	DN
	Instance name of the managed object to be created.

	attributeListIn
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	List of attribute name/value pairs of the managed object to be reated.

11.1.1.1.3
Output parameters

	Parameter name
	S
	Matching Information / Legal Values
	Comment

	attributeListOut
	M
	LIST OF SEQUENCE< attribute name, attribute value>
	List of attribute name/value pairs of the created object.

The parameter shall be present when attributes provided in "attributeListIn" have been modified by the MnS producer before object creation, otherwise it may be absent.

	Status
	M
	ENUM (OperationSucceeded, OperationSucceededAttributesModified, Failed)
	

****** END ***
5 Recommendations and conclusions

Annex <X>:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-04
	SA5#142e
	S5-222520
	-
	-
	-
	Initial skeleton
	0.0.0

	2022-04
	SA5#142e
	S5-222173
	
	
	
	Rel-18 pCR 28.831 Add skeleton
	0.1.0

	2022-04
	SA5#142e
	S5-222174
	
	
	
	Rel-18 pCR 28.831 Add key issue 1 Schema for notifyMOIChanges
	0.1.0

	2022-04
	SA5#142e
	S5-222175
	
	
	
	Rel-18 pCR 28.831 Add key issue 2 Targeted notification subscriptions
	0.1.0

	2022-04
	SA5#142e
	S5-222176
	
	
	
	Rel-18 pCR 28.831 Add description of current situation for key issue 2 Targeted notification subscriptions
	0.1.0

	2022-05
	SA5#143
	S5-223582
	
	
	
	Rel-18 pCR 28.831 Improve description of current situation for key issue 2 (Targeted notification subscription)
	0.2.0

	2022-07
	SA5#144
	S5-224424
	
	
	
	pCR 28.831 Add potential requirements for key issue Targeted notification subscription
	0.3.0

	2022-07
	SA5#144
	S5-224425
	
	
	
	pCR 28.831 Add potential solutions for key issue Targeted notification subscription
	0.3.0

	2022-07
	SA5#144
	S5-224426
	
	
	
	pCR 28.831 Add analysis of JSONPointer as potential solution
	0.3.0

	2022-07
	SA5#144
	S5-224427
	
	
	
	pCR 28.831 Add analysis of JSONPath as potential solution
	0.3.0

	2022-08
	SA5#145
	S5-225806
	
	
	
	pCR 28.831 Modify potential requirements for key issue Targeted notification subscription
	0.4.0

	2022-08
	SA5#145
	S5-225805
	
	
	
	pCR 28.831 Add XPath as potential solution
	0.4.0

	2022-08
	SA5#145
	S5-225804
	
	
	
	pCR 28.831 Add special XPath considerations for JSON and YANG
	0.4.0

	2022-08
	SA5#145
	S5-225803
	
	
	
	pCR 28.831 Add simple XPath profiles
	0.4.0

	2022-08
	SA5#145
	S5-225801
	
	
	
	pCR 28.831 Add key issue Definition of createMOI
	0.4.0

