
[bookmark: _Toc26265178][bookmark: _Toc26528660][bookmark: _Toc27898151][bookmark: _Toc26525055][bookmark: _Toc26265181][bookmark: _Toc17295212][bookmark: _Toc27898154][bookmark: _Toc26528663][bookmark: _Toc26525058]SA WG5 Meeting #144-e	S5-224225
27 June – 01 July 2022, e-Meeting	

[bookmark: _GoBack]Source:	Xidian University (Guangdong Communications and Networks Institute)
Title:	Discussion of Open-Source-Defined 6G Core Network (CN)
Document for:	Discussion / Approval
Agenda Item:	6.8.3.2
Work Item / Release:	
Abstract of the contribution: Discusses the architecture and the principles of open-source-defined 6G core network (OpenCN), include the network decoupling and reconfiguration of the network functions and resources.
1. Introduction
At recent SA2 meetings, there were different viewpoints concerning the usefulness of the 5G core network whose reference architecture is built upon special hardware, and its software functions are closely coupled with the hardware, which is inconvenient to meet the rapidly evolving scenarios and requirements of future networks [1][2]. As a remedy, the above challenges may be solved by introducing the open-source-defined (OSD) core network concept into cellular network for allowing operators to adaptively customize their users’ networks.
	S5-224225

	The development of Open-source software:
· The organizations of SHARE and DECUS in 1950s.
· ARPANET, UNIX, Linux and Android were developed for altruistic public sharing.
OSD cellular networks are still in their infancy. Explicitly, an open infrastructure would enable flexible network reconfiguration based on the specific requirements of diverse scenarios.
OSD cellular networking is still in its infancy, which requires the future wireless network, e.g., B5G/6G, improving the open ability of network infrastructure relying on open-source software and hardware. The open-source software enables developing software in a collaborative manner which is delivered by the copyright holder with a license for any potential user to study, update, and release new version to other users. The open-source hardware enables flexible network reconfiguration and encapsulation based on specific requirements of different scenarios. Obviously, such OSD cellular networking needs to be built on the integration of 5G/6G candidate technologies, such as network function virtualization (NFV), software-defined networking (SDN), network slicing, and scenario-specific transmission technologies, etc. Among these candidate technologies, two core principles, i.e., network decoupling and reconfiguration, serve as the core driver for OSD cellular networking, which should be integrated into core network for performance enhancement, and enable customized network services for future IoT.
Substantial efforts have been invested in promoting the progress of OSD cellular networks:
· The Open5G community founded in China developed the concepts, technologies and platforms of open source sixth generation (6G).
· The Linux Foundation (LF) launched the open network automation platform (ONAP) for orchestration.
· Telecom Infra Project (TIP) founded by Facebook applies the Open Compute Project models of openness and disaggregation as methods of spurring innovation, where component pieces in access network, backhaul, and core network will be unbundled, affording operators more flexibility in building networks
· O-RAN alliance founded by global industry and academics commits to evolve RANs around the world, which will be built upon virtualized network elements, white-box hardware and standardized interfaces. Based on all these works, we present a new paradigm to develop open-source-defined 6G CN.

2. Support of OpenCN Framework
[bookmark: _Toc510607461]Proposal 1	Using ETSI's NFV MANO architecture as a spring-board, an OpenCN framework is introduced to facilitate customized services for any potential scenario, which is built on a pair of key principles, namely on network decoupling and reconfiguration.
[image: C:\Users\dell\AppData\Local\Temp\WeChat Files\efc1c72128db25816cd3ad416efc273.png]
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Fig. 1: open-source-defined core network framework.
The OSD core network framework is shown in Fig. 1. The entire framework includes the control plane and MANO plane, where the control plane is mainly responsible for data processing, transmission and provide various applications to vertical industries and end users, The MANO plane is responsible for managing these NFs as well as APPs, and for scheduling the VIM to allocate resources.
The infrastructure layer covers all computing, caching and communication resources of the system. Specifically, the central processing unit (CPU) provides high-performance computing power for the control layer. The memory and the hard disk drive (HDD)/solid state drive (SSD) are the main components of the caching resources in the infrastructure layer. The communications resources of this layer include the band-width as well as the eNB, next-generation node base station (gNB) and access point (AP).
The underlying three-dimensional resources may be decoupled from the dedicated hardware and abstracted into a resource pool that could be shared by various NFs at the virtualization layer based on the NFV concept. Then, OSD 6G core network creates multiple Docker containers or virtual machines (VMs), which are running on the underlying resource pool and could simultaneously support different NFs for providing customized services, as seen at the virtualization layer.
The control layer constitutes the core part of OSD core network, which includes a unified SBI and diverse NFs, where the SBI can connect these NFs together based on the unified stateless hypertext transfer protocol (HTTP) for ensuring that they can communicate directly with each other when needed. Furthermore, we decouple the originally centralized service functions into independent NFs. These NFs are transparent to each other and can also be combined on demand, so that they could be activated and released by all users instantly in support of their customized services.
The application layer contains all the functions needed by individuals and vertical industries, such as network slicing, resource allocation and service identification. The user selects relevant VNFs with allocated resources from the physical core network, i.e., the infrastructure layer, and then encapsulates them to shape a customized sub-CN.
3. Support of CN Decoupling
Proposal 2	With reference to the service-based architecture (SBA) of the 5G core network (5GC), a MANO plane is developed for the OpenCN scheme for decomposing the tightly coupled service functions into multiple independent network functions (NFs), thereby achieving CN decoupling.
[image: C:\Users\dell\AppData\Local\Temp\WeChat Files\b3ba111644b4fe68853393eec57951b.png]
Fig. 2: Microservice-based MANO.
In order to decouple the 	MANO functions, we conceive the microservice-based MANO plane, which evolved from the traditional MANO plane, mainly composed of the SBI and the service-oriented NFs. The service-based MANO plane as shown in Fig. 2.
Firstly, On the left part of Fig. 2, Pod as the smallest unit in the core network, they can run several Docker containers simultaneously. Kubelet maintains the lifecycle management and the communication between control plane and the MANO plane. On the right part of Fig. 2, there are three main components, namely API server, controller manager and scheduler. The API server provides the only entrance for kubelet to the microservice-base MANO functions. The controller manager and scheduler manage and control Pods.
Secondly, all service-oriented NFs are independently deployed in the Docker containers of Fig. 1 to get virtualized. There are seven basic NFs in our proposed OpenCN of Fig. 2. All microservice-based NFs are independently deployed in the MANO plane. Specifically, the OpenCN learned from ESTI NFV include network service descriptor management function (NSDM). Furthermore, the newly developed NFs including resource metrics monitor function (RMM), network service descriptor transform function (NSDT), template management function (TM), image management function (IM), network service orchestration function (NSO) and plugin management function (PM).
Finally, based on the above NFs, we are ready for characterizing the basic functionalities of OpenCN. Hence anyone could develop his/her own NFs for supporting new applications.

4. Support of CN Reconfiguration
Proposal 3	In order to integrate these decoupled NFs as required and to reconfigure an OpenCN system, the concept of templates and instances is implemented as part of the NF's management and orchestration (MANO) scheme, eventually generating a customized entity for supporting complete services.
[image: C:\Users\dell\AppData\Local\Temp\WeChat Files\ef2e0f3631ab6ef8b26082c0c8ea359.png]
Fig. 3: A detailed view of the microservice-based MANO of Fig. 1.
As the CN management is not directly related to the reconfiguration of OpenCN, the joint management of CN and VNF proposed by ETSI can still be used in OpenCN. Therefore, by means of Kubernetes, we present OpenCN’s templates and instances of NF’s MANO, which supports the flexible scheduling of NFs, and further CN reconfiguration.
More explicitly, some templates are pre-defined for the corresponding applications. However, when no user asks for this application, we do not allocate the related resources to the template, hence, the template is empty. By contrast, if a user requests this application, we shall activate the template by assigning computing, caching and communication resources as an instantiation.
A detailed view of the microservice-based MANO extracted from Fig. 1 is shown in the Fig. 3, in order to illustrate how our template works, we omit the MANO function which we designed. As we can see, the right side represents the predefinition and selection of templates, while the left side represents the templates’ instantiation based upon Kubernetes, which is a container-based cluster management platform. The VIM seen at the bottom right of Fig. 3 is used for scheduling the underlying resource pool to arrange for the immediate resource deployment for instantiation, so as to avoid the assignment of excessive resources.
As defined in, Pod is the smallest unit of deploying and monitoring NFs in Kubernetes, which can run several Docker containers simultaneously. The API server provides the only entry for slave nodes to the application layer, i.e., Pods communicate with the given templates selected by the user through the API server for implementing CN reconfiguration. The Scheduler and Controller of Fig. 3 manage and monitor all slave nodes, e.g., for fault detection. Moreover, there is a Kubernetes’ data center represented by Etcd of Fig. 3 for storing the states of the above components.
The template seen close to the right of Fig. 3 is provided for extracting the common characteristics of a class of problems. Given this idea, a static OpenCN template is predefined, e.g., for selecting appropriate NFs and for predefining the related parameters according to the specific type of services.
The OpenCN template cannot directly provide services and we do not allocate the related resources for the template. As a result, users can only gain access to the edge services through instances. The instantiation determines whether the OpenCN system can run stably, which is the key for reconfiguring CN.
The instantiation process mainly includes the following three steps. Firstly, when a user requests services, such as eMBB service, the MANO of Fig. 3 configures the operating environment of NFs, i.e. the API Server of Fig. 3 locates the idle Pod and updates the relevant information to Etcd of Fig. 3, which provides basic environmental support for instantiation. Secondly, the MANO of Fig. 3 schedules VIM for allocating the specified virtual computing, caching and communication resources to users. Finally, under the specifically configured operating environment and the resources allocated, MANO actually runs the predefined NFs and APPs of the template, i.e., Kubelet runs the Pod that specifically deploys NFs and APPs. Therefore, the dedicated CN instance has been created.
At this point, we have succeeded in creating the OpenCN scheme by completing the CN decoupling and reconfiguration.
5. Conclusions
[bookmark: _Hlk51968268]The following proposals have been made.
Proposal 1	Using ETSI's 5GC architecture as a spring-board, an OpenCN framework is introduced to facilitate customized services for any potential scenario, which is built on a pair of key principles, namely on network decoupling and reconfiguration.
Proposal 2	With reference to the service-based architecture (SBA) of the 5G core network (5GC), a service-based control layer is developed for the OpenCN scheme for decomposing the tightly coupled service functions into multiple independent network functions (NFs), thereby achieving CN decoupling.
Proposal 3	In order to integrate these decoupled NFs as required and to reconfigure a CN system, the concept of templates and instances is implemented as part of the NF's management and orchestration (MANO) scheme, eventually generating a customized entity for supporting complete services.
6. References
[1]	S6-200305: “Pseudo-CR on Initial content for lifecycle management section”, LS from WG6#35.
[2]	S5-201110: “Presentation of Specification to TSG: TS 28.537, Version 1.0.0, Management and orchestration; Management capabilities”, LS from SA5#129e.
[3] S2-2106255: “New SID on Enhancement of support for Edge Computing in 5G Core network - phase 2” LS from SA2#146e.
3GPP

image1.png

image2.png
Control Plane
Kuberntes Worker Node

66 CoreNetwork
P Poi Poi
NE NF NF

LV‘_V_‘_V_

MANO Plane

Microservice-tased MANO

Tenplse

umem

NS Orehestaton | NSD Trasfom - NSD Management

| | |

[LT e

e D8] | vt Mior
Mmgenan (=

[e

g

Wbl
P Pt Poi \ Dynanic Resource
NF NE NF ApiGateway Alocaion
Kubernetes Master Node:
Kubelt API Server Controller Manager
Virtual Machine ﬂ Scheduler

Coninge Runi:
'
OpesionSystem

VIM

image3.png
Infrastructure Virtualization Control Layer Application
Layer Layer Instantiation LLeyen
— e — i
| 3 UPF i RLI |
Computing 1 Docker ! i € i
Resouece | | i |
| Docker | SMF i ;
3 | . amBB |
Gl ol Docker 1. . UDM Templates 3 o 3
Resource f . ! i . i
§ | AUSF i : 3
Communication i Docker i NRF
Resource | i

Container
R S AMF Resource Orchestration

